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Abstract. By constructing a Lyapunov function, a new result is given, which

guarantees the non-existence of nontrivial periodic solutions to nonlinear vector

differential equation of eighth order:

X(8) +AX(7) +BX(6) +CX(5) +DX(4) +E
...
X +F (Ẋ)Ẍ +G(X)Ẋ +H(X) = 0.

An example is also established for the illustrations of topic. By this way, our

findings raise a new result for the nonexistence of nontrivial periodic solutions

related to this nonlinear vector differential equation of eighth order.
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1. Introduction

By now, in the relevant literature, the instability of solutions for various nonlinear
scalar and vector differential equations of eighth order has been considered only by
a few authors, see, Tunç [3], Tunç and Tunç [4] and the references registered in
these papers. In addition, in 1996, Iyase [2] proved a result on the nonexistence of
nontrivial periodic solutions to nonlinear eighth order scalar differential equation:

(1.1) x(8) + a1x
(7) + a2x

(6) + a3x
(5) + a4x

(4) + a5
...
x + f6(ẋ)ẍ+ f7(x)ẋ+ f8(x) = 0.

Now, for basic information, we consider the linear constant coefficient differential
equation of eighth order:

(1.2) x(8) + a1x
(7) + a2x

(6) + a3x
(5) + a4x

(4) + a5
...
x + a6ẍ+ a7ẋ+ a8x = 0.

It is well-known that the auxiliary equation of (1.2) is given by:

ψ(λ) ≡ λ8 + a1λ
7 + a2λ

6 + a3λ
5 + a4λ

4 + a5λ
3 + a6λ

2 + a7λ+ a8 = 0.

If β is an arbitrary real number, then the real part of ψ(iβ) is given by

φ(β) = β8 − a2β
6 + a4β

4 − a6β
2 + a8.
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It is also well-known that if

a2 ≤ 0, a4 ≥ 0, a6 ≤ 0, a8 > 0

in which case φ(β) > 0, then the auxiliary equation cannot have any purely imagi-
nary root whatever. It therefore follows from general theory that equation (1.2) does
not have a periodic solution except x = 0. An analogous consideration of the imagi-
nary part of ψ(iβ) also leads to conditions on a1, a3, a5 and a7 for the nonexistence
of any periodic solution of (1.2) other than x = 0.

Now, in this paper, we consider instead of scalar nonlinear differential equation
given by (1.1), its nonlinear vector differential equation form:

(1.3) X(8)+AX(7)+BX(6)+CX(5)+DX(4)+E
...
X+F (Ẋ)Ẍ+G(X)Ẋ+H(X) = 0

in the real Euclidean space Rn (with the usual norm denoted in what follows by
‖.‖), where A, B, C, D and E are constant n × n- symmetric matrices; F and G
are continuous n × n- symmetric matrix functions depending in each case on the
arguments shown; H : Rn → Rn, H is continuous and H(0) = 0.

Throughout this paper, instead of equation (1.3), we consider its equivalent dif-
ferential system:

Ẋ = Y, Ẏ = Z, Ż = S, Ṡ = T, Ṫ = U, U̇ = V, V̇ = W,

Ẇ = −AW −BV − CU −DT − ES − F (Y )Z −G(X)Y −H(X),
(1.4)

which was obtained as usual by setting Ẋ = Y ,Ẍ = Z, X = S, X(4) = T ,X(5) = U ,
X(6) = V , X(7) = W from (1.3).

Let JG(X) and JF (Y ) denote the Jacobian matrices corresponding to the matrix
functions G(X) and F (Y ), that is,

JG(X) =
(
∂gi

∂xj

)
, JF (Y ) =

(
∂fi

∂yj

)
, (i, j = 1, 2, ..., n),

where (x1, x2, ..., xn), (y1, y2, ..., yn), (g1, g2, ..., gn) and (f1, f2, ..., fn) are the com-
ponents of X, Y , G and F , respectively. In addition, it is assumed that the Jacobian
matrices JG(X) and JF (Y ) exist and are continuous.

The symbol 〈X,Y 〉 corresponding to any pair X, Y in Rn stands for the usual
scalar product

∑n
i=1 xiyi and λi(A), (i = 1, 2, ..., n), are the eigenvalues of the

n×n-matrix A. It is also well-known that a real symmetric matrix A = (aij), (i, j =
1, 2, ..., n), is said to be positive definite if and only if the quadratic form XTAX
is positive definite, where X ∈ Rn and XT denotes the transpose of X.

Obviously, for the case n = 1, equation (1.3) reduces to equation (1.1). It should
also be noted that according to our observations in the literature, it is not founded
any paper on the nonexistence of nontrivial periodic solutions of nonlinear vector
differential equations of eighth order. The present study is the first attempt to obtain
sufficient conditions related to the nonexistence of nontrivial periodic solutions of
nonlinear vector differential equations of eighth order. The motivation for the present
study has come, especially, from the paper of Iyase [2], Tunç [5], Tunç [6] and the
papers mentioned above. Our aim is to accomplish the result of Iyase [Theorem 1,
2] to the nonlinear vector differential equation of eighth order, (1.3).

We shall use the following well-known algebraic result to prove our main result.
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Lemma 1.1. [1] Let A be a real symmetric n × n matrix and a′ ≥ λi(A) ≥ a >
0 (i = 1, 2, ..., n), where a′, a are constants. Then

a′ 〈X,X〉 ≥ 〈AX,X〉 ≥ a 〈X,X〉

and
a′2 〈X,X〉 ≥ 〈AX,AX〉 ≥ a2 〈X,X〉 .

2. Main result

The main result is the following theorem.

Theorem 2.1. Suppose that there are constants a1, a2, a4 and n × n- symmetric
constant matrices A, B, D, n × n- symmetric matrix functions F , G and n-vector
function H such that the following conditions hold:

λi(A) ≥ a1 > 0, λi(B) ≤ a2 ≤ 0, λi(D) ≥ a4 ≥ 0,

λi(F (Y )) ≤ 0 for all Y ∈ Rn, H(0) = 0,

H(X) 6= 0 if X 6= 0,
n∑

i=1

xihi(X) > 0 for all X ∈ Rn,

where H(X) = (h1(X), ..., hn(X)), (i = 1, 2, ..., n). Then equation (1.3) has no
non-trivial periodic solutions.

Note that there are no restrictions on C, E and G.
Proof. To prove the theorem, we introduce a Lyapunov function

V1 = V1(X,Y, Z, S, T, U, V,W )

defined as follows:
V1 =− 〈X,W 〉 − 〈X,AV 〉 − 〈X,BU〉 − 〈X,CT 〉 − 〈X,DS〉

− 〈X,EZ〉+ 〈Y, V 〉+ 〈Y,AU〉+ 〈Y,BT 〉+ 〈Y,CS〉+ 〈Y,DZ〉

+
1
2
〈Y,EY 〉 − 〈Z,U〉 − 〈Z,AT 〉 − 〈Z,BS〉 − 1

2
〈Z,AZ〉

+ 〈S, T 〉+
1
2
〈S,AS〉 −

1∫
0

〈F (σY )Y,X〉 dσ −
1∫

0

〈σG(σX)X,X〉 dσ.

(2.1)

Clearly, we have V1(0, 0, 0, 0, 0, 0, 0, 0) = 0. Next, from the assumptions of theorem
and the above lemma it follows that:

V1(0, 0, 0, ε, 0, 0, 0, 0) =
1
2
〈ε,Aε〉 ≥ 1

2
〈ε, a1ε〉 =

1
2
a1 ‖ε‖2 > 0

for all arbitrary ε ∈ Rn, ε 6= 0. Thus, in every neighborhood of (0, 0, 0, 0, 0, 0, 0, 0),
there exists a point (ξ, η, ζ, µ, τ, ω, ρ, λ) such that V1(ξ, η, ζ, µ, τ, ω, ρ, λ) > 0 for ar-
bitrary ξ, η, ζ, µ, τ, ω, ρ, λ in Rn.

Now, let

(X,Y, Z, S, T, U, V,W ) = (X(t), Y (t), Z(t), S(t), T (t), U(t), V (t),W (t))
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be an arbitrary periodic solution of system (1.4). Differentiating the Lyapunov
function (2.1) along this solution, we obtain

V̇1 =
d

dt
V1(X,Y, Z, S, T, U, V,W )

= 〈T, T 〉 − 〈S,BS〉+ 〈Z,DZ〉+ 〈X,H(X)〉+ 〈G(X)Y,X〉+ 〈F (Y )X,Z〉

− d

dt

1∫
0

〈F (σY )Y,X〉 dσ − d

dt

1∫
0

〈σG(σX)X,X〉 dσ.

(2.2)

Recall that

d

dt

1∫
0

〈σG(σX)X,X〉 dσ =

1∫
0

〈σG(σX)Y,X〉 dσ +

1∫
0

σ
∂

∂σ
〈σG(σX)Y,X〉 dσ

= σ2 〈G(σX)Y,X〉
∣∣1
0 = 〈G(X)Y,X〉(2.3)

and

d

dt

1∫
0

〈F (σY )Y,X〉 dσ =
d

dt

1∫
0

〈F (σY )X,Y 〉 dσ

=

1∫
0

〈F (σY )X,Z〉 dσ +

1∫
0

σ
∂

∂σ
〈F (σY )X,Z〉 dσ

+

1∫
0

〈F (σY )Y, Y 〉 dσ

= σ 〈F (σY )X,Z〉
∣∣1
0 +

1∫
0

〈F (σY )Y, Y 〉 dσ

= 〈F (Y )X,Z〉+

1∫
0

〈F (σY )Y, Y 〉 dσ.(2.4)

Now, combining estimates (2.3) and (2.4) into (2.2), we get

V̇1 = 〈T, T 〉 − 〈S,BS〉+ 〈Z,DZ〉+ 〈X,H(X)〉 −
1∫

0

〈F (σY )Y, Y 〉 dσ.

Since λi(B) ≤ a2 ≤ 0, λi(D) ≥ a4 ≥ 0,
n∑

i=1

xihi(X) > 0 and λi(F (Y )) ≤ 0, then it

is clear that V1(t) ≥ 0 for all t ≥ 0, which implies that V1(t) is monotone in t. Since
V1 is continuous and X, Y, Z, S, T , U, V, W are periodic in t, V1(t) is bounded.
Hence lim

t→∞
V1(t) = V0 (constant).

By using the fact V1(t) = V1(t + mω) for arbitrary fixed t and arbitrary m, ω,
we have V1(t) = V0 for all t. Thus V̇1 = 0 for all t. This case necessarily implies
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that Y = 0 for all t, and therefore also that X = ξ (a constant vector), Z = Ẏ = 0,
S = Ÿ = 0, T =

...
Y = 0, U = Y (4) = 0, V = Y (5) = 0, W = Y (6) = 0, Y (7) = Ẇ = 0

for t. Substituting the estimates

X = ξ, Y = Z = S = T = U = V = W = 0

in (1.4), it follows that H(ξ) = 0 which necessarily implies that ξ = 0 because of
H(0) = 0 and H(X) 6= 0 when X 6= 0. Hence

X = Y = Z = S = T = U = V = W = 0

for all t.

Example 2.1. As a special case of system (1.4), for the case n = 2, let us choose
A, B, D, F and H as follows:

A =
[

3 1
1 3

]
, B =

[
0 0
0 −2

]
, D =

[
6 0
0 0

]
,

H(X) =
[
x3

1 + x5
1

x3
2 + x5

2

]
, F (Y ) =

[
−y2

1 − y2
2 0

0 −y2
1 − y2

2

]
.

Then, respectively, we have

λ1(A) = 2, λ2(A) = 4, λ1(B) = 0, λ2(B) = −2, λ1(D) = 0, λ2(D) = 6,
2∑

i=1

xiFi(x) = x4
1 + x6

1 + x4
2 + x6

2 > 0

for all x1 6= 0 and x2 6= 0, and

λ1(F (Y )) = λ2(F (Y )) = −y2
1 − y2

2 ≤ 0.

Thus, all the conditions of Theorem 2.1 hold.
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