An Iterative Approximation Method for a Countable Family of Nonexpansive Mappings in Hilbert Spaces

Rabian Wangkeeree
Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand rabianw@nu.ac.th

Abstract

In this paper, to find a common element of the fixed point set of common fixed points of a countable family of nonexpansive mappings and the solution set of the variational inequality for α-inverse-strongly monotone, we introduce an iterative approximation method in a real Hilbert space. Then the strong convergence theorem is proved under some appropriate conditions imposed on the parameters. This result extended and improved the corresponding results of Yao and Yao [15] and many others.

2000 Mathematics Subject Classification: 47H09, 47H10, 47H17
Key words and phrases: Nonexpansive mapping, α-inverse strongly monotone operator, variational inequality, strong convergence, Hilbert space.

1. Introduction

Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$ and let C be a closed convex subset of H. Let $B: C \longrightarrow H$ be a mapping. The classical variational inequality, denoted by $V I(B, C)$, is to find $x^{*} \in C$ such that

$$
\left\langle B x^{*}, v-x^{*}\right\rangle \geq 0
$$

for all $v \in C$. The variational inequality has been extensively studied in the literature. See, e.g. $[14,16]$ and the references therein. We recall that a mapping $B: C \longrightarrow H$ is said to be:
(1) Monotone if $\langle B u-B v, u-v\rangle \geq 0, \quad \forall u, v \in C$.
(2) L-Lipschitz if there exists a constant $L>0$ such that

$$
\|B u-B v\| \leq L\|u-v\|, \quad \forall u, v \in C
$$

(3) α-inverse-strongly monotone [2,5] if there exists a positive real number α such that

$$
\langle B u-B v, u-v\rangle \geq \alpha\|B u-B v\|^{2}, \quad \forall u, v \in C
$$

Received: June 19, 2008; Revised: November 28, 2008.

It is obvious that any α-inverse-strongly monotone mapping B is monotone and Lipschitz continuous. A mapping S of C into itself is called nonexpansive if

$$
\|S u-S v\| \leq\|u-v\|
$$

for all $u, v \in C$. We denote by $F(S)$ the set of fixed points of S. An operator A is strongly positive on H if there is a constant $\bar{\gamma}>0$ with property

$$
\begin{equation*}
\langle A x, x\rangle \geq \bar{\gamma}\|x\|^{2}, \quad \forall x \in H \tag{1.1}
\end{equation*}
$$

A set-valued mapping $T: H \longrightarrow 2^{H}$ is called monotone if for all $x, y \in H, f \in T x$ and $g \in T y$ imply $\langle x-y, f-g\rangle \geq 0$. A monotone mapping $T: H \longrightarrow 2^{H}$ is maximal if the graph of $G(T)$ of T is not properly contained in the graph of any other monotone mapping. It is known that a monotone mapping T is maximal if and only if for $(x, f) \in H \times H,\langle x-y, f-g\rangle \geq 0$ for every $(y, g) \in G(T)$ implies $f \in T x$. Let B be a monotone map of C into H and let $N_{C} v$ be the normal cone to C at $v \in C$, i.e., $N_{C} v=\{w \in H:\langle u-v, w\rangle \leq 0, \forall u \in C\}$ and define

$$
T v= \begin{cases}B v+N_{C} v, & v \in C \\ \emptyset, & v \notin C\end{cases}
$$

Then T is maximal monotone and $0 \in T v$ if and only if $v \in V I(C, B)$; see [10]. For finding an element of $F(S) \cap V I(B, C)$, Takahashi and Toyoda [12] introduced the following iterative scheme:

$$
\begin{equation*}
x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) S P_{C}\left(x_{n}-\lambda_{n} B x_{n}\right) \tag{1.2}
\end{equation*}
$$

for every $n=0,1,2, \ldots$, where $x_{0}=x \in C,\left\{\alpha_{n}\right\}$ is a sequence in $(0,1)$, and $\left\{\lambda_{n}\right\}$ is a sequence in $(0,2 \alpha)$. They showed that, if $F(S) \cap V I(B, C)$ is nonempty, then the sequence $\left\{x_{n}\right\}$ generated by (1.2) converges weakly to some $z \in F(S) \cap$ $V I(B, C)$. On the other hand, for solving the variational inequality problem in the finite-dimensional Euclidean space \mathbb{R}^{n} under the assumption that a set $C \subset$ \mathbb{R}^{n} is closed and convex, a mapping B of C into \mathbb{R}^{n} is monotone and k-Lipschitz continuous and $V I(B, C)$ is nonempty, Korpelevich [4] introduced the following socalled extragradient method:

$$
\left\{\begin{array}{l}
x_{1}=u \in C \tag{1.3}\\
y_{n}=P_{C}\left(x_{n}-\lambda B x_{n}\right) \\
x_{n+1}=P_{C}\left(x_{n}-\lambda B y_{n}\right), \quad n \geq 1
\end{array}\right.
$$

where $\lambda \in(0,1 / k)$. He proved that the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ generated by this iterative process converge to the same point $z \in V I(B, C)$. Recently, Nadezhkina and Takahashi [8], Zeng and Yao [17] proposed some new iterative schemes for finding elements in $F(S) \cap V I(B, C)$. Recently, Iiduka and Takahashi [3] proposed another iterative scheme as following

$$
\left\{\begin{array}{l}
x_{1}=x \in C \text { chosen arbitrary } \tag{1.4}\\
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) S P_{C}\left(x_{n}-\lambda_{n} B x_{n}\right), \quad n \geq 1
\end{array}\right.
$$

where B is an α-cocoerceive map, $\left\{\alpha_{n}\right\} \subseteq(0,1)$ and $\left\{\lambda_{n}\right\} \subseteq(0,2 \alpha)$ satisfy some parameters controlling conditions. They showed that, if $F(S) \cap V I(B, C)$ is nonempty, then the sequence $\left\{x_{n}\right\}$ generated by (1.4) converges strongly to some $z \in F(S) \cap$ $V I(B, C)$. By using this idea, Yao and Yao [15] gave the iterative scheme (1.5)
below for finding an element of $F(S) \cap V I(B, C)$ under the assumption that a set $C \subseteq H$ is nonempty, closed and convex, a mapping $S: C \longrightarrow C$ is nonexpansive and a mapping $B: C \longrightarrow H$ is α-inverse-strongly-monotone:

$$
\left\{\begin{array}{l}
x_{1}=u \in C \tag{1.5}\\
y_{n}=P_{C}\left(x_{n}-\lambda_{n} B x_{n}\right) \\
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} S P_{C}\left(y_{n}-\lambda_{n} B y_{n}\right), \quad n \geq 1
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are three sequences in $[0,1]$ and $\left\{\lambda_{n}\right\}$ is a sequence in $[0,2 \alpha]$. They proved that if $F(S) \cap V I(B, C) \neq \emptyset$ and and the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ of parameters satisfy appropriate conditions, then the sequence $\left\{x_{n}\right\}$ defined by (1.5) converges strongly to $q \in F(S) \cap V I(B, C)$.

On the other hand, Moudafi [6] introduced the viscosity approximation method for nonexpansive mappings (see [13] for further developments in both Hilbert and Banach spaces). Let f be a contraction on C. Starting with an arbitrary initial $x_{1} \in C$, define a sequence $\left\{x_{n}\right\}$ recursively by

$$
\begin{equation*}
x_{n+1}=\left(1-\sigma_{n}\right) T x_{n}+\sigma_{n} f\left(x_{n}\right), \quad n \geq 0 \tag{1.6}
\end{equation*}
$$

where $\left\{\sigma_{n}\right\}$ is a sequence in $(0,1)$. It is proved $[6,13]$ that under certain appropriate conditions imposed on $\left\{\sigma_{n}\right\}$, the sequence $\left\{x_{n}\right\}$ generated by (1.6) strongly converges to the unique solution q in C of the variational inequality

$$
\langle(I-f) q, p-q\rangle \geq 0, p \in C
$$

Recently, Marino and $\mathrm{Xu}[7]$ introduced the following general iterative method:

$$
\begin{equation*}
x_{n+1}=\left(I-\alpha_{n} A\right) T x_{n}+\alpha_{n} \gamma f\left(x_{n}\right), n \geq 0, \tag{1.7}
\end{equation*}
$$

where A is a strongly positive bounded linear operator on H. They proved that if the sequence $\left\{\alpha_{n}\right\}$ of parameters satisfies appropriate conditions, then the sequence $\left\{x_{n}\right\}$ generated by (1.7) converges strongly to the unique solution of the variational inequality

$$
\begin{equation*}
\left\langle(A-\gamma f) x^{*}, x-x^{*}\right\rangle \geq 0, x \in C \tag{1.8}
\end{equation*}
$$

which is the optimality condition for the minimization problem

$$
\min _{x \in C} \frac{1}{2}\langle A x, x\rangle-h(x)
$$

where h is a potential function for γf (i.e., $h^{\prime}(x)=\gamma f(x)$ for $\left.x \in H\right)$.
Very recently, to find a common fixed point of a countable family of nonexpansive mappings in Banach spaces, Aoyama et al. [1] introduced the following iterative sequence:

$$
\left\{\begin{array}{l}
x_{1}=x \in C \tag{1.9}\\
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) S_{n} x_{n}, \quad n \geq 1
\end{array}\right.
$$

where C is a nonempty closed convex subset of a Banach space, $\left\{\alpha_{n}\right\}$ is a sequence of $[0,1]$, and $\left\{S_{n}\right\}$ is a sequence of nonexpansive mappings with some conditions. Then they proved that $\left\{x_{n}\right\}$ defined by (1.9) converges strongly to a common fixed point of $\left\{S_{n}\right\}$.

Inspired and motivated by the above research, we suggest and analyze a new iterative scheme for finding a common element of the fixed point set of common
fixed points of a countable family of nonexpansive mappings and the solution set of the variational inequality problem for an α-inverse-strongly monotone mapping in a real Hilbert space. Under some appropriate conditions imposed on the parameters, we obtain a strong convergence theorem for the sequence generated by the proposed method. The results of this paper extend and improve the results of Yao and Yao [15] and many others.

2. Preliminaries

Let H be a real Hilbert space with norm $\|\cdot\|$ and inner product $\langle\cdot, \cdot\rangle$ and let C be a closed convex subset of H. We denote weak convergence and strong convergence by notations \rightharpoonup and \longrightarrow, respectively.

A space X is said to satisfy Opials condition [9] if for each sequence $\left\{x_{n}\right\}$ in X which converges weakly to a point $x \in X$, we have

$$
\liminf _{n \longrightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \longrightarrow \infty}\left\|x_{n}-y\right\|, \quad \forall y \in X, y \neq x .
$$

For every point $x \in H$, there exists a unique nearest point in C, denoted by $P_{C} x$, such that

$$
\left\|x-P_{C} x\right\| \leq\|x-y\| \quad \text { for all } y \in C
$$

P_{C} is called the metric projection of H onto C. It is well known that P_{C} is a nonexpansive mapping of H onto C and satisfies

$$
\begin{equation*}
\left\langle x-y, P_{C} x-P_{C} y\right\rangle \geq\left\|P_{C} x-P_{C} y\right\|^{2} \tag{2.1}
\end{equation*}
$$

for every $x, y \in H$. Moreover, $P_{C} x$ is characterized by the following properties: $P_{C} x \in C$ and

$$
\begin{equation*}
\left\langle x-P_{C} x, y-P_{C} x\right\rangle \leq 0, \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\|x-y\|^{2} \geq\left\|x-P_{C} x\right\|^{2}+\left\|y-P_{C} x\right\|^{2} \tag{2.3}
\end{equation*}
$$

for all $x \in H, y \in C$. It is easy to see that the following is true:

$$
\begin{equation*}
u \in V I(A, C) \Leftrightarrow u=P_{C}(u-\lambda A u), \lambda>0 \tag{2.4}
\end{equation*}
$$

The following lemmas will be useful for proving the convergence result of this paper.

Lemma 2.1. Let H be a real Hilbert space. Then for all $x, y \in H$,
(1) $\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle$.
(2) $\|x+y\|^{2} \geq\|x\|^{2}+2\langle y, x\rangle$.

Lemma 2.2. [11] Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space X and let $\left\{\beta_{n}\right\}$ be a sequence in $[0,1]$ with

$$
0<\liminf _{n \longrightarrow \infty} \beta_{n} \leq \limsup _{n \longrightarrow \infty} \beta_{n}<1
$$

Suppose $x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} x_{n}$ for all integers $n \geq 0$ and

$$
\limsup _{n \longrightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0 .
$$

Then

$$
\lim _{n \longrightarrow \infty}\left\|y_{n}-x_{n}\right\|=0
$$

Lemma 2.3. [9] Let H be a Hilbert space, C a closed convex subset of H, and $S: C \longrightarrow C$ a nonexpansive mapping with $F(S) \neq \emptyset$. If $\left\{x_{n}\right\}$ is a sequence in C weakly converging to $x \in C$ and if $\left\{(I-S) x_{n}\right\}$ converges strongly to y, then $(I-S) x=y$.

Lemma 2.4. [13] Assume $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+\sigma_{n}, \quad n \geq 0
$$

where $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{\sigma_{n}\right\}$ is a sequence in \mathbb{R} such that
(1) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$.
(2) $\limsup _{n \longrightarrow \infty} \frac{\sigma_{n}}{\alpha_{n}} \leq 0$ or $\sum_{n=1}^{\infty}\left|\sigma_{n}\right|<\infty$.

Then $\lim _{n \longrightarrow \infty} a_{n}=0$.
Lemma 2.5. [1, Lemma 3.2] Let C be a nonempty closed subset of a Banach space and let $\left\{S_{n}\right\}$ be a sequence of mappings of C into itself. Suppose that

$$
\sum_{n=1}^{\infty} \sup \left\{\left\|S_{n+1} z-S_{n} z\right\|: z \in C\right\}<\infty
$$

Then, for each $y \in C,\left\{S_{n} y\right\}$ converges strongly to some point of C. Moreover, let S be a mapping of C into itself defined by

$$
S y=\lim _{n \longrightarrow \infty} S_{n} y, \quad \forall y \in C
$$

Then

$$
\lim _{n \longrightarrow \infty} \sup \left\{\left\|S z-S_{n} z\right\|: z \in C\right\}=0
$$

Lemma 2.6. [7] Assume A is a strongly positive linear bounded operator on a Hilbert space H with coefficient $\bar{\gamma}>0$ and $0<\rho \leq\|A\|^{-1}$. Then $\|I-\rho A\| \leq 1-\rho \bar{\gamma}$.

3. Main results

In this section, we prove the strong convergence theorem for a countable family of nonexpansive mappings in a real Hilbert space.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let $f: C \longrightarrow C$ be a contraction with coefficient $\beta \in(0,1), B$ an α-inverse-strongly monotone mapping of C into H and let $\left\{S_{n}\right\}$ be a sequence of nonexpansive mappings of C into itself such that $F:=\cap_{n=1}^{\infty} F\left(S_{n}\right) \cap V I(B, C) \neq \emptyset$. Let A be a strongly bounded linear operator on C with coefficient $\bar{\gamma}>0$ and $0<\gamma<\bar{\gamma} / \beta$. Suppose the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ are given by

$$
\left\{\begin{array}{l}
x_{1}=x \in C \tag{3.1}\\
y_{n}=P_{C}\left(x_{n}-\lambda_{n} B x_{n}\right) \\
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\beta_{n} x_{n} \\
\quad \quad+\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right) S_{n} P_{C}\left(y_{n}-\lambda_{n} B y_{n}\right), \quad n \geq 1
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ are the sequences in $[0,1]$ and $\left\{\lambda_{n}\right\}$ is a sequence in $[0,2 \alpha]$. Suppose that $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ are chosen so that $\lambda_{n} \in[a, b]$ for some a, b with $0<a<b<2 \alpha$ satisfying
(i) $\lim _{n \longrightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$,
(ii) $0<\liminf _{n \longrightarrow \infty} \beta_{n} \leq \lim \sup _{n \longrightarrow \infty} \beta_{n}<1$,
(iii) $\lim _{n \longrightarrow \infty}\left(\lambda_{n+1}-\lambda_{n}\right)=0$.

Suppose that

$$
\sum_{n=1}^{\infty} \sup \left\{\left\|S_{n+1} z-S_{n} z\right\|: z \in D\right\}<\infty
$$

for any bounded subset D of C. Let S be a mapping of C into itself defined by $S y=\lim _{n \longrightarrow \infty} S_{n} y$ for all $y \in C$ and suppose that $F(S)=\cap_{n=1}^{\infty} F\left(S_{n}\right)$. Then $\left\{x_{n}\right\}$ converges strongly to a point $z \in F$ which is the unique solution of the variational inequality

$$
\begin{equation*}
\langle(A-\gamma f) z, z-x\rangle \leq 0, \quad x \in F . \tag{3.2}
\end{equation*}
$$

Equivalently, we have $z=P_{F}(I-A+\gamma f)(z)$.
Proof. Note that from the condition (i), we may assume, without loss of generality, that $\alpha_{n} \leq\left(1-\beta_{n}\right)\|A\|^{-1}$ for all $n \in \mathbb{N}$. From Lemma 2.6, we know that if $0 \leq \rho \leq$ $\|A\|^{-1}$, then $\|I-\rho A\| \leq 1-\rho \bar{\gamma}$. We will assume that $\|I-A\| \leq 1-\bar{\gamma}$. First, we show that $I-\lambda_{n} B$ is nonexpansive. For all $x, y \in C$ and $\lambda_{n} \in[0,2 \alpha]$,

$$
\begin{align*}
\left\|\left(I-\lambda_{n} B\right) x-\left(I-\lambda_{n} B\right) y\right\|^{2} & =\left\|(x-y)-\lambda_{n}(B x-B y)\right\|^{2} \\
& =\|x-y\|^{2}-2 \lambda_{n}\langle x-y, B x-B y\rangle+\lambda_{n}^{2}\|B x-B y\|^{2} \\
& \leq\|x-y\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\|B x-B y\|^{2}, \tag{3.3}
\end{align*}
$$

which implies that $I-\lambda_{n} B$ is nonexpansive. We now observe that $\left\{x_{n}\right\}$ is bounded. Indeed, pick any $p \in F(S) \cap V I(B, C)$. Then $p=P_{C}\left(p-\lambda_{n} B p\right)$. Setting $v_{n}=$ $P_{C}\left(y_{n}-\lambda_{n} B y_{n}\right)$, we obtain from (3.3) that

$$
\begin{align*}
\left\|v_{n}-p\right\| & =\left\|P_{C}\left(y_{n}-\lambda_{n} B y_{n}\right)-P_{C}\left(p-\lambda_{n} B p\right)\right\| \\
& \leq\left\|\left(y_{n}-\lambda_{n} B y_{n}\right)-\left(p-\lambda_{n} B p\right)\right\| \leq\left\|y_{n}-p\right\| \\
& =\left\|P_{C}\left(x_{n}-\lambda_{n} B x_{n}\right)-P_{C}\left(p-\lambda_{n} B p\right)\right\| \\
& \leq\left\|\left(x_{n}-\lambda_{n} B x_{n}\right)-\left(p-\lambda_{n} B p\right)\right\| \leq\left\|x_{n}-p\right\| . \tag{3.4}
\end{align*}
$$

On the other hand, since A is a strongly positive bounded linear operator on C, we have

$$
\|A\|=\sup \{|\langle A x, x\rangle|: x \in C,\|x\|=1\}
$$

For any x such that $\|x\|=1$, we have

$$
\begin{aligned}
\left\langle\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right) x, x\right\rangle & =1-\beta_{n}-\alpha_{n}\langle A x, x\rangle \\
& \geq 1-\beta_{n}-\alpha_{n}\|A\| \geq 0 .
\end{aligned}
$$

This show that $\left(1-\beta_{n}\right) I-\alpha_{n} A$ is positive. It follows that

$$
\begin{aligned}
\left\|\left(1-\beta_{n}\right) I-\alpha_{n} A\right\| & =\sup \left\{\left|\left\langle\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right) x, x\right\rangle\right|: x \in C,\|x\|=1\right\} \\
& =\sup \left\{1-\beta_{n}-\alpha_{n}\langle A x, x\rangle: x \in C,\|x\|=1\right\} \\
& \leq 1-\beta_{n}-\alpha_{n} \bar{\gamma} .
\end{aligned}
$$

It then follows that

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\alpha_{n}\left(\gamma f\left(x_{n}\right)-A p\right)+\beta_{n}\left(x_{n}-p\right)+\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right)\left(S_{n} v_{n}-p\right)\right\| \\
& \leq\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|v_{n}-p\right\|+\beta_{n}\left\|x_{n}-p\right\|+\alpha_{n}\left\|\gamma f\left(x_{n}\right)-A p\right\| \\
& \leq\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-p\right\|+\beta_{n}\left\|x_{n}-p\right\|+\alpha_{n}\left\|\gamma f\left(x_{n}\right)-A p\right\| \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-p\right\|+\alpha_{n} \gamma\left\|f\left(x_{n}\right)-f(p)\right\|+\alpha_{n}\|\gamma f(p)-A p\| \\
& \leq\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-p\right\|+\alpha_{n} \gamma \beta\left\|x_{n}-p\right\|+\alpha_{n}\|\gamma f(p)-A p\| \\
& =\left(1-(\bar{\gamma}-\gamma \beta) \alpha_{n}\right)\left\|x_{n}-p\right\|+(\bar{\gamma}-\gamma \beta) \alpha_{n} \frac{\|\gamma f(p)-A p\|}{\bar{\gamma}-\gamma \beta} .
\end{aligned}
$$

It follows from induction that

$$
\begin{equation*}
\left\|x_{n}-p\right\| \leq \max \left\{\left\|x_{1}-p\right\|, \frac{\|\gamma f(p)-A p\|}{\bar{\gamma}-\gamma \beta}\right\}, n \geq 1 \tag{3.5}
\end{equation*}
$$

Hence $\left\{x_{n}\right\}$ is bounded, so are $\left\{v_{n}\right\},\left\{S_{n} v_{n}\right\},\left\{f\left(x_{n}\right)\right\},\left\{B y_{n}\right\}$ and $\left\{B x_{n}\right\}$. Moreover, we observe that

$$
\begin{align*}
\left\|v_{n+1}-v_{n}\right\|= & \left\|P_{C}\left(y_{n+1}-\lambda_{n+1} B y_{n+1}\right)-P_{C}\left(y_{n}-\lambda_{n} B y_{n}\right)\right\| \\
\leq & \left\|\left(y_{n+1}-\lambda_{n+1} B y_{n+1}\right)-\left(y_{n}-\lambda_{n} B y_{n}\right)\right\| \\
= & \left\|\left(y_{n+1}-\lambda_{n+1} B y_{n+1}\right)-\left(y_{n}-\lambda_{n+1} B y_{n}\right)+\left(\lambda_{n}-\lambda_{n+1}\right) B y_{n}\right\| \\
\leq & \left\|\left(y_{n+1}-\lambda_{n+1} B y_{n+1}\right)-\left(y_{n}-\lambda_{n+1} B y_{n}\right)\right\|+\left|\lambda_{n}-\lambda_{n+1}\right|\left\|B y_{n}\right\| \\
\leq & \left\|y_{n+1}-y_{n}\right\|+\left|\lambda_{n}-\lambda_{n+1}\right|\left\|B y_{n}\right\| \\
= & \left\|P_{C}\left(x_{n+1}-\lambda_{n+1} B x_{n+1}\right)-P_{C}\left(x_{n}-\lambda_{n} B x_{n}\right)\right\|+\left|\lambda_{n}-\lambda_{n+1}\right|\left\|B y_{n}\right\| \\
\leq & \left\|\left(x_{n+1}-\lambda_{n+1} B x_{n+1}\right)-\left(x_{n}-\lambda_{n} B x_{n}\right)\right\|+\left|\lambda_{n}-\lambda_{n+1}\right|\left\|B y_{n}\right\| \\
= & \left\|\left(x_{n+1}-\lambda_{n+1} B x_{n+1}\right)-\left(x_{n}-\lambda_{n+1} B x_{n}\right)+\left(\lambda_{n}-\lambda_{n+1}\right) B x_{n}\right\| \\
& +\left|\lambda_{n}-\lambda_{n+1}\right|\left\|B y_{n}\right\| \\
\leq & \left\|\left(I-\lambda_{n+1} B\right) x_{n+1}-\left(I-\lambda_{n+1} B\right) x_{n}\right\| \\
& +\left|\lambda_{n}-\lambda_{n+1}\right|\left(\left\|B x_{n}\right\|+\left\|B y_{n}\right\|\right) \\
\leq & \left\|x_{n+1}-x_{n}\right\|+\left|\lambda_{n}-\lambda_{n+1}\right|\left(\left\|B x_{n}\right\|+\left\|B y_{n}\right\|\right) . \tag{3.6}
\end{align*}
$$

$$
z_{n}=\frac{\alpha_{n} \gamma f\left(x_{n}\right)+\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right) S_{n} v_{n}}{1-\beta_{n}}
$$

we have $x_{n+1}=\left(1-\beta_{n}\right) z_{n}+\beta_{n} x_{n}, n \geq 1$. It follows that

$$
\begin{aligned}
z_{n+1}-z_{n}= & \frac{\alpha_{n+1} \gamma f\left(x_{n+1}\right)+\left(\left(1-\beta_{n+1}\right) I-\alpha_{n+1} A\right) S_{n+1} v_{n+1}}{1-\beta_{n+1}} \\
& -\frac{\alpha_{n} \gamma f\left(x_{n}\right)+\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right) S_{n} v_{n}}{1-\beta_{n}} \\
= & \frac{\alpha_{n+1}}{1-\beta_{n+1}} \gamma f\left(x_{n+1}\right)-\frac{\alpha_{n}}{1-\beta_{n}} \gamma f\left(x_{n}\right)+S_{n+1} v_{n+1}-S_{n} v_{n} \\
& +\frac{\alpha_{n}}{1-\beta_{n}} A S_{n} v_{n}-\frac{\alpha_{n+1}}{1-\beta_{n+1}} A S_{n+1} v_{n+1} \\
= & \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(\gamma f\left(x_{n+1}\right)-A S_{n+1} v_{n+1}\right)+\frac{\alpha_{n}}{1-\beta_{n}}\left(A S_{n} v_{n}-\gamma f\left(x_{n}\right)\right)
\end{aligned}
$$

$$
\begin{equation*}
+S_{n+1} v_{n+1}-S_{n+1} v_{n}+S_{n+1} v_{n}-S_{n} v_{n} \tag{3.7}
\end{equation*}
$$

It follows from (3.6) and (3.7) that

$$
\begin{align*}
\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \leq & \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(\left\|\gamma f\left(x_{n+1}\right)\right\|+\left\|A S_{n+1} v_{n+1}\right\|\right) \\
& +\frac{\alpha_{n}}{1-\beta_{n}}\left(\left\|A S_{n} v_{n}\right\|+\left\|\gamma f\left(x_{n}\right)\right\|\right) \\
& +\left\|S_{n+1} v_{n+1}-S_{n+1} v_{n}\right\| \\
& +\left\|S_{n+1} v_{n}-S_{n} v_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \\
\leq & \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(\left\|\gamma f\left(x_{n+1}\right)\right\|+\left\|A S_{n+1} v_{n+1}\right\|\right) \\
& +\frac{\alpha_{n}}{1-\beta_{n}}\left(\left\|A S_{n} v_{n}\right\|+\left\|\gamma f\left(x_{n}\right)\right\|\right)+\left\|v_{n+1}-v_{n}\right\| \\
& +\left\|S_{n+1} v_{n}-S_{n} v_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \\
\leq & \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(\left\|\gamma f\left(x_{n+1}\right)\right\|+\left\|A S_{n+1} v_{n+1}\right\|\right) \\
& +\frac{\alpha_{n}}{1-\beta_{n}}\left(\left\|A S_{n} v_{n}\right\|+\left\|\gamma f\left(x_{n}\right)\right\|\right) \\
& +\left|\lambda_{n}-\lambda_{n+1}\right|\left(\left\|B x_{n}\right\|+\left\|B y_{n}\right\|\right)+\left\|S_{n+1} v_{n}-S_{n} v_{n}\right\| \\
\leq & \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(\left\|\gamma f\left(x_{n+1}\right)\right\|+\left\|A S_{n+1} v_{n+1}\right\|\right) \\
& +\frac{\alpha_{n}}{1-\beta_{n}}\left(\left\|A S_{n} v_{n}\right\|+\left\|\gamma f\left(x_{n}\right)\right\|\right) \\
& +\left|\lambda_{n}-\lambda_{n+1}\right|\left(\left\|B x_{n}\right\|+\left\|B y_{n}\right\|\right) \\
& +\sup \left\{\left\|S_{n+1} v-S_{n} v\right\|: v \in\left\{v_{n}\right\}\right\} \tag{3.8}
\end{align*}
$$

which implies that (noting that (i), (ii), (iii))

$$
\limsup _{n \longrightarrow \infty}\left(\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Hence, by Lemma 2.2, we obtain

$$
\lim _{n \longrightarrow \infty}\left\|z_{n}-x_{n}\right\|=0 .
$$

It then follows that

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=\lim _{n \longrightarrow \infty}\left(1-\beta_{n}\right)\left\|z_{n}-x_{n}\right\|=0 \tag{3.9}
\end{equation*}
$$

From (3.6) and (iii), we also have

$$
\left\|v_{n+1}-v_{n}\right\| \longrightarrow 0
$$

and

$$
\begin{aligned}
\left\|y_{n+1}-y_{n}\right\| & \leq\left\|\left(x_{n+1}-\lambda_{n+1} A x_{n+1}\right)-\left(x_{n}-\lambda_{n} A x_{n}\right)\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\left|\lambda_{n}-\lambda_{n+1}\right|\left\|A x_{n+1}-A x_{n}\right\| \longrightarrow 0 .
\end{aligned}
$$

Since

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}\right\| & =\left\|\alpha_{n}\left(\gamma f\left(x_{n}\right)-A x_{n}\right)+\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right)\left(S_{n} v_{n}-x_{n}\right)\right\| \\
& \leq \alpha_{n}\left\|\gamma f\left(x_{n}\right)-A x_{n}\right\|+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|S_{n} v_{n}-x_{n}\right\|,
\end{aligned}
$$

this together with (3.9) implies that

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left\|S_{n} v_{n}-x_{n}\right\|=0 \tag{3.10}
\end{equation*}
$$

Observe that

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2}= & \left\|\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right)\left(S_{n} v_{n}-p\right)+\beta_{n}\left(x_{n}-p\right)+\alpha_{n}\left(\gamma f\left(x_{n}\right)-A p\right)\right\|^{2} \\
= & \left\|\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right)\left(S_{n} v_{n}-p\right)+\beta_{n}\left(x_{n}-p\right)\right\|^{2}+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-A p\right\|^{2} \\
& +2 \beta_{n} \alpha_{n}\left\langle x_{n}-p, \gamma f\left(x_{n}\right)-A p\right\rangle \\
& +2 \alpha_{n}\left\langle\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right)\left(S_{n} v_{n}-p\right), \gamma f\left(x_{n}\right)-A p\right\rangle \\
\leq & \left(\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|S_{n} v_{n}-p\right\|+\beta_{n}\left\|x_{n}-p\right\|\right)^{2}+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-A p\right\|^{2} \\
& +2 \beta_{n} \alpha_{n}\left\langle x_{n}-p, \gamma f\left(x_{n}\right)-A p\right\rangle \\
& +2 \alpha_{n}\left\langle\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right)\left(S_{n} v_{n}-p\right), \gamma f\left(x_{n}\right)-A p\right\rangle \\
\leq & \left(\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|v_{n}-p\right\|+\beta_{n}\left\|x_{n}-p\right\|\right)^{2}+c_{n} \\
= & \left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)^{2}\left\|v_{n}-p\right\|^{2}+\beta_{n}^{2}\left\|x_{n}-p\right\|^{2} \\
& +2\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right) \beta_{n}\left\|v_{n}-p\right\|\left\|x_{n}-p\right\|+c_{n} \\
\leq & \left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)^{2}\left\|v_{n}-p\right\|^{2}+\beta_{n}^{2}\left\|x_{n}-p\right\|^{2} \\
& +\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right) \beta_{n}\left(\left\|v_{n}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}\right)+c_{n} \\
== & {\left[\left(1-\alpha_{n} \bar{\gamma}\right)^{2}-2\left(1-\alpha_{n} \bar{\gamma}\right) \beta_{n}+\beta_{n}^{2}\right]\left\|v_{n}-p\right\|^{2}+\beta_{n}^{2}\left\|x_{n}-p\right\|^{2} } \\
& +\left(\left(1-\alpha_{n} \bar{\gamma}\right) \beta_{n}-\beta_{n}^{2}\right)\left(\left\|v_{n}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}\right)+c_{n} \\
= & \left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|v_{n}-p\right\|^{2}-\left(1-\alpha_{n} \bar{\gamma}\right) \beta_{n}\left\|v_{n}-p\right\|^{2} \\
& +\left(1-\alpha_{n} \bar{\gamma}\right) \beta_{n}\left\|x_{n}-p\right\|^{2}+c_{n} \\
= & \left(1-\alpha_{n} \bar{\gamma}\right)\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|v_{n}-p\right\|^{2}+\left(1-\alpha_{n} \bar{\gamma}\right) \beta_{n}\left\|x_{n}-p\right\|^{2}+c_{n}, \\
\leq & \left(1-\alpha_{n} \bar{\gamma}\right)\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left[\left\|\left(x_{n}-\lambda_{n} B x_{n}\right)-\left(p-\lambda_{n} B p\right)\right\|^{2}\right] \\
& +\left(1-\alpha_{n} \bar{\gamma}\right) \beta_{n}\left\|x_{n}-p\right\|^{2}+c_{n}, \\
\leq & \left(1-\alpha_{n} \bar{\gamma}\right)\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left[\left\|x_{n}-p\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|B x_{n}-B p\right\|^{2}\right] \\
& +\left(1-\alpha_{n} \bar{\gamma}\right) \beta_{n}\left\|x_{n}-p\right\|^{2}+c_{n}, \\
\leq & \left\|x_{n}-p\right\|^{2}+b(b-2 \alpha)\left\|B x_{n}-B p\right\|^{2}+c_{n} \tag{3.11}
\end{align*}
$$

where

$$
\begin{align*}
c_{n}= & \alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-A v\right\|^{2}+2 \beta_{n} \alpha_{n}\left\langle x_{n}-v, \gamma f\left(x_{n}\right)-A v\right\rangle \\
& +2 \alpha_{n}\left\langle\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right)\left(S_{n} v_{n}-v\right), \gamma f\left(x_{n}\right)-A v\right\rangle . \tag{3.12}
\end{align*}
$$

This implies that

$$
\begin{aligned}
-b(b-2 \alpha)\left\|B x_{n}-B p\right\|^{2} & \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+c_{n} \\
& \leq\left\|x_{n}-x_{n+1}\right\|\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)+c_{n} .
\end{aligned}
$$

Since $\lim _{n \longrightarrow \infty} c_{n}=0$ and from (3.9), we obtain

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left\|B x_{n}-B p\right\|=0 \tag{3.13}
\end{equation*}
$$

From (2.1), we have

$$
\begin{aligned}
\left\|y_{n}-p\right\|^{2}= & \left\|P_{C}\left(x_{n}-\lambda_{n} B x_{n}\right)-P_{C}\left(p-\lambda_{n} B p\right)\right\|^{2} \\
\leq & \left\langle\left(x_{n}-\lambda_{n} B x_{n}\right)-\left(p-\lambda_{n} B p\right), y_{n}-p\right\rangle \\
= & \frac{1}{2}\left\{\left\|\left(x_{n}-\lambda_{n} B x_{n}\right)-\left(p-\lambda_{n} B p\right)\right\|^{2}+\left\|y_{n}-p\right\|^{2}\right. \\
& \left.-\left\|\left(x_{n}-\lambda_{n} B x_{n}\right)-\left(p-\lambda_{n} B p\right)-\left(y_{n}-p\right)\right\|^{2}\right\} \\
\leq & \frac{1}{2}\left\{\left\|x_{n}-p\right\|^{2}+\left\|y_{n}-p\right\|^{2}-\left\|\left(x_{n}-y_{n}\right)-\lambda_{n}\left(B x_{n}-B p\right)\right\|^{2}\right\} \\
= & \frac{1}{2}\left\{\left\|x_{n}-p\right\|^{2}+\left\|y_{n}-p\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}+2 \lambda_{n}\left\langle x_{n}-y_{n}, B x_{n}-B p\right\rangle\right. \\
& \left.-\lambda_{n}^{2}\left\|B x_{n}-B p\right\|^{2}\right\} .
\end{aligned}
$$

So, we obtain
$\left\|y_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}+2 \lambda_{n}\left\langle x_{n}-y_{n}, B x_{n}-B p\right\rangle-\lambda_{n}^{2}\left\|B x_{n}-B p\right\|^{2}$.
It follows that

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leq & \left(1-\alpha_{n} \bar{\gamma}\right)\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|v_{n}-p\right\|^{2}+\left(1-\alpha_{n} \bar{\gamma}\right) \beta_{n}\left\|x_{n}-p\right\|^{2}+c_{n} \\
\leq & \left(1-\alpha_{n} \bar{\gamma}\right)\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|y_{n}-p\right\|^{2}+\left(1-\alpha_{n} \bar{\gamma}\right) \beta_{n}\left\|x_{n}-p\right\|^{2}+c_{n} \\
\leq & \left(1-\alpha_{n} \bar{\gamma}\right)\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left[\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}\right. \\
& \left.+2 \lambda_{n}\left\langle x_{n}-y_{n}, B x_{n}-B p\right\rangle-\lambda_{n}^{2}\left\|B x_{n}-B p\right\|^{2}\right] \\
& +\left(1-\alpha_{n} \bar{\gamma}\right) \beta_{n}\left\|x_{n}-p\right\|^{2}+c_{n} \\
\leq & \left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-p\right\|^{2}-\left(1-\alpha_{n} \bar{\gamma}\right)\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-y_{n}\right\|^{2} \\
& +2 \lambda_{n}\left(1-\alpha_{n} \bar{\gamma}\right)\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-y_{n}\right\|\left\|B x_{n}-B p\right\| \\
& -\lambda_{n}^{2}\left(1-\alpha_{n} \bar{\gamma}\right)\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|B x_{n}-B p\right\|^{2}+c_{n},
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\left(1-\alpha_{n} \bar{\gamma}\right)(1 & \left.-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-y_{n}\right\|^{2} \\
\leq & \left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2} \\
& +2 \lambda_{n}\left(1-\alpha_{n} \bar{\gamma}\right)\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-y_{n}\right\|\left\|B x_{n}-B p\right\| \\
& \quad-\lambda_{n}^{2}\left(1-\alpha_{n} \bar{\gamma}\right)\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|B x_{n}-B p\right\|^{2}+c_{n} \\
\leq & \left\|x_{n}-x_{n+1}\right\|\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right) \\
& +2 \lambda_{n}\left(1-\alpha_{n} \bar{\gamma}\right)\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-y_{n}\right\|\left\|B x_{n}-B p\right\| \\
& -\lambda_{n}^{2}\left(1-\alpha_{n} \bar{\gamma}\right)\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|B x_{n}-B p\right\|^{2}+c_{n} .
\end{aligned}
$$

Applying (3.9), (3.13) and $\lim _{n \longrightarrow \infty} c_{n}=0$ to the last inequality, we obtain that

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left\|x_{n}-y_{n}\right\|=0 \tag{3.14}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
\left\|S_{n} v_{n}-v_{n}\right\| & \leq\left\|S_{n} v_{n}-x_{n}\right\|+\left\|x_{n}-y_{n}\right\|+\left\|y_{n}-v_{n}\right\| \\
& =\left\|S_{n} v_{n}-x_{n}\right\|+\left\|x_{n}-y_{n}\right\|+\left\|P_{C}\left(x_{n}-\lambda_{n} B x_{n}\right)-P_{C}\left(y_{n}-\lambda_{n} B y_{n}\right)\right\|
\end{aligned}
$$

$$
\begin{align*}
& \leq\left\|S_{n} v_{n}-x_{n}\right\|+\left\|x_{n}-y_{n}\right\|+\left\|\left(x_{n}-\lambda_{n} B x_{n}\right)-\left(y_{n}-\lambda_{n} B y_{n}\right)\right\| \\
& \leq\left\|S_{n} v_{n}-x_{n}\right\|+2\left\|x_{n}-y_{n}\right\| \longrightarrow 0 \text { as } n \longrightarrow \infty . \tag{3.15}
\end{align*}
$$

This implies that

$$
\begin{equation*}
\left\|v_{n}-y_{n}\right\| \leq\left\|v_{n}-S_{n} v_{n}\right\|+\left\|S_{n} v_{n}-x_{n}\right\|+\left\|x_{n}-y_{n}\right\| \longrightarrow 0, n \longrightarrow \infty . \tag{3.16}
\end{equation*}
$$

Applying Lemma 2.5 and (3.15), we have

$$
\begin{aligned}
\left\|S v_{n}-v_{n}\right\| & \leq\left\|S v_{n}-S_{n} v_{n}\right\|+\left\|S_{n} v_{n}-v_{n}\right\| \\
& \leq \sup \left\{\left\|S v-S_{n} v\right\|: v \in\left\{v_{n}\right\}\right\}+\left\|S_{n} v_{n}-v_{n}\right\| \longrightarrow 0
\end{aligned}
$$

Observe that $P_{F}(I-A+\gamma f)$ is a contraction of C into itself. Indeed, for all $x, y \in C$, we have

$$
\begin{aligned}
\| P_{F}(I-A+\gamma f)(x) & -P_{F}(I-A+\gamma f)(y) \| \\
& \leq\|(I-A+\gamma f)(x)-(I-A+\gamma f)(y)\| \\
& \leq\|I-A\|\|x-y\|+\gamma\|f(x)-f(y)\| \\
& \leq(1-\bar{\gamma})\|x-y\|+\gamma \beta\|x-y\| \\
& =(1-(\bar{\gamma}-\gamma \beta))\|x-y\| .
\end{aligned}
$$

Since H is complete, there exists a unique element $z \in C$ such that

$$
z=P_{F}(I-A+\gamma f)(z)
$$

Next, we show that

$$
\begin{equation*}
\limsup _{n \longrightarrow \infty}\left\langle(A-\gamma f) z, z-x_{n}\right\rangle \leq 0 . \tag{3.17}
\end{equation*}
$$

We choose a subsequence $\left\{v_{n_{i}}\right\}$ of $\left\{v_{n}\right\}$ such that

$$
\lim _{i \longrightarrow \infty}\left\langle(A-\gamma f) z, z-v_{n_{i}}\right\rangle=\limsup _{n \longrightarrow \infty}\left\langle(A-\gamma f) z, z-v_{n}\right\rangle .
$$

Since $\left\{v_{n_{i}}\right\}$ is bounded, there exists a subsequence $\left\{v_{n_{i_{j}}}\right\}$ of $\left\{v_{n_{i}}\right\}$ which converges weakly to $w \in C$. Without loss of generality, we can assume that $v_{n_{i}} \rightharpoonup w$. From $\left\|S v_{n}-v_{n}\right\| \longrightarrow 0$, we obtain $S v_{n_{i}} \rightharpoonup w$. Next, we show that $w \in F$. First, we show that

$$
w \in F(S)=\cap_{n=1}^{\infty} F\left(S_{n}\right) .
$$

Assume $w \notin F(S)$. Since $v_{n_{i}} \rightharpoonup w$ and $w \neq S w$, it follows by the Opial's condition that

$$
\begin{aligned}
\liminf _{i \longrightarrow \infty}\left\|v_{n_{i}}-w\right\| & <\liminf _{i \longrightarrow \infty}\left\|v_{n_{i}}-S w\right\| \\
& \leq \liminf _{i \longrightarrow \infty}\left\{\left\|v_{n_{i}}-S v_{n_{i}}\right\|+\left\|S v_{n_{i}}-S w\right\|\right\} \\
& <\liminf _{i \longrightarrow \infty}\left\|v_{n_{i}}-w\right\|
\end{aligned}
$$

which derives a contradiction. Thus, we have $w \in F(S)=\cap_{n=1}^{\infty} F\left(S_{n}\right)$. By the same argument as that in the proof of [8], we can show that $w \in V I(B, C)$. Hence $w \in F$. Since $z=P_{F}(I-A+\gamma f)(z)$, it follows that

$$
\begin{align*}
\limsup _{n \longrightarrow \infty}\left\langle(A-\gamma f) z, z-x_{n}\right\rangle & =\limsup _{n \longrightarrow \infty}\left\langle(A-\gamma f) z, z-v_{n}\right\rangle \\
& =\lim _{i \longrightarrow \infty}\left\langle(A-\gamma f) z, z-v_{n_{i}}\right\rangle \tag{3.18}\\
& =\langle(A-\gamma f) z, z-w\rangle \leq 0 .
\end{align*}
$$

It follows from the last inequality, $(3.10),(3.14)$ and (3.16) that

$$
\begin{equation*}
\limsup _{n \longrightarrow \infty}\left\langle\gamma f(z)-A z, S_{n} v_{n}-z\right\rangle \leq 0 \tag{3.19}
\end{equation*}
$$

Finally, we prove $x_{n} \longrightarrow z$ as $n \longrightarrow \infty$. To this end, we calculate

$$
\begin{align*}
\left\|x_{n+1}-z\right\|^{2}= & \left\|\alpha_{n} \gamma f\left(x_{n}\right)+\beta_{n} x_{n}+\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right) S_{n} v_{n}-z\right\|^{2} \\
= & \left\|\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right)\left(S_{n} v_{n}-z\right)+\beta_{n}\left(x_{n}-z\right)+\alpha_{n}\left(\gamma f\left(x_{n}\right)-A z\right)\right\|^{2} \\
= & \left\|\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right)\left(S_{n} v_{n}-z\right)+\beta_{n}\left(x_{n}-z\right)\right\|^{2}+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-A z\right\|^{2} \\
& +2 \beta_{n} \alpha_{n}\left\langle x_{n}-z, \gamma f\left(x_{n}\right)-A z\right\rangle \\
& +2 \alpha_{n}\left\langle\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right)\left(S_{n} v_{n}-z\right), \gamma f\left(x_{n}\right)-A z\right\rangle \\
\leq & \left(\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|S_{n} v_{n}-z\right\|+\beta_{n}\left\|x_{n}-z\right\|\right)^{2}+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-A z\right\|^{2} \\
& +2 \beta_{n} \alpha_{n} \gamma\left\langle x_{n}-z, f\left(x_{n}\right)-f(z)\right\rangle+2 \beta_{n} \alpha_{n}\left\langle x_{n}-z, \gamma f(z)-A z\right\rangle \\
& +2(1-\beta) \gamma \alpha_{n}\left\langle S_{n} v_{n}-z, f\left(x_{n}\right)-f(z)\right\rangle \\
& +2(1-\beta) \alpha_{n}\left\langle S_{n} v_{n}-z, \gamma f(z)-A z\right\rangle \\
& -2 \alpha_{n}^{2}\left\langle A\left(S_{n} v_{n}-z\right), \gamma f(z)-A z\right\rangle \\
\leq & \left(\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-z\right\|+\beta_{n}\left\|x_{n}-z\right\|\right)^{2}+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-A z\right\|^{2} \\
& +2 \beta_{n} \alpha_{n} \gamma \beta\left\|x_{n}-z\right\|^{2}+2 \beta_{n} \alpha_{n}\left\langle x_{n}-z, \gamma f(z)-A z\right\rangle \\
& +2\left(1-\beta_{n}\right) \gamma \alpha_{n} \beta\left\|x_{n}-z\right\|^{2}+2(1-\beta) \alpha_{n}\left\langle S_{n} v_{n}-z, \gamma f(z)-A z\right\rangle \\
& -2 \alpha_{n}^{2}\left\langle A\left(S_{n} v_{n}-z\right), \gamma f(z)-A z\right\rangle \\
= & {\left[\left(1-\alpha_{n} \bar{\gamma}\right)^{2}+2 \beta_{n} \alpha_{n} \gamma \beta+2\left(1-\beta_{n}\right) \gamma \alpha_{n} \beta\right]\left\|x_{n}-z\right\|^{2} } \\
& +\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-A z\right\|^{2}+2 \beta_{n} \alpha_{n}\left\langle x_{n}-z, \gamma f(z)-A z\right\rangle \\
& +2(1-\beta) \alpha_{n}\left\langle S_{n} v_{n}-z, \gamma f(z)-A z\right\rangle-2 \alpha_{n}^{2}\left\langle A\left(S_{n} v_{n}-z\right), \gamma f(z)-A z\right\rangle \\
\leq & {\left[1-2(\bar{\gamma}-\alpha \gamma) \alpha_{n}\right]\left\|x_{n}-z\right\|^{2}+\bar{\gamma}^{2} \alpha_{n}^{2}\left\|x_{n}-z\right\|^{2}+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-A z\right\|^{2} } \\
& +2 \beta_{n} \alpha_{n}\left\langle x_{n}-z, \gamma f(z)-A z\right\rangle+2(1-\beta) \alpha_{n}\left\langle S_{n} v_{n}-z, \gamma f(z)-A z\right\rangle \\
& +2 \alpha_{n}^{2}\left\|A\left(S_{n} v_{n}-z\right)\right\|\|\gamma f(z)-A z\| \\
= & {\left[1-2(\bar{\gamma}-\alpha \gamma) \alpha_{n}\right]\left\|x_{n}-z\right\|^{2}+\alpha_{n}\left\{\alpha _ { n } \left(\bar{\gamma}^{2}\left\|x_{n}-z\right\|^{2}+\left\|\gamma f\left(x_{n}\right)-A z\right\|^{2}\right.\right.} \\
& \left.+2\left\|A\left(S_{n} v_{n}-z\right)\right\|\|\gamma f(z)-A z\|\right)+2 \beta_{n}\left\langle x_{n}-z, \gamma f(z)-A z\right\rangle \\
& \left.+2(1-\beta)\left\langle S_{n} v_{n}-z, \gamma f(z)-A z\right\rangle\right\} . \tag{3.20}
\end{align*}
$$

Since $\left\{x_{n}\right\},\left\{f\left(x_{n}\right)\right\}$ and $\left\{S_{n} v_{n}\right\}$ are bounded, we can take a constant $M>0$ such that

$$
\bar{\gamma}^{2}\left\|x_{n}-z\right\|^{2}+\left\|\gamma f\left(x_{n}\right)-A z\right\|^{2}+2\left\|A\left(S_{n} v_{n}-z\right)\right\| \gamma f(z)-A z \| \leq M
$$

for all $n \geq 0$. It then follows that

$$
\begin{equation*}
\left\|x_{n+1}-z\right\|^{2} \leq\left[1-2(\bar{\gamma}-\alpha \gamma) \alpha_{n}\right]\left\|x_{n}-z\right\|^{2}+\alpha_{n} \sigma_{n} \tag{3.21}
\end{equation*}
$$

where

$$
\sigma_{n}=2 \beta_{n}\left\langle x_{n}-z, \gamma f(z)-A z\right\rangle+2(1-\beta)\left\langle S_{n} v_{n}-z, \gamma f(z)-A z\right\rangle+\alpha_{n} M
$$

Using (i), (3.18) and (3.19), we get $\lim \sup _{n} \longrightarrow \infty \sigma_{n} \leq 0$. Now applying Lemma 2.4 to (3.21), we conclude that $x_{n} \longrightarrow z$.

If $A=I, \gamma \equiv 1, \gamma_{n}=1-\alpha_{n}-\beta_{n}, S_{n}=S$ and $f:=u$ in Theorem 3.1, then we can obtain the following result immediately.

Corollary 3.1. [15, Theorem 3.1]) Let C be a closed convex subset of a real Hilbert space H. Let B be an α-inverse-strongly monotone mapping of C into H and let S be a nonexpansive mapping of C into itself such that $F(S) \cap V I(B, C) \neq \emptyset$. Suppose $x_{1}=u \in C$ and $\left\{x_{n}\right\},\left\{y_{n}\right\}$ are given by

$$
\left\{\begin{array}{l}
y_{n}=P_{C}\left(x_{n}-\lambda_{n} B x_{n}\right) \\
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} S P_{C}\left(y_{n}-\lambda_{n} B y_{n}\right),
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are three sequences in $[0,1]$ and $\left\{\lambda_{n}\right\}$ is a sequence in $[0,2 \alpha]$. If $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ are chosen so that $\lambda_{n} \in[a, b]$ for some a, b with $0<$ $a<b<2 \alpha$ and
(i) $\alpha_{n}+\beta_{n}+\gamma_{n}=1$,
(ii) $\lim _{n \longrightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$,
(iii) $0<\liminf _{n \longrightarrow \infty} \beta_{n} \leq \limsup \sup _{n \longrightarrow \infty} \beta_{n}<1$,
(iv) $\lim _{n \longrightarrow \infty}\left(\lambda_{n+1}-\lambda_{n}\right)=0$,
then $\left\{x_{n}\right\}$ converges strongly to $P_{F(S) \cap V I(B, C)} u$.
Remark 3.1. As in [1, Theorem 4.1], we can generate a sequence $\left\{S_{n}\right\}$ of nonexpansive mappings satisfying condition $\sum_{n=1}^{\infty} \sup \left\{\left\|S_{n+1} z-S_{n} z: z \in D\right\|\right\}<\infty$ for any bounded subset D of C by using convex combination of a general sequence $\left\{T_{k}\right\}$ of nonexpansive mappings with a common fixed point.

Acknowledgement. The authors would like to thank the Faculty of Science, Naresuan University for financial support.

References

[1] K. Aoyama et al., Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), no. 8, 2350-2360.
[2] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228.
[3] H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal. 61 (2005), no. 3, 341-350.
[4] G. M. Korpelevič, An extragradient method for finding saddle points and for other problems, Èkonom. i Mat. Metody 12 (1976), no. 4, 747-756.
[5] F. Liu and M. Z. Nashed, Regularization of nonlinear ill-posed variational inequalities and convergence rates, Set-Valued Anal. 6 (1998), no. 4, 313-344.
[6] A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000), no. 1, 46-55.
[7] G. Marino and H.-K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (2006), no. 1, 43-52.
[8] N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 128 (2006), no. 1, 191-201.
[9] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
[10] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optimization 14 (1976), no. 5, 877-898.
[11] T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. 305 (2005), no. 1, 227-239.
[12] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), no. 2, 417-428.
[13] H.-K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), no. 1, 279-291.
[14] J. C. Yao and O. Chadli, Pseudomonotone complementarity problems and variational inequalities, in Handbook of Generalized Convexity and Generalized Monotonicity, 501-558, Springer, New York.
[15] Y. Yao and J. C. Yao, On modified iterative method for nonexpansive mappings and monotone mappings, Appl. Math. Comput. 186 (2007), no. 2, 1551-1558.
[16] L. C. Zeng, S. Schaible and J. C. Yao, Iterative algorithm for generalized set-valued strongly nonlinear mixed variational-like inequalities, J. Optim. Theory Appl. 124 (2005), no. 3, 725738.
[17] L. C. Zeng and J. C. Yao, Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems, Taiwanese J. Math. 10 (2006), no. 5, 1293-1303.

