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Abstract. In this paper, to find a common element of the fixed point set of
common fixed points of a countable family of nonexpansive mappings and the
solution set of the variational inequality for a-inverse-strongly monotone, we
introduce an iterative approximation method in a real Hilbert space. Then the
strong convergence theorem is proved under some appropriate conditions im-
posed on the parameters. This result extended and improved the corresponding
results of Yao and Yao [15] and many others.
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1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - || and let C be a
closed convex subset of H. Let B : C' — H be a mapping. The classical variational
inequality, denoted by VI(B, (), is to find * € C such that

(Bx*,v—2") >0

for all v € C. The variational inequality has been extensively studied in the literature.
See, e.g. [14, 16] and the references therein. We recall that a mapping B : C — H
is said to be:
(1) Monotone if (Bu — Bv,u —v) >0, Vu,v € C.
(2) L-Lipschitz if there exists a constant L > 0 such that
|Bu — Bv|| < L||ju —v||, Vu,v e C.

(3) a-inverse-strongly monotone [2, 5] if there exists a positive real number «
such that

(Bu — Bv,u —v) > o|Bu — Bv|]?, Vu,v € C.
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It is obvious that any a-inverse-strongly monotone mapping B is monotone and
Lipschitz continuous. A mapping S of C' into itself is called nonexpansive if

[Su = Sv|| < flu—wv]|

for all u,v € C. We denote by F(S) the set of fixed points of S. An operator A is
strongly positive on H if there is a constant 4 > 0 with property

(1.1) (Az,x) > 7||=|, Vo e H.

A set-valued mapping T : H — 2¥ is called monotone if for all z,y € H, f € Tx
and g € Ty imply (x —y,f —g) > 0. A monotone mapping T : H — 2 is
maximal if the graph of G(T') of T is not properly contained in the graph of any
other monotone mapping. It is known that a monotone mapping 7' is maximal if
and only if for (z, f) € H x H, (x —y, f — g) > 0 for every (y,g) € G(T) implies
f €Tx. Let B be a monotone map of C' into H and let Ncv be the normal cone to
CatveC,ie, Nov={we H: (u—wv,w) <0,Yu € C} and define

| Bv+ Ngv, veC;
TU_{(Z), v¢C.

Then T is maximal monotone and 0 € T if and only if v € VI(C, B); see [10]. For
finding an element of F(S) N VI(B,C), Takahashi and Toyoda [12] introduced the
following iterative scheme:

(1.2) Tnt1 = QnZp + (1 — ap)SPo(x, — Ay Bxy,)

for every n = 0,1,2,..., where 2y = = € C,{«a,} is a sequence in (0, 1), and
{An} is a sequence in (0,2«). They showed that, if F/(S) N VI(B,C) is nonempty,
then the sequence {z,} generated by (1.2) converges weakly to some z € F(S) N
VI(B,C). On the other hand, for solving the variational inequality problem in
the finite-dimensional Euclidean space R™ under the assumption that a set C' C
R™ is closed and convex, a mapping B of C into R" is monotone and k-Lipschitz
continuous and VI (B, () is nonempty, Korpelevich [4] introduced the following so-
called extragradient method:

r1 =uc€ C
(1.3) yn = Po(zn — ABzy,)
Tn+1 :PC(-Tn_)\Byn)7 n > 17

where A € (0,1/k). He proved that the sequences {z,} and {y,} generated by this
iterative process converge to the same point z € VI(B,C). Recently, Nadezhkina
and Takahashi [8], Zeng and Yao [17] proposed some new iterative schemes for finding
elements in F(S) NV I(B,C). Recently, liduka and Takahashi [3] proposed another
iterative scheme as following

(1.4) { x1 = x € C chosen arbitrary,

Tnt1 = @t + (1 — ay)SPo(xy, — A\pBxzy), n>1

where B is an a-cocoerceive map, {a,} C (0,1) and {\,} C (0, 2«) satisfy some pa-
rameters controlling conditions. They showed that, if F(S)NVI(B,C) is nonempty,
then the sequence {z,} generated by (1.4) converges strongly to some z € F(S) N
VI(B,C). By using this idea, Yao and Yao [15] gave the iterative scheme (1.5)
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below for finding an element of F(S) N VI(B,C) under the assumption that a set
C C H is nonempty, closed and convex, a mapping S : C' — (' is nonexpansive
and a mapping B : C — H is a-inverse-strongly-monotone:

r1=u€C
(15) Yn = PC(xn - /\TLan)
Tn4+1 = QpU + ﬂnxn + ’YnSPC(yn - )\nByn)a n Z 1a

where {a, }, {Bn}, {7n} are three sequences in [0, 1] and {\,,} is a sequence in [0, 2a].
They proved that if F(S)NVI(B,C) # () and and the sequences {a,, }, {6}, {71n} and
{An} of parameters satisfy appropriate conditions, then the sequence {z,} defined
by (1.5) converges strongly to g € F(S)NVI(B,C).

On the other hand, Moudafi [6] introduced the viscosity approximation method
for nonexpansive mappings (see [13] for further developments in both Hilbert and
Banach spaces). Let f be a contraction on C. Starting with an arbitrary initial
x1 € C, define a sequence {x,} recursively by

(1.6) Tpt1 = (L —op)Tay +onf(zn), n>0,

where {0, } is a sequence in (0, 1). It is proved [6, 13] that under certain appropriate
conditions imposed on {o, }, the sequence {z,, } generated by (1.6) strongly converges
to the unique solution ¢ in C of the variational inequality

(I-fla,p—q)>0,peC.

Recently, Marino and Xu [7] introduced the following general iterative method:
(1.7) Tpt1 = (I — anA) Tz, + apyf(z,),n >0,

where A is a strongly positive bounded linear operator on H. They proved that if
the sequence {«,} of parameters satisfies appropriate conditions, then the sequence
{z,} generated by (1.7) converges strongly to the unique solution of the variational
inequality

(1.8) (A=~f)x*,x —a*) >0,z € C

which is the optimality condition for the minimization problem

1
in—-(A —h
min 5 {Az, ) — h(z),
where h is a potential function for vf (i.e., h'(z) = vf(x) for x € H).
Very recently, to find a common fixed point of a countable family of nonexpansive
mappings in Banach spaces, Aoyama et al. [1] introduced the following iterative
sequence:

(19) { ry=z€C

Tpt1 = an® + (1 — ap)Spen, n>1,

where C' is a nonempty closed convex subset of a Banach space, {a,} is a sequence
of [0,1], and {S,} is a sequence of nonexpansive mappings with some conditions.
Then they proved that {x,} defined by (1.9) converges strongly to a common fixed
point of {S,}.

Inspired and motivated by the above research, we suggest and analyze a new
iterative scheme for finding a common element of the fixed point set of common
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fixed points of a countable family of nonexpansive mappings and the solution set of
the variational inequality problem for an a-inverse-strongly monotone mapping in a
real Hilbert space. Under some appropriate conditions imposed on the parameters,
we obtain a strong convergence theorem for the sequence generated by the proposed
method. The results of this paper extend and improve the results of Yao and Yao
[15] and many others.

2. Preliminaries

Let H be a real Hilbert space with norm || - || and inner product {-,-) and let C be
a closed convex subset of H. We denote weak convergence and strong convergence
by notations — and —, respectively.

A space X is said to satisfy Opials condition [9] if for each sequence {z,} in X
which converges weakly to a point x € X, we have

liminf |z, — x| < liminf |z, —y|, VYye X,y#x.
n——aoo n—-uoo

For every point x € H, there exists a unique nearest point in C, denoted by Pox,
such that

|z — Pox|| < ||a — v for all y € C.
Pc is called the metric projection of H onto C. It is well known that Po is a
nonexpansive mapping of H onto C' and satisfies
(2.1) (x —y, Pox — Poy) > ||Pox — Peyl?

for every z,y € H. Moreover, Pox is characterized by the following properties:
Pox € C and

(2.2) (x — Pox,y — Pox) <0,
and
(2.3) lz = yl* > llz — Peall® + |y - Pox|?

for all x € H,y € C. It is easy to see that the following is true:
(2.4) ueVI(A,C) < u= Po(u— Au),\ > 0.
The following lemmas will be useful for proving the convergence result of this

paper.
Lemma 2.1. Let H be a real Hilbert space. Then for all x,y € H,

(1) llz+yl? < [|lz]* + 2(y, x + ).

(2) llz+yl? > ll2]* + 2(y, z).
Lemma 2.2. [11] Let {x,} and {y,} be bounded sequences in a Banach space X
and let {B,} be a sequence in [0, 1] with

0 < liminf 8, <limsup g, < 1.

n——-ao0 n o0

Suppose xpi1 = (1 — Bn)yn + Bnan for all integers n > 0 and

limsup([|ynt1 = ynll = 2041 — zall) < 0.
n—mo0
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Then
lim ||y, — x,| = 0.

n——-:ao0

Lemma 2.3. [9] Let H be a Hilbert space, C a closed convex subset of H, and
S : C — C a nonexpansive mapping with F(S) # 0. If {z,} is a sequence in
C weakly converging to x € C and if {(I — S)x,} converges strongly to y, then
(I—-8)zx=y.

Lemma 2.4. [13] Assume {a,} is a sequence of nonnegative real numbers such that
An+1 S (1*an)an+gn7 TLZO

where {a, } is a sequence in (0,1) and {o,} is a sequence in R such that
(1) X2y an = oo

On

(2) limsup, o &= <0 or 3377 |o,] < 0.
Then lim,,__, o a, = 0.

Lemma 2.5. [1, Lemma 3.2] Let C be a nonempty closed subset of a Banach space
and let {S,} be a sequence of mappings of C' into itself. Suppose that

> sup{||Snt12 — Snzl| 1 2 € C} < 0.

n=1
Then, for each y € C, {Spy} converges strongly to some point of C. Moreover, let
S be a mapping of C into itself defined by
Sy = lim S,y, vy e C.
n—-:aoo

Then
lim sup{||Sz — Spz|: z€ C} =0.

Lemma 2.6. [7] Assume A is a strongly positive linear bounded operator on a Hilbert
space H with coefficient ¥ >0 and 0 < p < ||A||71. Then ||I — pA|| <1 — p7.

3. Main results

In this section, we prove the strong convergence theorem for a countable family of
nonexpansive mappings in a real Hilbert space.

Theorem 3.1. Let C be a closed convexr subset of a real Hilbert space H. Let
f:C — C be a contraction with coefficient 8 € (0,1), B an a-inverse-strongly
monotone mapping of C into H and let {S,,} be a sequence of nonexpansive mappings
of C into itself such that F := N2 F(S,) N VI(B,C) # 0. Let A be a strongly
bounded linear operator on C' with coefficient ¥ > 0 and 0 < v < 7/B. Suppose the
sequences {x, },{yn} are given by

vy =x€C
Yn = PC(xn - )\ann)

Tn+l = an'y.f(wn) + 6nxn
+(<1 - ﬁn)l - anA)SnPC<yn - )\nByn)a n Z 1;

(3.1)
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where {an}, {Bn} are the sequences in [0,1] and {\,} is a sequence in [0,2a]. Sup-
pose that {ay},{Bn} and {\,} are chosen so that X\, € [a,b] for some a,b with
0 < a<b<2a satisfying
(1) limy, oo = 0,07 1 oty = 00,
(ii) 0 < liminf, o B <limsup,,_ . Bn <1,
(iii) lim,—— oo (Apt1 — An) =0.
Suppose that
Zsup{HS’nHz —Suz||: 2€ D} < 0
n=1
for any bounded subset D of C'. Let S be a mapping of C into itself defined by
Sy = lim,,_ o Spy for all y € C and suppose that F(S) = N2 F(Sy,). Then {z,}
converges strongly to a point z € F which is the unique solution of the variational
inequality
(3.2) ((A—=~f)z,z—x) <0, x€kF.
Equivalently, we have z = Pr(I — A+ ~vf)(z2).
Proof. Note that from the condition (i), we may assume, without loss of generality,
that a,, < (1 — 3,)]|A4]| 7! for all n € N. From Lemma 2.6, we know that if 0 < p <

|A]| =Y, then ||[I — pA| < 1 — py. We will assume that ||I — Al < 1 — 4. First, we
show that I — A, B is nonexpansive. For all 2,y € C and A, € [0, 2a],

I = AuB)z = (I = MaB)y|* = [[(x — y) — An(Bz — By)|®
= |l = ylI> = 2\ (z — y, Bx — By) + A} || Bz — By
(3.3) < lz = yl* + Aa(An — 20)[| Bz — Byl|?,
which implies that I — A, B is nonexpansive. We now observe that {x,} is bounded.
Indeed, pick any p € F(S)NVI(B,C). Then p = Po(p — A\, Bp). Setting v,, =
Pc(yn — A Byn), we obtain from (3.3) that
lon = pll = 1Po(yn = AnByn) — Po(p — AnBp)||
< [l(yn — AnByn) — (p = AnBp)|l < |lyn — p
= |[|[Pc(xn — AnBxn) — Po(p — A Bp)||
(3.4) < (@ — AnBzn) — (p — M Bp)| < |lzn — p.

On the other hand, since A is a strongly positive bounded linear operator on C, we
have

[A]l = sup{[{(Az, z)| : € C, [lz|| = 1}.
For any z such that ||z|| = 1, we have
(1 =B — anA)z,z) =1 — By — an(Ax, x)
21— P — an||A]| = 0.
This show that (1 — 3,)I — a,, A is positive. It follows that
11 = Bu)I = an Al = sup{[{((1 = Bn)] — anA)z,z)| : @ € C, [|z| = 1}
=sup{l — B, — ap(Az,z) : x € C,||z|| = 1}
<1—0n—an?.
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It then follows that

||In+1 -

= llon(vf (2n) = Ap) + Bn(zn — p) + (1 = Bu)I — an A)(Snvn —
< (1= Bn = an)llon = pll + Bullzn = pll + anllyf(zn) — Ap

< (L= Bn = an¥)llzn = pll + Bullzn — pll + cnllvf (zn) — Apl

< (= an)|zn = pll + @yl f(@n) = F(P)] + cnllvf(p) — Apl
< (1= an))|zn —pll + anyBllzn — pll + anllvf(p) — Apl|

lvf(p) — Apl|

=1 =G =1B)an)llzn —pl + (& —v8)an S

It follows from induction that

(3.5)

— A
len - pll < max{||x1 p|,””f(’”p”} 1
¥ =B

ol

Hence {z,} is bounded, so are {v, }, {Snvn}, {f(zn)}, {Byn} and { Bz, }. Moreover,
we observe that

||Un+1

(3.6)
Setting

we have x,11 =

Zn+1 — Zn

- ’Un” = ||PC(yn+l - >‘TL+1Byn+l) - PC(yn - )\nByn)H

< [(Wn+1 = Ant1BYnt1) — (Un — AnBya) |l
= [[(yn+1 = An+1BYn+1) — (Yn — Ant1BYn) + (An — Ang1) Bya||
< (Yn+1 = At 1BYnt1) = Un — A1 Byn) | + (A = At [ Byn |
< yns1 = ynll + 1An = Mg [[| Byl
= [[Po(zn+1 — Ant1Bany1) — Po(@n — A Bz || + [An — Anta ||| B
< (@ng1 = Ang1Brngr) — (0 — A Bry) || + [An — Ang1| || Bynl||
= [[(Tnt1 — M1 BTng1) — (Tn — A1 By) + (A — Ang1) Bay||
+ [An = Anga|[| Byl
ST = Ang1B)zngr — (I = Ana Bl
+ [An = Anpa[( Banll + [ Bynl|)
Slznt1 = znll + [An = A [([[Bn || + (| Bynl]).-

o O‘nlyf(xn) + ((1 - ﬂn)I - anA)SnUn
n 1 _ I@/n/ 9
(1 = Bn)zn + Brxn,n > 1. It follows that

- O‘n+1'7f(xn+1) + ((1 - 5n+1)l - an+1A)Sn+1vn+1

1- ﬂn-&-l
_ Y f(zn) + (1= )] — anA)Spvy
1- ﬂn
o On41
=1_ ﬂn-ﬁ- 'Yf(anrl) ﬂn 'Yf(xn) + Snt1Vny1 — Snn
OénJrl
+ —AS nUn — —— ASn Un
1- ﬂn 1- ﬁn+1 e

70
= 7+1(7f('rn+l) - ASTL+1U1'L+1)

1— B ——(ASpvn — v f(2n))

l_ﬁn
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(37) + Sn+lvn+1 - Sn—i—lvn + Sn+1Un — SpUn.
It follows from (3.6) and (3.7) that
Qp41
[2n41 = 2nll = [|Zns1 — 2nl < 1_"75H(H7f($n+1)|| + |ASn+10n41)
Qp,
t15 (IASpvnll + [[7f (@)l
+ HSn—&-l'Un—&-l - Sn-l—lUnH
+ [[Snt10n = Spvnll = lzns1 — 24|
Qp41
< — (I f @ns )| + 1 ASn1vn 1)
1 ﬂn-&-l
«
+ 7 _"6 (IASnvn |l + (7 f(@a)ll) + [lvnt1 — vl
+ HSn+lvn - Snvn“ - ||37n+1 - xn”
78
< —E(|lyf @ns )]l + | ASns10n41]))
1 5n+1
Qp
+ (IASpvnll + [[7f (@)l

l_ﬁn

+ A = A1 [(| Bz || + | Bynll) + 1Sn+1vn —

an
< (|7 f(@ng)]| + |ASns10n41]))
1 - ﬂn-&-l
an
+ ([[ASpvn || + [[7f (z2)]])

1—Bn
+ A0 = Anqa| (1B || + [ Bynl)
(3.8) + sup{||Spt1v — Spv|| : v € {v,}}
which implies that (noting that (i), (ii), (iii))

limsup(||znt1 — 2nl = [[Tns1 — zal]) < 0.
n——-uoo

Hence, by Lemma 2.2, we obtain

lim ||z, — z,| = 0.
It then follows that
(3.9) nhl{loo [Zn+1 — 2nll = ngnw(l = B)l|lzn — 20| = 0.

From (3.6) and (iii), we also have
[vnt1 = vnll — 0
and
||yn+1 - ynll < H(mn-&-l - )‘n-‘rlen-&-l) - (xn - )‘nAxn)H
< znt1 = zall + [An = Anga || Aznsr — Azy|| — 0.

Since

[Znt1 = zall = lon (vf(zn) — Azn) + (1 = Ba)I — anA)(Spvn — z0)|

< anl[vf(xn) = Azpll + (1 = Bn — an¥)[[Snvn — znl|,

Snvn |
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this together with (3.9) implies that

(3.10) lim ||S,v, — 2,| = 0.
n—-oo

Observe that

[€nt1 = plI* = (1 = Bn)I — anA)(Spvn = p) + Bu(en — p) + an(yf(2n) — Ap)|?
= [I((1 = BT = anA)(Spvn = p) + Bul@n = p)I* + af |7 f (2n) — Ap]?
+ 2Bp0n (Tn — p,7f(Tn) — Ap)
+ 2an (1 = Bu)] — anA)(Snvn — p),7f(@n) — Ap)
< ((1 = Bn = anISnvn = pll + Bullzn — pI)? + af |7 f(2n) — Ap]?
+ 2Bp0n(Tn — p,7f(zn) — Ap)
+ 200 ((1 = Bu)] — anA)(Snvn — p),7f(2n) — Ap)
< ((1 = Bn = an¥)llvn = pll + Bullzn = pl)? + cn
= (1= Bn = an¥)?|lvn = plI* + B2 |20 — p?
+ 2(1 = Bn — an¥)Bullvn — pllllzn — pll + cn
< (1= Bn = an¥)?[lon =2l + Ballzn — plI®
+ (1= B = an®)Balllvn = plI* + Iz = pl*) +¢n
= [(1 = an¥)® = 2(1 — ) Bn + Billlvn — plI> + B2z — p|1?
+ (1= an)Bn = B2) (v = pl1* + [z — plI*) + cn
= (1= an¥)?|lvn = pl* = (1 = @7)Ballvn — pl1?
+ (1= an)Ballen = plI* +cn
= (1= an7) (1 = B = an¥)llvn = pl> + (1 = anF)Ballzn — p|* + cn,
< (1= an7)(1 = Bn — an?)[[(zn = AnBxy) — (0 = Au Bp)||*]
+ (1= an¥)Bnllzn — pl* + cn,
< (1= ) (1 = Bn — an¥)[llen — plI? + An(An — 200)|| Bz, — Bp||?]
+ (1= an¥)Ballzn = plI* + cn,
(3.11) < lwn = plI* + b(b - 20) || Bzn, — Bp||* + ¢,
where
Cn = apl|vf (2n) = Av|* + 28pan (2, — 0,7 f(2n) — Av)
(3.12) + 20, (((1 = Bn)] — anA)(Spvyn — v),vf(zy,) — Av).
This implies that
—b(b — 20)|| By, — Bp||* < |0 — plI* = [|#nt1 —pl* +cn
<lzn — zpta|(l2n = pll + |Tn41 = pl) + cn.
Since lim,, . ¢, = 0 and from (3.9), we obtain

(3.13) lim ||Bz, — Bp| =0.
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From (2.1), we have
1y = plI* = | Pe(@n = AuBzy) = Po(p — A\ Bp)lI?
< ((@n = AnBzn) = (p = AnBp),yn — )
= 2@~ ABaa) — (0~ ABp)I? + [l — I
e~ AnBra) — (0= MaBp) — (v~ 1))
< 5 {0en = I+ g = 2~ n — 90) = Au(Ban — Bp)|}

= S ln =2l + g — 9l = 7 — g l* + 270 (0 — g, B — B)
— A2|| B, — Bpl|*}.
So, we obtain
lyn = plI? < llen = 2l = |20 = ynl* + 2Xn (@0 — yn, Bz, — Bp) — A} || Bz, — Bp|*.
It follows that
< (1= )1 = Bn = an)|on = plI* + (1 = @) Bnllzn — pl* + cn
< (1= an¥)(1 = Bn = an¥)lyn — plI* + (1 = an?)Bullzn — plI* + cn
< (1= any)(1 = Bn — anY)[llzn — plI> = 20 — ynl?
+ 2\ (Ty — Yn, Bz, — Bp) — \2|| Bz, — Bpl?]
+ (1= an¥)Ballzn =l +cn
< (1= an)|zn = plI* = (1 = an¥)(1 = Bn — an?)llzn — yal?
+ 20, (1 = n¥)(1 = B — an¥)||@n — yn| | Bxn — Bp||
— A2 (1= on9)(1 = By — an¥)|| Bz — Bp|* + cn,
which implies that

21 = plI?

(1 =) (1 = Bn — anW)|zn — yal?
< [lzn = pII* = l2ns1 — pII?
+ 20 (1 = @) (1 = Bn — an¥) |0 — yull| Bxn — By
— An(L = an)(1 = B — )| Bea — Bp|® +cu
< l#n = Znsal[(len = pll + 1201 = pl)
+ 20 (1 = @) (1 = Bn — an¥)|zn — yu || Bzn — By
— An(L = an)(1 = B — )| Bea — Bp|® + ¢y
Applying (3.9), (3.13) and lim,,—, ¢, = 0 to the last inequality, we obtain that
(3.14) tim [l — gl =0
It follows that
[Snvn = vnll < 1Snvn = @nll + 120 = ynll + llyn — vnll
= [1Snvn = znll + 20 = ynll + |1 Pe(zn — AnBn) = Po(yn — A Byn)|
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< NSnvn = znll + llzn — yull + (@0 — AnBzn) — (yn — AnByn)||
(3.15) < ||Snvn — xn|| + 2||xn — ynl| — 0 as n — oc.
This implies that
(3.16)  llvn = yall < llvn = Snvall + [|Snve = Znll + [0 — ynll — 0,n — oo.
Applying Lemma 2.5 and (3.15), we have
[Svn = on | < [1Svn = Sponll + |Snvn — vall
< sup{||Sv — Spv|| : v € {vn}} + ||Snvn — vn|l — 0

Observe that Pr(I— A+~ f) is a contraction of C into itself. Indeed, for all z,y € C,
we have

[Pr(I —A+~f)(@) — Pr(I = A+~f)(y)ll
ST —=A+vf)(@) - T - A+
< = Allllz —yll +~11£ (=) = FW)l
< A=)z =yl +8llz -yl
=[1=-O=18)z -yl
Since H is complete, there exists a unique element z € C such that
2= Po(l — A+7f)(2).
Next, we show that
(3.17) limsup((A —vf)z,z — x,) <0.

We choose a subsequence {v,,} of {v,} such that
dim (A —~f)z,2 — v,,) = limsup((A —vf)z,z — v,).
Since {vy,} is bounded, there exists a subsequence {vmj} of {v,,} which converges
weakly to w € C. Without loss of generality, we can assume that v,, — w. From
[|Svy, — vp|| — 0, we obtain Sv,, — w. Next, we show that w € F. First, we show
that
w e F(S)=NsZ,F(Sy).

Assume w ¢ F(5). Since v,, — w and w # Sw, it follows by the Opial’s condition
that

liminf ||v,, — w|| < liminf ||v,, — Sw||
11— 00 1——00

< liminf{||vp;, — Svn, || + [|Sve, — Sw||}

< liminf |jvu,, — w|
1—00

which derives a contradiction. Thus, we have w € F(S) = N2, F(Sy,). By the same
argument as that in the proof of [8], we can show that w € VI(B, (). Hence w € F.
Since z = Pp(I — A+ vf)(z), it follows that
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limsup((A —vf)z, 2 — x,,) = limsup{(A — vf)z,z — vy,)

(3.18) C ~ lim (A= 2f)zz - vn)

= (A= 7f)zz - w) S0,
It follows from the last inequality, (3.10), (3.14) and (3.16) that
(3.19) limsup(vf(z) — Az, Spvn, — 2) <0.

n——ao0

Finally, we prove z,, — z as n — oo. To this end, we calculate

2011 = 21 = [lanvf (20) + Boan + (1= Ba)I — anA)Spv, — 2|2
= [[((1 = Bu)I = an A)(Snvn = 2) + Bu(@n — 2) + an(yf(zn) — A2)|”
= (1 = Bu)] = anA)(Snvn — 2) + Bu(zn — 2)II” + ap |7 f(zn) — Az|®
+ 2Bnan{xn — 2,7 f(xn) — Az)
T 200 (1= Bu)T — anA)(Sutn — 2), 7f () — A2)
< (1= B — aw)ISwvn = 2]l + Bulln — 20) + 02|17 () — A
+ 2Bpomy(@n — 2, f(2n) = f(2)) + 2Bnom(zn — 2,7f(2) — A2)
+ 2(1 = B)yan(Snvn — 2, fzn) — f(2))
+ 2(1 — B)an(Spvn — 2,7f(2) — Az)
— 205, (A(Spvp — 2),7f(2) — Az)
< (1= Bn — anY)llzn — 2| + Bullzn — Z||)2 + O‘iHVf(xn) - AzH2
+ 260y Bl|n — 2l° + 2Bnan(zn — 2,7f(2) — Az)
+ 2(1 = Bo)vanBllzn — 2||* + 2(1 = B)an (Snvn — 2,7f(2) — Az)
— 205, (A(Snvn — 2),7f(2) — Az)
= [(1 = an)? + 28,0078 + 2(1 = Bn)yan ]|z, — 2
+ adllyf(zn) = Azl + 2Bnan(zn — 2,7 f(2) — Az)
+ 2(1 = B)an (Snvy — 2,7f(2) — Az) — 202 (A(Spvn — 2),7f(2) — Az)
<1 =207 — ay)anlllzn — 2| +7%ad 20 — 2|1 + ai |1y .f (za) — Az|?
+ 2Bnan{xn, — 2,7f(2) — Az) + 2(1 — B)an{Snpvn — 2,7f(2) — Az)
+ 207 | A(Snvn = 2)lll|17.f(2) — Az||
= [1—2(7 — am)an]llzn — 2[1* + an{an(3|len — 2|1 + [17.f (20) — A2|?
+ 2| A(Snvn = 2)lIvf (2) — Azl) + 2Bn(zn — 2,7/ (2) — A2)
(3.20) + 2(1 = B)(Spvn — z,7f(2) — Az)}.

Since {x,}, {f(zn)} and {S,v,} are bounded, we can take a constant M > 0 such
that

Vllwn = 2l7 + 1vf (@n) = Az))? + 2| A(Snvn — 2)ll7f(2) — A2l < M,
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for all n > 0. It then follows that
(3.21) Jnss — 212 < [1 = 207 — am)an]llzn — 2|2 + anon,
where
on =20n(xn — 2,7f(2) — Az) + 2(1 — B){(Spvn — 2,7f(2) — Az) + an M.

Using (i), (3.18) and (3.19), we get limsup,,_ . 05, < 0. Now applying Lemma 2.4
to (3.21), we conclude that x,, — z. 1

fA=I,v=1,v=1—a, — Bn, Su =S and f := u in Theorem 3.1, then we
can obtain the following result immediately.

Corollary 3.1. [15, Theorem 3.1]) Let C' be a closed convex subset of a real Hilbert
space H. Let B be an a—inverse-strongly monotone mapping of C' into H and let S
be a nonexpansive mapping of C into itself such that F(S)NVI(B,C) # 0. Suppose
x1=u € C and {x,},{yn} are given by

Yn = PC(xn - )\ann)
Tnt1 = QU+ BpnTn + 'YnSPC(yn - >‘71Byn)7

where {an}, {Bn}, {1n} are three sequences in [0,1] and {\,} is a sequence in [0, 2a].
If {an}, {Bn}, {vn} and {\,} are chosen so that X\, € [a,b] for some a,b with 0 <
a<b<2aand

(i) ap + P+ =1,
(ii) limy,—oo = 0,507 | ay = 00,
(iii) 0 <liminf, o B, <limsup,,_ . Bn <1,
(iV) limnﬁ,oo()\n+1 - >\n) = 0,
then {x,} converges strongly to Pp(s)nvi(B,c)u-

Remark 3.1. As in [1, Theorem 4.1], we can generate a sequence {S,} of nonex-
pansive mappings satisfying condition Y ° | sup{||Sp4+12 — Spz : z € D||} < oo for
any bounded subset D of C' by using convex combination of a general sequence {T}}
of nonexpansive mappings with a common fixed point.
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