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Abstract. In this paper as the main result, we show that if G is a finite group
such that Γ(G) = Γ(2Dp(3)), where p = 2n +1, (n ≥ 2) is a prime number, then

G has a unique non-abelian composition factor isomorphic to 2Dp(3). We also

show that if G is a finite group satisfying |G| = |2Dp(3)| and Γ(G) = Γ(2Dp(3)),
then G ∼= 2Dp(3). As a consequence of our result we give a new proof for a

conjecture of W. J. Shi and J. X. Bi [A characteristic property for each finite

projective special linear group, in Groups—Canberra 1989, 171–180, Lecture
Notes in Math., 1456, Springer, Berlin] for 2Dp(3). Application of this result to

the problem of recognition of finite simple groups by the set of element orders
are also considered.
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1. Introduction

If n is an integer, then we denote by π(n) the set of all prime divisors of n. If G is
a finite group, then π(|G|) is denoted by π(G). We construct the prime graph of G
which is denoted by Γ(G) as follows: The vertex set is π(G) and two distinct primes
p and q are joined by an edge if and only if G contains an element of order pq. Let
s(G) be the number of connected components of Γ(G) and let π1, π2, ..., πs(G) be the
connected components of Γ(G). If 2 ∈ π(G) we always suppose 2 ∈ π1.

The spectrum of a finite group G which is denoted by ω(G) is the set of its element
orders. Obviously, ω(G) is partially ordered by divisibility.

A finite group G is said to be recognizable by spectrum if the equality ω(H) = ω(G)
implies that H ∼= G. A finite simple non-abelian group G is called quasirecognizable
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by spectrum if each finite group H with ω(H) = ω(G) has a composition factor
isomorphic to G (see [1]).

A finite group G is said to be recognizable by prime graph if the equality Γ(H) =
Γ(G) implies that H ∼= G. A non-abelian simple group P is said to be quasirecog-
nizable by prime graph if every finite group whose prime graph is Γ(P ) has a unique
non-abelian composition factor isomorphic to P (see [8]). Obviously recognition
(quasirecognition) by prime graph implies recognition (quasirecognition) by spec-
trum, but the converse is not true in general. Also some methods of recognition by
spectrum can not be used for recognition by prime graph.

In [1] it is proved that every finite simple group with at least three connected
components (except A6) are quasirecognizable by spectrum.

Hagie in [6] determined finite groups G satisfying Γ(G) = Γ(S), where S is a
sporadic simple group. In [11] and [14] finite groups with the same prime graph as
a CIT simple group and PSL(2, q) where q = pα < 100 are determined. It is proved
that if q = 32n+1 (n > 0), then the simple group 2G2(q) is uniquely determined by
its prime graph [8, 21]. Also in [12] it is proved that PSL(2, p), where p > 11 is
a prime number and p 6≡ 1 (mod 12) is recognizable by prime graph and if p ≡ 1
(mod 12), then PSL(2, p) is quasirecognizable by prime graph. In [10] and [13],
finite groups with the same prime graph as PSL(2, q) are determined.

In this paper as the main result, we show that if G is a finite group such that
Γ(G) = Γ(2Dp(3)), where p = 2n + 1, (n ≥ 2) is a prime number, then G has a
unique non-abelian composition factor isomorphic to 2Dp(3). We also show that
if G is a finite group satisfying |G| = |2Dp(3)| and Γ(G) = Γ(2Dp(3)), then G ∼=
2Dp(3).

In this paper, all groups are finite and by simple groups we mean non-abelian
simple groups. All further unexplained notations are standard and refer to [2]. Also
[x], is the largest integer number, smaller or equal to x. Throughout the proof we
use the classification of finite simple groups. The connected components of the prime
graph of non-abelian simple groups with disconnected prime graph are listed in [19]
and throughout this paper we use this list.

2. Preliminary results

Definition 2.1. [5] A finite group G is called a 2-Frobenius group if it has a normal
series 1 E H E K E G, where K and G/H are Frobenius groups with kernels H and
K/H, respectively.

Lemma 2.1. [20, Theorem A] If G is a finite group with its prime graph having
more than one component, then G is one of the following groups:

(a) a Frobenius or 2-Frobenius group;
(b) a simple group;
(c) an extension of a π1-group by a simple group;
(d) an extension of a simple group by a π1-group;
(e) an extension of a π1-group by a simple group by a π1-group.

The next lemma summarizes the basic structural properties of a Frobenius group
[4, 5, 7] and a 2-Frobenius group [5]:
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Lemma 2.2.
(a) Let G be a Frobenius group of even order and let H, K be the Frobenius

complement and Frobenius kernel of G, respectively. Then s(G) = 2, and
the prime graph components of G are π(H), π(K).

(b) If G is a 2-Frobenius group, then s(G) = 2 and with the notations of Defi-
nition 2.1, we have π1 = π(G/K) ∪ π(H) and π2 = π(K/H).

Lemma 2.3. If G is a finite group and Γ(G) = Γ(2Dp(3)), where p = 2n +1 (n ≥ 2)
is a prime number, then G has a normal series 1 E H E K E G such that G/K is
trivial or a π1-group, H is trivial or a nilpotent π1-group and K/H is a non-abelian
simple group with s(K/H) ≥ 3 and G/K ≤ Out(K/H). Also if j ∈ {2, 3}, then
there exists i ≥ 2 such that πj(2Dp(3)) = πi(K/H).

Proof. Since s(G) 6= 2, by using Lemma 2.2, it follows that G is neither a Frobenius
group nor a 2-Frobenius group. Therefore by using Lemma 2.1, G has a normal series
1 E H E K E G such that K/H is a nonabelian simple group, moreover H and G/K
are trivial groups or π1-groups. We note that a π1-group is a group of even order
with one connected component. Therefore it follows that s(K/H) ≥ s(G) = 3. Also
H is nilpotent. By assumption, K/H E G/H and hence NG/H(K/H) = G/H. We
claim that CG/H(K/H) = 1. Otherwise let xH ∈ CG/H(K/H) and p0 be a prime
divisor of o(xH). As we mentioned above, π2∪π3 ⊆ π(K/H) and by the definition of
prime graph it follows that every prime divisor of |K/H| is connected to p0, which
is a contradiction, since s(G) = 3. Therefore CG/H(K/H) = 1, and so G/H is
isomorphic to a subgroup of Aut(K/H). On the other hand, K/H is a nonabelian
simple group and so K/H ∼= Inn(K/H), which implies that G/K ≤ Out(K/H).

Lemma 2.4. [3, Remark 1] The equation pm − qn = 1, where p and q are primes
and m,n > 1 has only one solution, namely 32 − 23 = 1.

Lemma 2.5. [3, 9] Except the relations (239)2− 2(13)4 = −1 and (3)5− 2(11)2 = 1
every solution of the equation

pm − 2qn = ±1; p, q prime; m,n > 1,

has exponents m = n = 2; i.e. it comes from a unit p− q21/2 of the quadratic field
Q(21/2) for which the coefficients p, q are primes.

Lemma 2.6. [22, Zsigmondy Theorem] Let p be a prime and let n be a positive
integer. Then one of the following holds:

(i) there is a primitive prime p′ for pn−1, that is , p′ | (pn−1) but p′ - (pm−1),
for every 1 ≤ m < n (usually p′ is denoted by rn),

(ii) p = 2, n = 1 or 6,
(iii) p is a Mersenne prime and n = 2.

Remark 2.1. [16] Let p be a prime number and (a, p) = 1. Let k ≥ 1 be the
smallest positive integer such that ak ≡ 1 (mod p). Then k is called the order of a
with respect to p and we denote it by ordp(a).

Remark 2.2. In graph theory a subset of vertices of a graph is called an independent
set if its vertices are pairwise nonadjacent. Denote by t(G) the maximal number
of primes in π(G) pairwise nonadjacent in Γ(G). In other words, if ρ(G) is some
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independent set with the maximal number of vertices in Γ(G), then t(G) = |ρ(G)|.
Similarly, a subset of pairwise nonadjacent vertices of a graph containing the vertex 2
is called a 2-independent set. If ρ(2, G) is some 2-independent set with the maximal
number of vertices in Γ(G), then t(2, G) = |ρ(2, G)|.

In [18, Tables 2-9], independent and 2-independent sets also independent and 2-
independent numbers for all simple groups are listed and we use these results in the
proof of the main theorem of this paper.

Remark 2.3. Let G = 2Dp(3), where p = 2n + 1 (n ≥ 2) is a prime number. By
[19, Tables 1a-1c], we have s(G) = 3 and

π1(G) = π(2× 3p(p−1)(3p−1 − 1)
p−2∏
i=1

(32i − 1)).

Also the odd components of G are

π2(G) = π((32n

+ 1)/2)

and
π3(G) = π((32n+1 + 1)/4).

We note that since p ≥ 5 it follows that 5 and 7 belong to π(
∏p−2

i=1 (32i−1)) ⊆ π1(G).

3. Main results

Theorem 3.1. Let G be a finite group such that Γ(G) = Γ(2Dp(3)), where p = 2n+1
(n ≥ 2) is a prime number. Then G has a unique non-abelian composition factor
isomorphic to 2Dp(3). In other words 2Dp(3) is quasirecognizable by prime graph.

Proof. By Lemma 2.3, if G is a finite group and Γ(G) = Γ(2Dp(3)), then G has a
normal series 1EH EK EG such that G/K is trivial or a π1-group, H is trivial or a
nilpotent π1-group and K/H is a non-abelian simple group with s(K/H) ≥ 3. Now
we use the classification of finite simple groups. According to [19, Tables 1a–1c], we
consider each possibility for K/H, separately.

By using Remark 2.3, we conclude that K/H can not be isomorphic to A2(2),
A2(4), 2A5(2), M11, M22, J1 or HS.

Case 1. Let K/H ∼= Ap′ , where p′ and p′ − 2 are prime numbers.
(1.1) If π((32n

+1)/2) = π(p′) and π((32n+1+1)/4) = π(p′−2), then (32n

+1)/2 =
p′

α, for some α ∈ N. Now by using Lemma 2.5, it follows that α = 1 and so
p′−2 = (32n−3)/2. Therefore p′−2 = 3 and n = 1, which is a contradiction.

(1.2) If π((32n

+1)/2) = π(p′− 2) and π((32n+1 +1)/4) = π(p′), then similarly to
(1.1) it follows that p′ = (32n

+ 5)/2. Also π((32n+1 + 1)/4) = π(p′), which
implies that π((32n+1 + 1)/4) = π((32n

+ 5)/2). If x ∈ π((32n+1 + 1)/4),
then x ∈ π((32n

+5)/2), which implies that x = 7 and this is a contradiction
by Remark 2.3.
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Case 2. Let K/H ∼= A1(q), where q = p′α and q ≡ −1 (mod 4).
(2.1) If π((32n

+1)/2) = π(q) and π((32n+1 +1)/4) = π((q− 1)/2), then similarly
to (1.1) it follows that (p′ − 1)/2 = (32n − 1)/4. Since (p′ − 1) | (q − 1) it
follows that π((32n − 1)/4) ⊆ π((32n+1 + 1)/4), and this is a contradiction
since π((32n − 1)/4) ∩ π((32n+1 + 1)/4) = ∅.

(2.2) If π((32n

+1)/2) = π((q− 1)/2) and π((32n+1 +1)/4) = π(q), then (32n+1 +
1)/4 = p′β , for some β ∈ N. Since π(p′− 1) ⊆ π(p′β − 1) = π((32n+1− 3)/4)
and π(p′ − 1) ⊆ π((p′α − 1)/2) = π((32n

+ 1)/2) we conclude that if
x ∈ π(p′ − 1), then x = 2, which is a contradiction.

Case 3. Let K/H ∼= A1(q), where q = 2α. The odd components of K/H are
π(2α − 1) and π(2α + 1). Since

(2α − 1)(2α + 1) = 22α − 1

and for every α, 3 | (22α − 1), we get a contradiction since 3 ∈ π1(2Dp(3)).

Case 4. Let K/H ∼= F4(q), where q = 2f > 2. The odd components of F4(q) are
π(q4 + 1) and π(q4 − q2 + 1). By assumptions π1(F4(q)) ⊆ π1(2Dp(3)) and by [18,
Tables 5–9] we know that

t(2Dp(3)) = [(3p + 3)/4], ρ(2Dp(3)) = {r2i : [p/2] ≤ i ≤ p} ∪ {ri : [p/2] < i < p},

ρ(2, 2Dp(3)) = {2, r2p−2, r2p}.
Also

ρ(F4(q)) = {r′3, r′4, r′6, r′8, r′12} , ρ(2, F4(q)) = {2, r′8, r
′
12},

where ri and r′i are primitive primes of 3i − 1 and qi − 1, respectively.
First, suppose that p = 5. If π(24f + 1) = {41}, then by using Lemma 2.5,

24f + 1 = 41, which is a contradiction. If π(24f + 1) = {61}, similarly we get a
contradiction.

Therefore p ≥ 17 since p = 2n + 1, and so t(2Dp(3)) ≥ 13. By assumption r2p

and r2p−2 in ρ(2Dp(3)) belong to the odd components of Γ(2Dp(3)). Similarly, r′8
and r′12 in ρ(F4(q)) belong to the odd components of Γ(F4(q)). Let A be a subset
of ρ(2Dp(3)) ∩ π1(2Dp(3)) such that |A| = 11. We know that t(F4(q)) = 5 and
s(F4(q)) = 3. Therefore |A ∩ π1(F4(q))| ≤ 3 and so at least 8 elements of A do not
belong to π(K/H), where K/H ∼= F4(q). Since H is a nilpotent group at most one
element of A belongs to π(H) and at least 7 elements of A belong to π(G/K). We
know that G/K ≤ Out(K/H). By [2], |Out(K/H)| = f , where f is the order of the
field automorphism. We know that a field automorphism centralizes the elements of
F4(2). We know that

π(F4(2)) = {2, 3, 5, 13, 17}.
So 17 is adjacent to all elements of A, which implies that 17 is adjacent to r2(p−i)

for some i ≤ 6. Clearly 17 is a primitive prime of 316 − 1 and r2(p−i) is a primitive
prime of 22(p−i) − 1. So there exists a maximal torus T such that 17.r2(p−i) | |T |.
By [18] every maximal torus T of 2Dp(3) has order

1
(4, 3p + 1)

.(3n1 − 1).(3n2 − 1). · · · .(3nk − 1).(3l1 + 1).(3l2 + 1). · · · .(3lm + 1)
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for an appropriate partition n1 + n2 + . . . + nk + l1 + l2 + . . . + lm = p of p, where
m is odd. Moreover, for every partition, there exists a torus of the corresponding
order. Now it follows that p− i + 8 ≤ p, which is a contradiction.

Case 5. Let K/H ∼= 2G2(q), where q = 32m+1. The odd components of K/H are
π(q −

√
3q + 1) and π(q +

√
3q + 1). So

π((3p−1 + 1)/2) ∪ π((3p + 1)/4) = π(q −
√

3q + 1) ∪ π(q +
√

3q + 1) ⊆ π(q3 + 1)

If x ∈ π((3p + 1)/4), then 3p ≡ −1 (mod x). Obviously, x 6= 3. Therefore, 32p ≡ 1
(mod x), which implies that ordx(3) | 2p. Clearly, ordx(3) 6= 2 and so ordx(3) = 2p.
Also, x ∈ π(q3 + 1) so x | (36m+3 + 1). So 312m+6 ≡ 1 (mod x). Therefore ordx(3) |
(12m + 6) and so p | 3(2m + 1). Since p 6= 3 it follows that p | (2m + 1). Therefore,
(3p + 1) | (3(2m+1) + 1), which implies that x | (3(2m+1) + 1). Since

x ∈ π(32m+1 + 3m+1 + 1) ∪ π(32m+1 − 3m+1 + 1)

it follows that x | 3m+1, which is a contradiction since x 6= 3.

Case 6. Let K/H ∼= G2(q), where q = 3m. The odd components of K/H are
π(32m + 3m + 1) and π(32m − 3m + 1). Also

(32m + 3m + 1)(32m − 3m + 1) = (34m + 32m + 1),

so
π((3p−1 + 1)/2) ∪ π((3p + 1)/4) = π(34m + 32m + 1) ⊆ π(36m − 1).

If x ∈ π((3p + 1)/4), then 3p ≡ −1 (mod x). Obviously x 6= 3. Therefore 32p ≡ 1
(mod x), which implies that ordx(3) = 2p, so 2p | 6m. Since p 6= 3, therefore p | m.
If m is odd, then (3p +1) | (3m +1) so x | (3m +1), which implies that x | (34m−1).
On the other hand, x | (34m + 32m + 1) and so x | (32m + 2). Since x | (32m − 1)
we get that x = 3, which is a contradiction. If m is even, then (3p + 1) | (3m − 1).
Similarly it follows that x = 3, which is a contradiction.

Case 7. Let K/H ∼= 2F4(q), where q = 22f+1 > 2. First suppose that p = 5.
We know that π1(2D5(3)) = {3, 5, 7, 13} and 3, 5 ,7 and 13 are primitive primes
of 22 − 1, 24 − 1, 23 − 1 and 212 − 1, respectively. Also r6 is a primitive prime of
(q6 − 1), so r6 | (26(2f+1) − 1) and so is a divisor of (q3 + 1). Since the order of the
first component of 2F4(q) is q12(q4 − 1)(q3 + 1)(q2 + 1)(q − 1), so r6 is a divisor of
π1(2F4(q)). Since π1(2F4(q)) ⊆ π1(2D5(3)), it follows that 6(2f + 1) ≤ 12, which is
a contradiction.

Therefore p ≥ 17, since p = 2n + 1. Let A be a subset of ρ(2Dp(3)) ∩ π1(2Dp(3))
such that |A| = 11. Similarly to the Case 4, at least 7 elements of A belong to
π(G/K), and |Out(K/H)| = 2f + 1 where 2f + 1 is the order of the field automor-
phism. We know that the automorphism group of a field is cyclic, so is abelian.
Therefore all of the elements of A are pairwise adjacent, which is a contradiction.

Similarly it follows that K/H is not isomorphic to 2B2(q) where q = 2n +1, E8(q)
and A1(q) where q ≡ 1 (mod 4).
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Case 8. Let K/H ∼= E7(2).

(8.1) If π((32n

+ 1)/2) = {73} and π((32n+1 + 1)/4) = {127}, then (32n

+ 1)/2 =
73α, for some α ∈ N. Now by using Lemma 2.5, it follows that α = 1 and
so 32n

= 145 which is a contradiction.
(8.2) If π((32n

+ 1)/2) = {127} and π((32n+1 + 1)/4) = {73}, then similarly to
(8.1) it follows that (32n

+1)/2 = 127 so 32n

= 253 which is a contradiction.
Similarly it follows that K/H can not be isomorphic to E7(3), 2E6(2) and
any sporadic group.

Case 9. Let K/H ∼= 2Dp′(3), where p′ = 2n′
+ 1 (n′ ≥ 2) is a prime. First suppose

that π((3p′
+ 1)/4) = π((3p−1 + 1)/2) and π((3p′−1 + 1)/2) = π((3p + 1)/4). If x ∈

π((3p−1 + 1)/2)), then 3p−1 ≡ −1 (mod x) and so, ordx(3) | 2(p− 1). On the other
hand, x ∈ π((3p′

+1)/4), which implies that ordx(3) = 2p′. Therefore 2p′ | 2(p−1) so
(2n′

+1) | 2n, which is a contradiction. Therefore π((3p′
+1)/4) = π((3p +1)/4) and

π((3p′−1 + 1)/2) = π((3p−1 + 1)/2). Hence without loss of generality we can assume
that p′ ≤ p . If x is a primitive prime of 32p′−1, since π((3p′

+1)/4) = π((3p +1)/4),
then x is a primitive prime of 32p − 1, which implies that p = p′ by Lemma 2.6, and
so K/H ∼= 2Dp(3). Now the proof of this theorem is completed.

4. Some related results

We note that Γ(Z6) is a graph with two vertices, i.e. V = {2, 3} and there exists an
edge between 2 and 3. But Γ(Z3 × Z2k) = Γ(Z6) for every k > 0. Also S3 × Z2k ,
where k > 0, is a nonabelian group and Γ(S3 × Z2k) = Γ(Z6). Therefore there exist
infinitely many non isomorphic groups G such that Γ(G) = Γ(Z6). Also note that
even if |G| = |M | and Γ(G) = Γ(M), then we can not conclude that G ∼= M .

As a consequence of the main theorem we can prove the following corollaries.

Corollary 4.1. Let G be a finite group satisfying |G| = |2Dp(3)|, where p = 2n + 1
(n ≥ 2) is a prime. If Γ(G) = Γ(2Dp(3)), then G ∼= 2Dp(3).

Proof. By assumption, Γ(G) = Γ(2Dp(3)). Now by using the main theorem it
follows that G has a normal series 1 E H E K E G such that K/H ∼= 2Dp(3). Also
|G| = |2Dp(3)| and so H = 1 and K = G. Therefore, G ∼= 2Dp(3).

Remark 4.1. Shi and Bi in [17] put forward the following conjecture.

Conjecture 4.1. Let G be a group and M be a finite simple group. Then G ∼= M
if and only if

(i) |G| = |M |;
(ii) ω(G) = ω(M).

This conjecture is valid for sporadic simple groups, alternating groups and some
simple groups of Lie type. As a consequence of the main theorem, we can give a
new proof for this conjecture for the groups under discussion.

Corollary 4.2. Let G be a finite group satisfying |G| = |2Dp(3)|, where p = 2n + 1
(n ≥ 2) is a prime. If ω(G) = ω(2Dp(3)), then G ∼= 2Dp(3).
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Obviously Corollary 4.1 is a generalization of Shi-Bi conjecture and so Corollary
4.2 is an immediate consequence of Corollary 4.1.
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