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Abstract. We prove, in this article, that every finitely generated stably free

R-module is power-free if and only if for any right invertible rectangular matrix

(aij) over R, there exists s ∈ N such that (aijIs) can be completed to an
invertible matrix. Furthermore, we prove that every right invertible rectangular

matrix over generalized stable, right repetitive rings can be completed in this
way.
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1. Introduction

Let R be an associative ring with identity, and Let s ∈ N. We say that a right R-
module P is finitely generated stably free of rank s if there exists m ∈ N such that
P ⊕Rm ∼= Rm+s. We say that a finitely generated stably free right R-module P of
rank s is power-free if there exists some n ∈ N such that Pn ∼= Rns. As is well known,
every finitely generated stably free module of positive rank over a commutative ring
is power-free (cf. [13, Theorem IV: 44]). In this article, we establish the equivalent
conditions under which every finitely generated stably free module of positive rank
over an associative ring is power-free.

We say that R is a generalized stable ring provided that aR+bR = R with a, b ∈ R
implies that there exists a y ∈ R such that a + by ∈ K(R), where K(R) = {r ∈
R| ∃s, t ∈ R such that srt = 1} (cf. [4]). The class of generalized stable ring is very
large. It includes exchange rings having stable range one, exchange rings satisfying
general comparability, exchange rings satisfying related comparability, purely infinite
simple ring, etc. So far, all known exchange rings belong to such class of rings.
Following Goodearl [8], an element u ∈ R is right repetitive provided that for each
finitely generated right ideal I of R, the right ideal

∑∞
i=0 u

iI is finitely generated,
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or, equivalently,
∑∞
i=0 u

iI =
∑k
i=0 u

iI for some k ∈ N. A ring R is right repetitive
if all elements of R are right repetitive. Clearly, all commutative rings and all right
noetherian rings are right repetitive. Also we know that every ring integral over
its center is right repetitive. It is well known that all surjective endomorphisms of
finitely generated right R-modules are automorphism if and only if all matrix rings
Mn(R) are right repetitive (cf. [8, Theorem 7]). Let R be a generalized stable, right
repetitive ring. We prove that for any right invertible rectangular matrix (aij) over
R, there exists s ∈ N such that (aijIs) can be completed to an invertible matrix.

Throughout, all rings are associative with identity and all modules are right uni-
tary modules. We use N to denote the set of all natural numbers. Pn(n ∈ N)
denotes the n copies of right R-module P . A n×m matrix (aij) is called a rectan-
gular matrix in case n < m. R1×n and Rn×1 stand for the R-Mn(R)-bimodule and
Mn(R)-R-bimodule of all tuples of row vectors and column vectors, respectively.

2. Completion of matrices

Let σ : Rm → Rn be a R-morphism. Then we have a matrix A ∈ Mn×m(R)
corresponding to σ. Let A = (aij) ∈ Mn×m(R), and let Is = diag(1, · · · , 1) ∈
Ms(R). We use the Kronecker product A ⊗ Is to stand for the matrix (aijIs) ∈
Mns×ms(R).

Theorem 2.1. Let R be a ring. Then the following are equivalent:

(1) Every finitely generated stably free right R-module of positive rank is power-
free.

(2) For any right invertible rectangular matrix (aij), there exists s ∈ N such that
(aijIs) can be completed to an invertible matrix.

Proof.
(2) =⇒(1) Let P be a finitely generated stably free right R-module of positive rank.

Then there exist m,n ∈ N such that 0 −→ P −→ Rm
α−→ Rn −→ 0 (n < m) is an

exact sequence. Since Rn is a projective right R-module, there exists β : Rn → Rm

such that αβ = 1. Let {η1, · · · , ηm} and {ε1, · · · , εn} be bases of Rm and Rn,
respectively. Then α(η1, · · · , ηm) = (ε1, · · · , εn)A, where A ∈ Mn×m(R). Clearly,
we have some m× n matrix B such that AB = In. By the hypothesis, there exists
s ∈ N and an invertible ms×ms matrix(

A⊗ Is
∗

)
ms×ms

;

hence, we have C ∈Mms(R) such that(
A⊗ Is
∗

)
ms×ms

C = diag(Is, · · · , Is)ms×ms.

Clearly, there exists an exact sequence 0 −→ P s −→ Rms
ϕ−→ Rns −→ 0, where

the corresponding matrix of ϕ is diag(A,A, · · · , A)ns×ms. By elementary row and
column transformations, we have

diag(A,A, · · · , A)ns×ms →
(
A⊗ Is

)
ns×ms .
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Hence there exists an exact sequence 0 −→ P s −→ Rms
ψ−→ Rns −→ 0, where the

corresponding matrix of ψ is (
A⊗ Is

)
ns×ms .

Let {δ1, · · · , δms} and {ζ1, · · · , ζns} be bases of Rms and Rns, respectively. Then

ψ(δ1, · · · , δms) = (ζ1, · · · , ζns)
(
A⊗ Is

)
ns×ms .

Hence,

ψ(δ1, · · · , δms)C = (ζ1, · · · , ζns)
(
A⊗ Is

)
ns×ms C

= (ζ1, · · · , ζns)

 Is · · · 0 0 · · · 0
...

. . .
...

... · · ·
...

0 · · · Is 0 · · · 0


ns×ms

.

Let (ξ1, · · · , ξms) = (δ1, · · · , δms)C. Since C is an invertible matrix, (ξ1, · · · , ξms) is
a basis of Rms as well. In addition,

ψ(ξ1, · · · , ξms) = (ζ1, · · · , ζns)

 Is · · · 0 0 · · · 0
...

. . .
...

... · · ·
...

0 · · · Is 0 · · · 0


ns×ms

.

As a result, we get

P s ∼= Ker ψ

=

∑ms
i=1 ξiri | ψ(ξ1, · · · , ξms)

 r1
...

rms

 = 0, r1, · · · , rms ∈ R


=

∑ms
i=1 ξiri | (ζ1, · · · , ζns)

 Is · · · 0 0 · · · 0
...

. . .
...

... · · ·
...

0 · · · Is 0 · · · 0


 r1

...
rms

 = 0


= {

∑ms
i=1 ξiri | r1 = · · · = rns = 0, rns+1, · · · , rms ∈ R}

= {ξns+1rns+1 + · · ·+ ξmsrms | rns+1, · · · , rms ∈ R}
= R(m−n)s,

as required.

(1)=⇒(2) Let A ∈Mn×m(R) be a right invertible rectangular matrix. Then we have
B ∈ Mm×n(R) such that AB = In. Let {ε1, · · · , εn} and {η1, · · · , ηm} be bases
of Rn and Rm, respectively. Construct two maps ϕ : Rn → Rm, ϕ(ε1, · · · , εn) =
(η1, · · · , ηm)B; φ : Rm → Rn, φ(η1, · · · , ηm) = (ε1, · · · , εn)A. Clearly, φϕ(ε1, · · · , εn)
= φ(η1, · · · , ηm)B = (ε1, · · · , εn)AB = (ε1, · · · , εn). Hence φϕ = 1, and we get a

split exact sequence 0 −→ Ker φ −→ Rm
φ−→ Rn −→ 0. So Ker φ is a finitely gen-

erated stably free module of rank n−m. By the hypothesis, we can find s ∈ N such
that (Ker φ)s ∼= R(m−n)s. Clearly, we have an exact sequence 0 −→ (Ker φ)s −→
Rms

ψ−→ Rns −→ 0, where the matrix corresponding to ψ is diag(A, · · · , A)ns×ms.
Thus, we have some E ∼= Rns such that Rms = Ker ψ⊕E. Let {δ1, · · · , δ(m−n)s} be
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a basis of Ker ψ, and let {δ(m−n)s+1, · · · , δms} be a basis of E. Then {δ1, · · · , δms}
is a basis of Rms.

Let {ζ1, · · · , ζms} and {µ1, · · · , µns} be bases of Rms and Rns, respectively. In
addition, ψ(ζ1, · · · , ζms) = (µ1, · · · , µns)diag(A, · · · , A)ns×ms. Obviously, we have
a C ∈ GLms(R) such that (ζ1, · · · , ζms) = (δ1, · · · , δms)C. So for r1, · · · , rms ∈ R,

Ker ψ =

(ζ1, · · · , ζms)

 r1
...

rms

 | (µ1, · · · , µns)diag(A, · · · , A)

 r1
...

rms

 = 0,


=

(δ1, · · · , δms)C

 r1
...

rms

 | (µ1, · · · , µns)diag(A, · · · , A)

 r1
...

rms

 = 0.


Let

C

 r1
...

rms

 =

 k1
...

kms

 .

Then for k1, · · · , kms ∈ R,

Ker ψ =

(δ1, · · · , δms)

 k1
...

kms

 | (µ1, · · · , µns)diag(A, · · · , A)C−1

 k1
...

kms

 = 0.


Let diag(A, · · · , A)ns×msC

−1 = (T1, · · · , Tms). It follows that

Ker ψ =

(δ1, · · · , δms)

 k1
...

kms

 | T1k1 + · · ·+ Tmskms = 0ns×1


= δ1R⊕ · · · ⊕ δ(m−n)sR.

As

δ1 = (δ1, · · · , δms)


1
0
...
0


ms×1

∈ Ker ψ,

we get T1 = 0ns×1. Likewise, T2 = · · · = T(m−n)s = 0ns×1. Let

C = (cij) ∈Mms×ms(R) and D = (cij)i≥(m−n)s+1.

Then

Ins = diag(A, · · · , A)diag(B, · · · , B)ms×ns

= (0ns×1, · · · , 0ns×1, T(m−n)s+1, · · · , Tms)Cdiag(B, · · · , B)ms×ns

= (T(m−n)s+1, · · · , Tms)Ddiag(B, · · · , B)ms×ns.

Set (λ1, · · · , λns) = Ins −Ddiag(B, · · · , B)(T(m−n)s+1, · · · , Tms). Since

(T(m−n)s+1, · · · , Tms)(Ins −Ddiag(B, · · · , B)ms×ns(T(m−n)s+1, · · · , Tms)) = 0ns,
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we derive that (δ(m−n)s+1, · · · , δms)λ1 ∈ Ker ψ; hence, λ1 = 0. Analogously, we
deduce that λ2 = · · · = λns = 0. So

Ddiag(B, · · · , B)ms×ns(T(m−n)s+1, · · · , Tms) = Ins.

It follows that (T(m−n)s+1, · · · , Tms) ∈ GLns(R). Clearly, diag(A, · · · , A)ns×ms =
(T(m−n)s+1, · · · , Tms)D, and that there exist U ∈ GLns(R) and V ∈ GLms(R) such
that Udiag(A, · · · , A)ns×msV = (aijIs)ns×ms. Hence

U−1(aijIs)ns×msV
−1 = (T(m−n)s+1, · · · , Tms)(0ns×(m−n)s, Ins)C.

Thus

(aijIs) = U(T(m−n)s+1, · · · , Tms)(0ns×(m−n)s, Ins)CV,
so(
A⊗ Is
∗

)
ms×ms

= diag(I(m−n)s, U(T(m−n)s+1, · · · , Tms))CV
(

0 Ins
I(m−n)s 0

)
,

as desired.

Corollary 2.1. Let (aij) be a right invertible rectangular matrix over a commutative
ring R. Then there exists s ∈ N such that (aijIs) can be completed to an invertible
matrix.

Proof. Let P be a finitely generated stably free right R-module of positive rank.
Then we have P ⊕ Rn ∼= Rm(n < m). In view of [13, Theorem IV 44], there exists
s ∈ N such hat P s ∼= Rt. Hence Rt+ns ∼= Rms. As R is commutative, it has the
invariant basis property. We infer that t + ns = ms; hence, t = (m − n)s. So P is
power-free. In view of Theorem 2.1, we get the result.

Corollary 2.2. Let (aij) be a left invertible n ×m(m < n) matrix over a commu-
tative ring R. Then there exists s ∈ N such that (aijIs) can be completed to an
invertible matrix.

Proof. Since A ∈Mn×m(R) is left invertible, one checks that (AT )op ∈Mm×n(Rop)
is right invertible, where Rop is the opposite ring of R. By virtue of Corollary 2.1,
we have s ∈ N such that (AT )op ⊗ (ITs )op can be completed to an invertible ns× ns
matrix over Rop by the addition of (n − m)s further rows. Therefore A ⊗ Is can
be completed to an invertible ns × ns matrix by the addition of (n −m)s further
columns, as asserted.

We note that a right invertible rectangular matrix over a ring R may not be
invertible. Let F be a field, and let

A =

(
1 0 0
0 1 0

)
.

Then A ∈ M2×3(F) is right invertible, while it is not left invertible. Let R be the
field of real numbers, let R = R[X,Y, Z]/(X2 + Y 2 + Z2 − 1) and let x, y, z denote
the images in R of X,Y, Z. Then x

y
z

 ∈M3×1(R)
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is left invertible. By [12, Proposition 11.2.3], x
y
z


cannot be completed to an invertible 3 × 3 matrix by the addition of 2 further
columns. In view of Corollary 2.2, we have some s ∈ N such that xIs

yIs
zIs


can be completed to an invertible 3s × 3s matrix by the addition of 2s further
columns. More explicitly, we may choose any s ≥ 2.

Let R be a simple ring. If Mn(R) is directly finite for all n ∈ N, we claim
that every stably free right R-module of positive rank is power free. It follows from
Theorem 2.1 that for any right invertible rectangular matrix (aij), there exists s ∈ N
such that (aijIs) can be completed to an invertible matrix.

3. Generalized stable, right repetitive rings

The main purpose of this section is to investigate completion of rectangular matrices
over a generalized stable ring. Recall that n is in the general linear range of a ring R
provided that P ⊕R ∼= Rn+1 implies that P ∼= Rn. If m− n is in the general linear

range of R, then 0→ P → Rm
σ→ Rn → 0(n < m) implies that P ∼= Rm−n. Now we

extend this fact and generalize [13, Theorem IV 36] to non-commutative rings by a
similar route.

Lemma 3.1. Let 0 → P → Rm
σ→ Rn → 0(n < m) be an exact sequence of right

R-modules. If there exists a basis {ε1, · · · , εm} of Rm such that Rn can be generated
by {σ(ε1), · · · , σ(εt)}(t ≤ m− n), then P ∼= Rm−n.

Proof. Let {η1, · · · , ηn} be a basis of Rn. Then there is n ×m matrix A such that
σ(ε1, · · · , εm) = (η1, · · · , ηn)A. Since Rn can be generated by {σ(ε1), · · · , σ(εt)}(t ≤
m − n), we have n × t matrix C such that (η1, · · · , ηn) = σ(ε1, · · · , εt)C. Let
A = [B,D] with B ∈Mn×t(R). Then

σ(ε1, · · · , εm) = σ(ε1, · · · , εt)CA = σ(ε1, · · · , εt)C[B,D],

so σ(ε1, · · · , εt) = σ(ε1, · · · , εt)CB. Hence

(η1, · · · , ηn) = σ(ε1, · · · , εt)C = σ(ε1, · · · , εt)CBC = (η1, · · · , ηn)BC,

and then BC = In. As m − t ≥ n, we have D = [E,F ] with E ∈ Mn(R). By
elementary transformations, we get A = [B,E, F ] → [B,E − BC(E − In), F ] →
[B, In, F ] → [In, 0]. So we have U ∈ GLn(R) and V ∈ GLm(R) such that UAV =
[In, 0]. As a result,

P ∼= Ker σ =


m∑
i=1

εiri | (η1, · · · , ηn)A

 r1
...
rm

 = 0, r1, · · · , rm ∈ R
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=


m∑
i=1

εiri|A

 r1
...
rm

 = 0, r1, · · · , rm ∈ R

 .

Let  s1
...
sm

 = V −1

 r1
...
rm


and (ε′1, · · · , ε′m) = (ε1, · · · , εm)V . Then

P ∼=

(ε1, · · · , εm)V

 s1
...
sm

 | (In, 0)

 s1
...
sm

 = 0, s1, · · · , sm ∈ R


=

(ε′1, · · · , ε′m)

 s1
...
sm

 |s1 = · · · = sn = 0, sn+1, · · · , sm ∈ R

 .

Clearly, {ε′1, · · · , ε′m} is a basis of Rm. Therefore P ∼= ε′n+1R⊕ · · · ⊕ εmR ∼= Rm−n,
as asserted.

Lemma 3.2. Let 0 → P → Rm
σ→ Rn → 0 (n < m) be an exact sequence of

right R-modules, and let A be the matrix representing σ with respect to the standard
bases of Rm and Rn. If there exist U ∈ GLn(R) and V ∈ GLm(R) such that
UAV = [Bn×t, 0](t ≤ m− n), then P ∼= Rm−n.

Proof. Let {ε1, · · · , εm} and {η1, · · · , ηn} be bases of Rm and Rn, respectively. Sup-
pose that (ε1, · · · , εm) = (η1, · · · , ηn)A. Then

Rn = Im σ =

σ(ε1, · · · , εm)

 r1
...
rm

 | r1, · · · , rm ∈ R


=

(η1, · · · , ηn)U−1(UAV )V −1

 r1
...
rm

 | r1, · · · , rm ∈ R
 .

Set  s1
...
sm

 = V −1

 r1
...
rm

 .

Then we get

Rn =

(η1, · · · , ηn)U−1(β1, · · · , βt, 0, · · · , 0)

 s1
...
sm

 |s1, · · · , sm ∈ R
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=


(η1, · · · , ηn)U−1(β1, · · · , βt, 0, · · · , 0)



s1
...
st
0
...
0


|s1, · · · , st ∈ R



=


(η1, · · · , ηn)AV



s1
...
st
0
...
0


|s1, · · · , st ∈ R



=


σ((ε1, · · · , εm)V )



s1
...
st
0
...
0


|s1, · · · , st ∈ R


.

Let (ε′1, · · · , ε′m) = (ε1, · · · , εm)V . Then {ε′1, · · · , ε′m} is a basis of Rm as well.
Further,

Rn =


σ(ε′1, · · · , ε′m)



s1
...
st
0
...
0


| s1, · · · , st ∈ R


=

σ(ε′1, · · · , ε′t)

 s1
...
st

 |s1, · · · , st ∈ R
 .

In other words, Rn is generated by {σ(ε′1), · · · , σ(ε′t)}. It follows from Lemma 3.1
that P ∼= Rm−n.

Lemma 3.3. Let A ∈ Mn×m(R) be a right invertible rectangular matrix over a
generalized stable ring R. Then there exist U ∈ GLn(R) and V ∈ GLm(R) such that

UAV =

(
In−1 0(n−1)×(m−n+1)

01×(n−1) bn bn+1 · · · bm

)
,

where bn, · · · , bm ∈ R.



Completion of Rectangular Matrices and Power-Free Modules 141

Proof. The result is trivial if n = 1. Assume now that n ≥ 2. Let A = (aij)n×m.
Since A is a right invertible matrix, we have a11x1 + a12x2 + · · · + a1mxm = 1 for
some x1, x2, · · · , xm ∈ R. As R is a generalized stable ring, there exists some z ∈ R
such that a11 + a12x2z + · · · + a1mxmz = w ∈ K(R). Assume that swt = 1 for
s, t ∈ R. Then s 0

1− wts wt
02×(n−2)

0(n−2)×2 In−2

A


0 1 · · · 0
1 x2z · · · 0
...

...
. . .

...
0 xmz · · · 1


×

 sw 0
1− tsw t

02×(m−2)

0(m−2)×2 Im−2



=


∗ 1 ∗ · · · ∗
∗ ∗ ∗ · · · ∗
...

...
...

. . .
...

∗ ∗ ∗ · · · ∗

 ,

so we prove that

(
1 0
∗ In−1

) s 0
1− wts wt

02×(n−2)

0(n−2)×2 In−2

A


0 1 · · · 0
1 x2z · · · 0
...

...
. . .

...
0 xmz · · · 1


×

 sw 0
1− tsw t

02×(m−2)

0(m−2)×2 Im−2

 0 1
1 0

Im−2

( 1 ∗
0 Im−1

)

=

(
1 01×(m−1)

0(n−1)×1 ∗

)
.

Clearly,(
s 0

1− wts wt

)−1
=

(
wt 1− wts
0 s

)
,

(
sw 0

1− tsw t

)−1
=

(
t 1− tsw
0 sw

)
.

Thus we can reduce A to the form(
1 01×(m−1)

0(n−1)×1 ∗

)
n×m

by elementary transformations. By induction, we complete the proof.

Theorem 3.1. Let R be a generalized stable, right repetitive ring. Then for any
right invertible rectangular matrix (aij) over R, there exists s ∈ N such that (aijIs)
can be completed to an invertible matrix.

Proof. Let P be a finitely generated stably free right R-module of positive rank.

Then there is an exact sequence 0→ P → Rm
σ→ Rn → 0(n < m). Let {ε1, · · · , εm}

and {η1, · · · , ηn} be bases of Rm and Rn, respectively. Then we have a n×m matrix
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A such that σ(ε1, · · · , εm) = (η1, · · · , ηn)A. Since σ is a split epimorphism, we can
find a m × n matrix B such that AB = In. As R is a generalized stable ring, by
virtue of Lemma 3.3, there exist U ∈ GLn(R) and V ∈ GLm(R) such that

UAV =

(
In−1 0(n−1)×(m−n+1)

01×(n−1) b bn+1 · · · bm

)
.

Observing that

P ∼= Ker σ ∼=

(ε1, · · · , εm)

 r1
...
rm

 |(η1, · · · , ηn)A

 r1
...
rm

 = 0, r1, · · · , rm ∈ R

 ,

for r1, · · · , rm ∈ R we have

P ∼=

{
m∑
i=1

εiri|(η1, · · · , ηn)U−1
(

In−1 0(n−1)×(m−n+1)

01×(n−1) b bn+1 · · · bm

)

× V −1

 r1
...
rm

 = 0.

}

Set (ε′1, · · · , ε′m) = (ε1, · · · , εm)V and r′1
...
r′m

 = V −1

 r1
...
rm

 .

So

P ∼=

(ε′1, · · · , ε′m)

 r′1
...
r′m

 | ( In−1 0(n−1)×(m−n+1)

01×(n−1) b bn+1 · · · bm

)

×

 r′1
...
r′m

 = 0, r′1, · · · , r′m ∈ R

 .

Clearly, (ε′1, · · · , ε′m) is a basis of Rm. Thus,

P ∼=

(ε′n, · · · , ε′m)

 r′n
...
r′m

 | ( b, bn+1, · · · , bm
) r′n

...
r′m

 = 0,


for r′n, · · · , r′m ∈ R. Obviously, {ε′n, · · · , ε′m} is a basis of Rm−n+1. Let δ be a basis of
R. Construct a map ϕ : Rm−n+1 → R given by ϕ(ε′n, · · · , ε′m) = δ(b, bn+1, · · · , bm).
It suffices to prove that Ker ϕ ∼= P is stably free of positive rank. Let B =
(b, bn+1, · · · , bm). Then we have (m − n + 1) × 1 matrix C such that BC = 1.
Let α = [bn+1, · · · , bm]. By elementary transformations, one easily checks that
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[
B 0 0
0 b α

]
→
[
B −BC 0
0 b α

]
→
[
B −1 0
0 b α

]
→
[

0 −1 0
bB 0 α

]
→
[

1 0 0 0
0 b2 bα α

]
.

Furthermore, we get B 0 0 0
0 B 0 0
0 0 b α

→
 1 0 0 0 0

0 B 0 0 0
0 0 b2 bα α

→
 1 0 0 0 0

0 B −1 0 0
0 0 b2 bα α


 1 0 0 0 0

0 0 −1 0 0
0 b2B b2 bα α

→
 1 0 0 0 0 0

0 1 0 0 0 0
0 0 b3 b2α bα α


By induction, we prove that

B 0 0 · · · 0
0 B 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · B

→


1 0 · · · 0 0 0 · · · 0 0
0 1 · · · 0 0 0 · · · 0 0
...

...
...

...
...

...
. . .

...
...

0 0 · · · 1 0 0 · · · 0 0
0 0 · · · 0 bt bt−1α · · · bα α


using elementary row and column transformations. Let {ζ1, · · · , ζ(1+t(m−n))} be a

basis of R1+t(m−n). We construct a map ψ : R1+t(m−n) → R given by

ψ(ζ1, · · · , ζ(1+t(m−n))) = δ(bt, bt−1α, · · · , bα, α).

It is easy to see that P t ∼= Ker ψ.
Since R is right repetitive, there exists some i(n+1) ∈ N such that

bi(n+1)bn+1 = bi(n+1)−1b(n+1)r11 + · · ·+ bb(n+1)r1i(n+1)
+ b(n+1)r1(i(n+1)+1).

Analogously, we have i(n+2), · · · , im ∈ N such that

bi(n+2)bn+2 = bi(n+2)−1b(n+2)r21 + · · ·+ bb(n+2)r2i(n+2)
+ b(n+2)r2(i(n+2)+1), · · · , bimbm

= bim−1bmrm1 + · · ·+ bbmrmim + bmrm(im+1).

Choose p = max(i(n+1), i(n+2), · · · , im). If i ≥ p, then

bibj = bp−1bjs(p−1)j + bp−2bjs(p−2)j + · · ·+ bbjs1j + bjs0j

for n+ 1 ≤ j ≤ m. Assume that t ≥ p+ 1. Since biα = (bib(n+1), · · · , bibm), we can
find invertible matrices U, V such that

U(bt, bt−1α, · · · , bα, α)V = (bt, bp−1α, · · · , bα, α, 0 · · · , 0).

As n < m, it follows from t ≥ p + 1 that 1 + p(m − n) ≤ (1 + t(m − n)) − 1. By
virtue of Lemma 3.2, P t ∼= R(m−n)t. Therefore we complete the proof from Theorem
2.1.

Corollary 3.1. If R is a generalized stable ring which is integral over its center,
then for any right invertible rectangular matrix (aij) over R, there exists s ∈ N such
that (aijIs) can be completed to an invertible matrix.
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Proof. Let a, x ∈ R. Since R is integral over its center, we have n ∈ N and central
elements r0, · · · , rn−1 such that an = an−1rn−1 + · · · + ar1 + r0. Hence anx =
an−1xrn−1 + · · · + axr1 + xr0. This means that R is right repetitive. By virtue of
Theorem 3.1, the proof is true.

Corollary 3.2. If R is a right noetherian generalized stable ring, then for any right
invertible rectangular matrix (aij) over R, there exists s ∈ N such that (aijIs) can
be completed to an invertible matrix.

Proof. Since R is a right noetherian ring, it is right repetitive. According to Theorem
3.1, we complete the proof.

Lemma 3.4. If every finitely generated stably free right R-module of positive rank is
power-free, then every finitely generated stably free right Mn(R)-module of positive
rank is power-free.

Proof. Let P be a finitely generated stably free right Mn(R)-module of positive rank.
Then we have

P ⊕Mn(R)s ∼= Mn(R)t(s < t).

Hence

P
⊗
Mn(R)

Rn×1 ⊕Mn(R)s
⊗
Mn(R)

Rn×1 ∼= Mn(R)t
⊗
Mn(R)

Rn×1,

and so

P
⊗
Mn(R)

Rn×1 ⊕Rns ∼= Rnt.

That is, P
⊗

Mn(R)R
n×1 is a stably free right R-module of positive rank. Thus

we can find some p ∈ N such that (P
⊗

Mn(R)R
n×1)p ∼= Rpn(t−s). As a result,

P p
⊗

Mn(R)R
n×1 ∼= Rpn(t−s), and soP p ⊗

Mn(R)

Rn×1

⊗
R

R1×n ∼= Rpn(t−s)
⊗
R

R1×n.

It follows that

P p
⊗
Mn(R)

(
Rn×1

⊗
R

R1×n

)
∼=

(
Rn×1

⊗
R

R1×n

)p(t−s)
.

As

Rn×1
⊗
R

R1×n ∼= Mn(R),

we deduce that P p ∼= Mn(R)p(t−s), as required.

Proposition 3.1. Let R be a generalized stable, right repetitive ring. Then for any
right invertible rectangular matrix (aij) over Mn(R), there exists s ∈ N such that
(aijIs) can be completed to an invertible matrix.

Proof. It is obvious by Theorem 3.1, Theorem 2.1 and Lemma 3.4.
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Corollary 3.3. Let R be a right noetherian generalized stable ring. Then for any
right invertible rectangular matrix (aij) over Mn(R), there exists s ∈ N such that
(aijIs) can be completed to an invertible matrix.

Proof. Since R is a right noetherian ring, it is right repetitive ring. Therefore the
result follows from Proposition 3.1.

Acknowledgement. The author is grateful to the referee for his/her suggestions
which led to the new version of Theorem 2.1 and helped me to improve the presen-
tation considerably.
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