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Abstract. We prove, in this article, that every finitely generated stably free
R-module is power-free if and only if for any right invertible rectangular matrix
(a;j) over R, there exists s € N such that (a;;Is) can be completed to an
invertible matrix. Furthermore, we prove that every right invertible rectangular
matrix over generalized stable, right repetitive rings can be completed in this
way.
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1. Introduction

Let R be an associative ring with identity, and Let s € N. We say that a right R-
module P is finitely generated stably free of rank s if there exists m € N such that
P @ R™ =~ R™*+s, We say that a finitely generated stably free right R-module P of
rank s is power-free if there exists some n € N such that P™ & R™. Asis well known,
every finitely generated stably free module of positive rank over a commutative ring
is power-free (cf. [13, Theorem IV: 44]). In this article, we establish the equivalent
conditions under which every finitely generated stably free module of positive rank
over an associative ring is power-free.

We say that R is a generalized stable ring provided that aR+bR = R with a,b € R
implies that there exists a y € R such that a + by € K(R), where K(R) = {r €
R| 3s,t € R such that srt = 1} (cf. [4]). The class of generalized stable ring is very
large. It includes exchange rings having stable range one, exchange rings satisfying
general comparability, exchange rings satisfying related comparability, purely infinite
simple ring, etc. So far, all known exchange rings belong to such class of rings.
Following Goodearl [8], an element u € R is right repetitive provided that for each
finitely generated right ideal I of R, the right ideal > .°, u'l is finitely generated,
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or, equivalently, S>°° w'I = 3% uiI for some k € N. A ring R is right repetitive
if all elements of R are right repetitive. Clearly, all commutative rings and all right
noetherian rings are right repetitive. Also we know that every ring integral over
its center is right repetitive. It is well known that all surjective endomorphisms of
finitely generated right R-modules are automorphism if and only if all matrix rings
M., (R) are right repetitive (cf. [8, Theorem 7]). Let R be a generalized stable, right
repetitive ring. We prove that for any right invertible rectangular matrix (a;;) over
R, there exists s € N such that (a;;1s) can be completed to an invertible matrix.
Throughout, all rings are associative with identity and all modules are right uni-
tary modules. We use N to denote the set of all natural numbers. P"(n € N)
denotes the n copies of right R-module P. A n x m matrix (a;;) is called a rectan-
gular matrix in case n < m. R'*™ and R"*! stand for the R-M,(R)-bimodule and
M, (R)-R-bimodule of all tuples of row vectors and column vectors, respectively.

2. Completion of matrices

Let 0 : R™ — R™ be a R-morphism. Then we have a matrix A € M,xm(R)
corresponding to 0. Let A = (a;;) € Mpxm(R), and let I, = diag(l,---,1) €
M,(R). We use the Kronecker product A ® I to stand for the matrix (a;;Is) €
Mnsxms(R)~

Theorem 2.1. Let R be a ring. Then the following are equivalent:

(1) FEwery finitely generated stably free right R-module of positive rank is power-
free.
2) For any right invertible rectangular matriz (a;;), there exists s € N such that
J
(ai;I5) can be completed to an invertible matriz.

Proof.

(2) =>(1) Let P be a finitely generated stably free right R-module of positive rank.
Then there exist m,n € N such that 0 — P — R™ -*3 R" — 0 (n < m) is an
exact sequence. Since R" is a projective right R-module, there exists 5 : R® — R™
such that af = 1. Let {m, - - ,nm} and {e1, - ,e,} be bases of R™ and R",
respectively. Then a(m, -+ ,9m) = (€1, -+ ,&n)A, where A € M, xm(R). Clearly,
we have some m X n matrix B such that AB = I,,. By the hypothesis, there exists
s € N and an invertible ms X ms matrix

<A®@> _
* )
msXms

hence, we have C € M,,,s(R) such that
(A@L

% ) C:diag(jsv"' 7IS)ms><ms~
msXms
Clearly, there exists an exact sequence 0 —» P5 — R™s 25 R™ — (0, where
the corresponding matrix of ¢ is diag(A4, A, , A)psxms. By elementary row and
column transformations, we have
diag(A7A7 e aA)nsXms — ( A X Is )

nsxms
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Hence there exists an exact sequence 0 — P¥ — R™* i> R™ — 0, where the
corresponding matrix of ¢ is

( A® I )nsxms :
Let {01, ,0ms} and {1, -+ ,(ns} be bases of R™* and R"®, respectively. Then

w(éla"' aéms) = (Clv"' ,CTLS)( A®IS )nsxms'

Hence,
1/)(51,“' 75ms)0 - (Cla"’ 7CVLS)( A®IS )nsXmSC
I, - 0 0 --- 0
0o -+ I, 0 -+ 0

nsxXms

Let (&1, ,&ms) = (01, -+ ,dms)C. Since C' is an invertible matrix, (§1,- -+, &ms) s
a basis of R™° as well. In addition,

I, - 0 0 -~ 0
w(gla"'agms):(CM"'aCns) : :
0 I; 0 nsxms
As a result, we get
P = Kery
1
= Z;isl giri | 77[](51’ 7€ms) = 0,7"1,"' yTms € R
Tms
I - 0 O 0 r1
= XEri | (G sGas) | r : | =0
0 -« I, 0 --- 0 s
= {Z;T;Slgiri |T1:"':Tns:07rns+lv"'7rms€R}
= {gnerlrnerl +--- +§msrms | Tns+1y " sTms S R}
R(m—n)s’

as required.

(1)==(2) Let A € My, xm(R) be aright invertible rectangular matrix. Then we have
B € Myxn(R) such that AB = I,. Let {e1,---,e,} and {n1, -+ ,mm} be bases
of R™ and R™, respectively. Construct two maps ¢ : R* — R™, (g1, ,&n) =
(7717 e »ﬂm)B§ ¢ :R™ — Rn7 d)(nla e 777771) = (613 T 75n)A' Cleaﬂya ¢§0(517 T 75n)
=o(m, - ym)B = (61, ,en)AB = (€1, -+ ,&,). Hence ¢p = 1, and we get a
split exact sequence 0 — Ker ¢ — R™ 2y R" — 0. So Ker ¢ is a finitely gen-
erated stably free module of rank n — m. By the hypothesis, we can find s € N such
that (Ker ¢)* = R(™~™)5_ Clearly, we have an exact sequence 0 — (Ker ¢)% —

Rms Yy grs 0, where the matrix corresponding to v is diag(A4, -+, A)nsxms-
Thus, we have some E = R"® such that R™* = Ker ¢ ® E. Let {01, ,(m—n)s} be



136 H. Chen

a basis of Ker 1, and let {0(;—n)s41,** ,0ms} be a basis of £. Then {01, ,6ms}
is a basis of R™*.

Let {¢1, -+ ,Cmns} and {p1,- -+, pns} be bases of R™ and R™, respectively. In
addition, ¥((1,-+ ,Cms) = (1, tins)diag(A, -+, A)psxms. Obviously, we have
a C € GLys(R) such that (C1,--+ , Cms) = (01, -+ ,dms)C. So for r1, -+ ,rpms € R,

T 1
Kerw: (Clv"' 7Cms) | (,u17"' a,u'TLG)dlag(Aa 7A) :07
T'ms T'ms
™ 1
- (517"' 76ms)c | (Nh'" 7ﬂns)dlag(Aa 7A) =0.
Tms T'ms
Let
1 k1
C = :
T'ms kms
Then for k1, -+, kms € R,
k’l kl
Ker¢ = (617"' adms) ‘ (p‘la'" a,uns)diag(Av"' 7A)071 = 0.
kms kms
Let diag(A, -+, A)psxmsC ™t = (11, , Tpns)- It follows that
k1
Kerﬂ}: (517"' ;677LS) | T1k1+"'+Tmskms = Onsx1
ks
— 5L R® -+ ® O(n_n)s R.
As
1
0
51:((51,'~',(Sm5) . € Ker ’(/)7
msX1
we get 11 = Opsx1. Likewise, To = -+« = T(;n_n)s = Onsx1. Let
C= (Cij) € Mmsxms(R) and D= (Cij)iZ(m—n)s+l~
Then

I,s = diag(A,--- , A)diag(B, -+ , B)msxns
= (Onsx1, s Onsx1s Tn—nys+1,+ s Tns) Cdiag(B, -+, B)imsxns
= (Ttm-nyst1,"*+ s Tms)Ddiag(B, - -+, B)msxns-
Set (A1, , Ans) = Ins — Ddiag(B, -, B)(T(m—n)s+1," " » Tms). Since
(Tonnyosts++ + Tons)Ins — Ddiag(B, -+ , B)msscns (Tim-mys1: -+ +Ts)) = O,
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we derive that (§(m—n)s+1,-** ,0ms)M1 € Ker 9; hence, Ay = 0. Analogously, we
deduce that Ao = -+ =\, =0. So

Ddiag(B, e 7B)ms><ns(T(mfn)s+la e aTms) = Ips.

It follows that (T(;—n)s+1s =+ » Tms) € GLns(R). Clearly, diag(4, -+, A)nsxms =
(Ttm—n)s+1> s Tms)D, and that there exist U € GLps(R) and V € GLp,s(R) such
that Udiag(A, -+, A)nsxmsV = (@ijIs)nsxms. Hence

Uﬁl(aijls)nsxmsvil = (T(m—n)s+17 T 7Tms)(0ns><(m—n)sa Ins)c-

Thus
(aijls) = U(T(mfn)erl: T aT’ms)(OnsX(mf’n)sv Ins)c‘/a
SO
AR I, . 0 Is
( * >ms><ms N dlag(‘[(min)‘” U(T(min)s+1’ o 7TmS))CV ( I(m—n)s 0 ) ’
as desired. 1

Corollary 2.1. Let (a;;) be a right invertible rectangular matriz over a commutative
ring R. Then there exists s € N such that (a;;I) can be completed to an invertible
matriz.

Proof. Let P be a finitely generated stably free right R-module of positive rank.
Then we have P & R™ = R™(n < m). In view of [13, Theorem IV 44], there exists
s € N such hat P®* = R!. Hence R'™™ = R™* As R is commutative, it has the
invariant basis property. We infer that ¢ + ns = ms; hence, t = (m —n)s. So P is
power-free. In view of Theorem 2.1, we get the result. 1

Corollary 2.2. Let (a;;) be a left invertible n x m(m < n) matriz over a commu-
tative ring R. Then there exists s € N such that (a;;I5) can be completed to an
invertible matriz.

Proof. Since A € M,,«.,(R) is left invertible, one checks that (AT)°P € M,, x,(R°P)
is right invertible, where R°P is the opposite ring of R. By virtue of Corollary 2.1,
we have s € N such that (A7)°P @ (IT)°P can be completed to an invertible ns x ns
matrix over R°P by the addition of (n — m)s further rows. Therefore A ® I, can
be completed to an invertible ns x ns matrix by the addition of (n — m)s further
columns, as asserted. 1

We note that a right invertible rectangular matrix over a ring R may not be
invertible. Let F be a field, and let

100
A= ( 01 0 > ’
Then A € Msy3(F) is right invertible, while it is not left invertible. Let R be the

field of real numbers, let R = R[X,Y, Z]/(X? + Y2+ Z%? — 1) and let z,y, z denote
the images in R of X,Y, Z. Then

X
Yy € M3><1(R)
z
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is left invertible. By [12, Proposition 11.2.3],

T

Y
z

cannot be completed to an invertible 3 x 3 matrix by the addition of 2 further
columns. In view of Corollary 2.2, we have some s € N such that

xl
yls
21

can be completed to an invertible 3s x 3s matrix by the addition of 2s further
columns. More explicitly, we may choose any s > 2.

Let R be a simple ring. If M, (R) is directly finite for all n € N, we claim
that every stably free right R-module of positive rank is power free. It follows from
Theorem 2.1 that for any right invertible rectangular matrix (a;;), there exists s € N
such that (a;;Is) can be completed to an invertible matrix.

3. Generalized stable, right repetitive rings

The main purpose of this section is to investigate completion of rectangular matrices
over a generalized stable ring. Recall that n is in the general linear range of a ring R
provided that P @ R = R™t! implies that P = R™. If m — n is in the general linear
range of R, then 0 — P — R™ % R™ — 0(n < m) implies that P = R™~". Now we
extend this fact and generalize [13, Theorem IV 36] to non-commutative rings by a
similar route.

Lemma 3.1. Let 0 — P — R™ % R™ — 0(n < m) be an exact sequence of right
R-modules. If there exists a basis {1, ,em} of R™ such that R™ can be generated
by {o(e1), -+ ,0(er)}(t <m —n), then P = R™ ™.

Proof. Let {n1,--- ,nn} be a basis of R™. Then there is n x m matrix A such that
oler, - ,em) = (n1,+ ,nn)A. Since R™ can be generated by {o(e1), -+ ,0(es) }(t <
m — n), we have n x ¢t matrix C such that (9, - ,n,) = o(e1, -+ ,&)C. Let
A = [B, D] with B € M,,;(R). Then

0(617"' 751'77,) 20(517"' ,€t)OA:O'(E1,"' 75t)O[BaD]7
so o(e1, - ,e1) =o(er, -+ ,e)CB. Hence
(7717"' ;nn) - 0-(617"' 7€t)C:U(€17"' agt)OBC: (7715"' ann)BC7

and then BC' = I,,. As m —t > n, we have D = [E, F] with £ € M,(R). By
elementary transformations, we get A = [B,E,F] — [B,E — BC(E - I,,),F] —
[B,I,,F] — [I,,0]. So we have U € GL,(R) and V € GL,,(R) such that UAV =
[I,,0]. As a result,

m r 1

P=Kero= Zeir”(m,-n,nn)A =0,71,-"- ,7m €ER

i=1
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1

and (¢}, -+ ,el) = (e1, - ,&m)V. Then

m

) YE

m
= E giri| Al =0,r1,-- ,’m ER
i=1 r
m
S1 1
=y :
Sm T'm
S1 S1
',€m)V | (Inao) 207517"'
Sm Sm
S1
/ .
36717,) : |81:"':5n:073n+1,"'
Sm

,S8m € R

,Sm €ER

Clearly, {¢},--- ,€,} is a basis of R™. Therefore P~ ¢, , \R® - - ® e, R= R™TT,

as asserted.

Lemma 3.2. Let 0 — P — R™ 5 R" — 0 (n < m) be an exact sequence of
right R-modules, and let A be the matriz representing o with respect to the standard

bases of R™ and

R"™. If there exist U € GL,(R) and V €

UAV = [B,xt,0](t <m —n), then P~ R™™",

Proof. Let {e1,---
y€m) = (M1, ,mn)A. Then

pose that (e, --

GL.,(R) such that

s€m}and {n1, - ,n,} be bases of R™ and R™, respectively. Sup-

1
R*'=Imo=<Xo0(e1, " ,Em) |71, ,rm €R
T'm
1
= (m, ) U HUAV)VH] T, Tm € R
Tm
Set
51 1
=y1
Sm Tm
Then we get
S1
R"™ = (7717"',777L)U71(61""7Bt503"',0) : S1,-++ ,Sm € R

Sm
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= (7]17"'7T]7l)U71(61a"'7Bt507"'50) 0 |517"'75t€R

S e

S1

S
= (nlv,nn)AV t ‘51,"',St€R

0
0
S1
St
=<co((er, - ,em)V) 0 [s1,--- ,st € R
0
Let (e}, --,el,) = (e1, - ,&m)V. Then {&,--- e/ } is a basis of R™ as well.
Further,
S1
n / / St
R" = 0(517 7€m) 0 |817"'75t6R
0
S1
= 0-(5/1""757/5) |81,"',StER
St
In other words, R™ is generated by {o(¢}),---,0(e})}. It follows from Lemma 3.1
that P = R™™ ™. 1

Lemma 3.3. Let A € Muxm(R) be a right invertible rectangular matriz over a
generalized stable ring R. Then there exist U € GL,(R) and V € GL,,(R) such that

In—l 0 —1 — 1
UAV — (n=1)x (m—n-+1) )
< 01><(nfl) bn b71,+1 o b

where by, -+ by € R.
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Proof. The result is trivial if n = 1. Assume now that n > 2. Let A = (a;j)nxm-
Since A is a right invertible matrix, we have aj121 + a1222 + -+ + a1mT,m = 1 for
some r1,Z2, -+, Ty, € R. As R is a generalized stable ring, there exists some z € R
such that a11 + a12222 + -+ + @1mTmz = w € K(R). Assume that swt = 1 for
s,t € R. Then

0 1 0
s 0 1 x9z 0
1—wts wt 02x(n-2) A
O(n72)><2 Iy o . :
0 zmz -+ 1
sw 0 0
X 1—tsw ¢t 2x(m=2)
O(m—2)x2 Im—2
* 1 % *
* k% *
so we prove that
0 1 0
s 0 1 o0
1 0 1—wts wt O2x(n-2) A e
x 1,1 : : .. :
0(n—2)><2 In72 . ! : !
0 T,z 1
sw 0 0 1
| 1—tsw ¢ Oxtm-2 10 ((1) I* )
O(m—2)x2 I I o et

— 1 01><(m—1)
Om—1)x1 *

Clearly,

s 0\ ' [ wt 1—uwts sw 0N [t 1-tsw
1—wts wt o 0 s "\ 1—tsw t ~\ 0 sw )

Thus we can reduce A to the form

1 le(m—l)
O(n—l)xl * nxm

by elementary transformations. By induction, we complete the proof. 1

Theorem 3.1. Let R be a generalized stable, right repetitive ring. Then for any
right invertible rectangular matriz (a;j) over R, there exists s € N such that (a;;15)
can be completed to an invertible matrix.

Proof. Let P be a finitely generated stably free right R-module of positive rank.
Then there is an exact sequence 0 — P — R™ % R™ — 0(n < m). Let {e1, - ,em}
and {m, -+ ,n,} be bases of R™ and R", respectively. Then we have a n x m matrix
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A such that o(e1, -+ ,&m) = (N1, ,nn)A. Since o is a split epimorphism, we can
find a m x n matrix B such that AB = I,. As R is a generalized stable ring, by
virtue of Lemma 3.3, there exist U € GL,(R) and V € GL,,(R) such that

I 0(p— m—n
vav = ( O1x(n-1) b (bni)f(m Hb)m )
Observing that
71 ry
P=Kero={ (e, - ,6m) | : (1, ma)A | —Or. e €RY,
Tm o
for r1,--+ ,ry, € R we have
=S - Iy 01— 1) (m—nt1
P = {i_zlsml(nl,... ) U1 ( ol b (bn+)1X(... +b)m )
1
<Vl | = 0.}
Tm
Set (¢h,--- ¢l )= (1, - ,em)V and
&1 1
: =V
T'm Tm
So
r
P& g (e em) ] ( olin(:_l) bo(z,fi)lxwf.”+2),,b )
T"L
-
x| =07y, ,r, €R
"

Clearly, (¢,--- ,e},) is a basis of R™. Thus,

/ /

rn T’n
pP= (5'/17,7"' JEflm,) ‘ ( ba b7L+17 ) b7n ) = 07
" "
forr! .-+ rl € R. Obviously, {¢/,, - &’} is a basis of R™ "1, Let § be a basis of

R. Construct a map ¢ : R™ "1 — R given by ¢(cl,, -+ ,&5,) = (b, bpr1,-++ ,bm).
It suffices to prove that Ker ¢ = P is stably free of positive rank. Let B =
(b,bpt1, -+ ybm). Then we have (m — n 4+ 1) x 1 matrix C such that BC = 1.
Let @ = [byy1,- -+ ,bm]. By elementary transformations, one easily checks that
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B 0 0 . B —-BC 0 . B -1 0
0 b « 0 b @ 0 b «
. 0 -1 0 . 1 0 0 O
bB 0 « 0 b ba o |
Furthermore, we get
B 0 0 O 1 0 0 0 O 1 0 0 O
0O B O0OO|—-|]0B 0O O0O0|—=]0B -1 0
0 0 b « 0 0 b ba « 0 0 b ba
1 0 0 0 O 10 0 O 0 O
o 0o -1 0 0O0|—=(0 1 0 O 0 0
0 VB b ba « 0 0 b ba ba «
By induction, we prove that
I PR A R
0O B 0O --- 0
S e Do : :
oL B 0 0 1 0 0 0
000 B 0 0 0 b b la ba
using elementary row and column transformations. Let {1, , {(14¢m—-n))} be a
basis of R'TH"™=")  'We construct a map v : R**("=") 4 R given by
w(Ch e 7C(1+t(mfn))) = 5(bt7 bt_1a7 e ,bOé, Oé).
It is easy to see that P! = Ker ).
Since R is right repetitive, there exists some 4, 1) € N such that
bi(n+l)bn+1 — bi(n+1)71b(n+l)rll _|_ cee 4 bb(n+1)7"1i(n+1) _|_ b(n+1)rl(i(n,+1)+1)'
Analogously, we have 4,2y, -+ i, € N such that
bi(n+2)bn+2 = bi<n+2)—1b(n+2)r21 4+ 4 bb(n+2)r2i(n+2) + b(n+2)7“2(i(n+2)+1)7 .. ,bim, b,

= bim_lbmrml + -+ bbmrmim + bmrm(im+1)~

Choose p = max(i(p41), i(nt2), " " -

yim). If i > p, then

b'bj = b s (o)) + BV 2bjs(pmayj + -+ bbjs1; + bjsos

for n+1 < j <m. Assume that ¢ > p+ 1. Since b'a = (b'b(n41), - ,b'b), we can
find invertible matrices U, V such that

U@, o o, ba,a)V = (b, 0P ta, -+ ba,a,0- -+, 0).

As n < m, it follows from ¢t > p+ 1 that 1 + p(m —n) < (1 +t(m —n)) — 1. By
virtue of Lemma 3.2, P* 2 R("™~™)t Therefore we complete the proof from Theorem

2.1.

Corollary 3.1. If R is a generalized stable Ting which is integral over its center,
then for any right invertible rectangular matriz (a;;) over R, there exists s € N such
that (a;;1s) can be completed to an invertible matriz.



144 H. Chen

Proof. Let a,x € R. Since R is integral over its center, we have n € N and central

elements 7g,--- ,7n—1 such that a® = a" ‘r,_1 + -+ 4+ ar; + ro. Hence a"z =

a" Y‘xr,_y +---+ axr; + xrg. This means that R is right repetitive. By virtue of

Theorem 3.1, the proof is true. 1

Corollary 3.2. If R is a right noetherian generalized stable ring, then for any right
invertible rectangular matriz (a;;) over R, there exists s € N such that (a;;15) can
be completed to an invertible matriz.

Proof. Since R is a right noetherian ring, it is right repetitive. According to Theorem
3.1, we complete the proof. 1

Lemma 3.4. If every finitely generated stably free right R-module of positive rank is
power-free, then every finitely generated stably free right M, (R)-module of positive
rank is power-free.

Proof. Let P be a finitely generated stably free right M, (R)-module of positive rank.
Then we have

Pe M,(R)* = Mn(R)t(s < t).
Hence

P ® RnXI@Mn(R)S ® RnxlgMn(R)t ® RnXI,
)

M, (R) M, (R M, (R)
and so
P R @ R" = R™.
2,
That is, P®Mn(R) R™1 is a stably free right R-module of positive rank. Thus
we can find some p € N such that (P @, g B"")" = RP(=9)  As a result,
PP @y, (my R = BP0 and so

PP ® Rnxl ®R1><n o~ an(tfs) ®R1><n.

M, (R) R R

It follows that

p(t—s)
PP ® <RnX1®R1Xn> o~ (RnX1®R1Xn> .
M, (R) R R

As
RnXl ®Rl><’n, o~ Mn(R),
R

we deduce that PP = M, (R)?*~%) as required. |

Proposition 3.1. Let R be a generalized stable, right repetitive ring. Then for any
right invertible rectangular matriz (a;;) over My (R), there exists s € N such that
(ai;Is) can be completed to an invertible matriz.

Proof. 1t is obvious by Theorem 3.1, Theorem 2.1 and Lemma 3.4. 1
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Corollary 3.3. Let R be a right noetherian generalized stable ring. Then for any
right invertible rectangular matriz (a;;) over M, (R), there exists s € N such that
(ai;Is) can be completed to an invertible matric.

Proof. Since R is a right noetherian ring, it is right repetitive ring. Therefore the
result follows from Proposition 3.1. 1

Acknowledgement. The author is grateful to the referee for his/her suggestions
which led to the new version of Theorem 2.1 and helped me to improve the presen-
tation considerably.
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