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1. Introduction

In 1966, Imai and Iséki [2, 3] introduced two classes of abstract algebras: BCK-
algebras and BCI-algebras. It is known that the class of BCK-algebras is a proper
subclass of the class of BCI-algebras. As a generalization of a BCK-algebra, Kim and
Kim [4] introduced the notion of a BE-algebra, and investigated several properties.
In [1], Ahn and So introduced the notion of ideals in BE-algebras. They gave several
descriptions of ideals in BE-algebras. In this paper, we consider the fuzzification of
ideals in BE-algebras. We introduce the notion of fuzzy ideals in BE-algebras, and
investigate related properties. We give characterizations of a fuzzy ideal in BE-
algebras.

2. Preliminaries

Let K(τ) be the class of all algebras of type τ = (2, 0). By a BE-algebra we mean a
system (X; ∗, 1) ∈ K(τ) in which the following axioms hold (see [4]):

(∀x ∈ X) (x ∗ x = 1);(2.1)

(∀x ∈ X) (x ∗ 1 = 1);(2.2)

(∀x ∈ X) (1 ∗ x = x);(2.3)

(∀x, y, z ∈ X) (x ∗ (y ∗ z) = y ∗ (x ∗ z)). (exchange)(2.4)
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A relation “≤” on a BE-algebra X is defined by

(2.5) (∀x, y ∈ X) (x ≤ y ⇐⇒ x ∗ y = 1).

A BE-algebra (X; ∗, 1) is said to be transitive (see [1]) if it satisfies:

(2.6) (∀x, y, z ∈ X) (y ∗ z ≤ (x ∗ y) ∗ (x ∗ z)).

A BE-algebra (X; ∗, 1) is said to be self distributive (see [4]) if it satisfies:

(2.7) (∀x, y, z ∈ X) (x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z)).

Note that every self distributive BE-algebra is transitive, but the converse is not
true in general (see [1]).

A nonempty subset I of a BE-algebra X is called an ideal of X (see [1]) if it
satisfies:

(∀x ∈ X) (∀a ∈ I) (x ∗ a ∈ I);(2.8)

(∀x ∈ X) (∀a, b ∈ I) ((a ∗ (b ∗ x)) ∗ x ∈ I).(2.9)

3. Fuzzy ideals

In what follows, let X denote a BE-algebra unless otherwise specified.

Definition 3.1. A fuzzy set µ in X is called a fuzzy ideal of X if it satisfies:

(∀x, y ∈ X) (µ(x ∗ y) ≥ µ(y));(3.1)

(∀x, y, z ∈ X) (µ((x ∗ (y ∗ z)) ∗ z) ≥ min{µ(x), µ(y)}).(3.2)

Theorem 3.1. Let µ be a fuzzy set in X. Then µ is a fuzzy ideal of X if and only
if it satisfies:

(3.3) (∀α ∈ [0, 1])(U(µ;α) 6= ∅ =⇒ U(µ;α) is an ideal of X)

where U(µ;α) := {x ∈ X | µ(x) ≥ α}.

Proof. Assume that µ is a fuzzy ideal of X. Let α ∈ [0, 1] be such that U(µ;α) 6= ∅.
Let x, y ∈ X be such that y ∈ U(µ;α). Then µ(y) ≥ α, and so µ(x ∗ y) ≥ µ(y) ≥ α
by (3.1). Thus x ∗ y ∈ U(µ;α). Let x ∈ X and a, b ∈ U(µ;α). Then µ(a) ≥ α and
µ(b) ≥ α. It follows from (3.2) that

µ((a ∗ (b ∗ x)) ∗ x) ≥ min{µ(a), µ(b)} ≥ α

so that (a ∗ (b ∗ x)) ∗ x ∈ U(µ;α). Hence U(µ;α) is an ideal of X.
Conversely, suppose that µ satisfies (3.3). If µ(a ∗ b) < µ(b) for some a, b ∈ X,

then µ(a ∗ b) < α0 < µ(b) by taking α0 := (µ(a ∗ b) +µ(b))/2. Hence a ∗ b /∈ U(µ;α0)
and b ∈ U(µ;α0), which is a contradiction. Let a, b, c ∈ X be such that

µ((a ∗ (b ∗ c)) ∗ c) < min{µ(a), µ(b)}.

Taking β0 := (µ((a ∗ (b ∗ c)) ∗ c)/2 + min{µ(a), µ(b)}), we have β0 ∈ [0, 1] and

µ((a ∗ (b ∗ c)) ∗ c) < β0 < min{µ(a), µ(b)}.

It follows that a, b ∈ U(µ;β0) and (a ∗ (b ∗ c)) ∗ c /∈ U(µ;β0). This is a contradiction,
and therefore µ is a fuzzy ideal of X.
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Example 3.1. Let X = {1, a, b, c, d, 0} be a set with the following Cayley table:

∗ 1 a b c d 0
1 1 a b c d 0
a 1 1 a c c d
b 1 1 1 c c c
c 1 a b 1 a b
d 1 1 a 1 1 a
0 1 1 1 1 1 1

Then (X; ∗, 1) is a BE-algebra (see [4]).

(1) Let µ be a fuzzy set in X defined by

µ(x) :=

{
0.7 if x ∈ {1, a, b},
0.2 if x ∈ {c, d, 0}.

Then

U(µ;α) =

 ∅ if α ∈ (0.7, 1],
{1, a, b} if α ∈ (0.2, 0.7],
X if α ∈ [0, 0.2].

Note that {1, a, b} and X are ideals of X, and so µ is a fuzzy ideal of X.

(2) Let ν be a fuzzy set in X defined by

ν(x) :=

{
0.6 if x ∈ {1, a},
0.4 if x ∈ {b, c, d, 0}.

Then

U(ν;β) =

 ∅ if β ∈ (0.6, 1],
{1, a} if β ∈ (0.4, 0.6],
X if β ∈ [0, 0.4].

Note that {1, a} is not an ideal of X since

(a ∗ (a ∗ b)) ∗ b = (a ∗ a) ∗ b = 1 ∗ b = b /∈ {1, a}.
Hence ν is not a fuzzy ideal of X.

Lemma 3.1. Every fuzzy ideal µ of X satisfies the following inequality:

(3.4) (∀x ∈ X) (µ(1) ≥ µ(x)).

Proof. Using (2.1) and (3.1), we have

µ(1) = µ(x ∗ x) ≥ µ(x)

for all x ∈ X.

Proposition 3.1. If µ is a fuzzy ideal of X, then

(3.5) (∀x, y ∈ X) (µ((x ∗ y) ∗ y) ≥ µ(x)).

Proof. Taking y = 1 and z = y in (3.2) and using (2.3) and Lemma 3.1, we get

µ((x ∗ y) ∗ y) = µ((x ∗ (1 ∗ y)) ∗ y) ≥ min{µ(x), µ(1)} = µ(x)

for all x, y ∈ X.
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Corollary 3.1. Every fuzzy ideal µ of X is order preserving, that is, µ satisfies:

(3.6) (∀x, y ∈ X) (x ≤ y =⇒ µ(x) ≤ µ(y)).

Proof. Let x, y ∈ X be such that x ≤ y. Then x ∗ y = 1, and so

µ(y) = µ(1 ∗ y) = µ((x ∗ y) ∗ y) ≥ µ(x)

by (2.3) and (3.5).

Proposition 3.2. Let µ be a fuzzy set in X which satisfies (3.4) and

(3.7) (∀x, y, z ∈ X) (µ(x ∗ z) ≥ min{µ(x ∗ (y ∗ z)), µ(y)}).
Then µ is order preserving.

Proof. Let x, y ∈ X be such that x ≤ y. Then x ∗ y = 1, and so

µ(y) = µ(1 ∗ y) ≥ min{µ(1 ∗ (x ∗ y)), µ(x)} = min{µ(1 ∗ 1), µ(x)} = µ(x)

by (2.1), (2.3), (3.7) and (3.4).

We give a characterization of fuzzy ideals.

Theorem 3.2. Let X be a transitive BE-algebra. A fuzzy set µ in X is a fuzzy ideal
of X if and only if it satisfies conditions (3.4) and (3.7).

Proof. Assume that µ is a fuzzy ideal of X. By Lemma 3.1, µ satisfies (3.4). Since
X is transitive, we have

(3.8) (y ∗ z) ∗ z ≤ (x ∗ (y ∗ z)) ∗ (x ∗ z),
i.e., ((y ∗ z) ∗ z) ∗ ((x ∗ (y ∗ z)) ∗ (x ∗ z)) = 1 for all x, y, z ∈ X. It follows from (2.3),
(3.2) and Proposition 3.1 that

µ(x ∗ z) = µ(1 ∗ (x ∗ z))
= µ((((y ∗ z) ∗ z) ∗ ((x ∗ (y ∗ z)) ∗ (x ∗ z))) ∗ (x ∗ z))
≥ min{µ((y ∗ z) ∗ z), µ(x ∗ (y ∗ z))}
≥ min{µ(x ∗ (y ∗ z)), µ(y)}.

Hence µ satisfies (3.7). Conversely suppose that µ satisfies two conditions (3.4) and
(3.7). Using (3.7), (2.1), (2.2) and (3.4), we have

µ(x ∗ y) ≥ min{µ(x ∗ (y ∗ y)), µ(y)}
= min{µ(x ∗ 1), µ(y)}(3.9)

= min{µ(1), µ(y)} = µ(y)

and

µ((x ∗ y) ∗ y) ≥ min{µ((x ∗ y) ∗ (x ∗ y)), µ(x)}
= min{µ(1), µ(x)} = µ(x)(3.10)

for all x, y ∈ X. Since µ is order preserving by Proposition 3.2, it follows from (3.8)
that

µ((y ∗ z) ∗ z) ≤ µ((x ∗ (y ∗ z)) ∗ (x ∗ z))
so from (3.7) and (3.10) that

µ((x ∗ (y ∗ z)) ∗ z) ≥ min{µ(((x ∗ (y ∗ z)) ∗ (x ∗ z)), µ(x)}
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≥ min{µ((y ∗ z) ∗ z), µ(x)}
≥ min{µ(x), µ(y)}

for all x, y, z ∈ X. Hence µ is a fuzzy ideal of X.

Corollary 3.2. Let X be a self distributive BE-algebra. A fuzzy set µ in X is a
fuzzy ideal of X if and only if it satisfies conditions (3.4) and (3.7).

Proof. Straightforward.

For every a, b ∈ X, let µba be a fuzzy set in X defined by

µba(x) :=

{
α if a ∗ (b ∗ x) = 1,
β otherwise

for all x ∈ X and α, β ∈ [0, 1] with α > β.
The following example shows that there exist a, b ∈ X such that µba is not a fuzzy

ideal of X.

Example 3.2. Let X = {1, a, b, c, d, 0} be a BE-algebra as in Example 3.1. Then
µa1 is not a fuzzy ideal of X since

µa1((a ∗ (a ∗ b)) ∗ b) = µa1((a ∗ a) ∗ b) = µa1(1 ∗ b)
= µa1(b) = β < α = µa1(a)

= min{µa1(a), µa1(a)}.

Theorem 3.3. If X is self distributive, then the fuzzy set µba in X is a fuzzy ideal
of X for all a, b ∈ X.

Proof. Let a, b ∈ X. For every x, y ∈ X, if a∗ (b∗y) 6= 1, then µba(y) = β ≤ µba(x∗y).
Assume that a ∗ (b ∗ y) = 1. Then

a ∗ (b ∗ (x ∗ y)) = a ∗ ((b ∗ x) ∗ (b ∗ y))

= (a ∗ (b ∗ x)) ∗ (a ∗ (b ∗ y))

= (a ∗ (b ∗ x)) ∗ 1 = 1,

and so µba(x ∗ y) = α = µba(y). Hence µba(x ∗ y) ≥ µba(y) for all x, y ∈ X. Now, for
every x, y, z ∈ X, if a ∗ (b ∗ x) 6= 1 or a ∗ (b ∗ y) 6= 1, then µba(x) = β or µba(y) = β.
Thus

µba((x ∗ (y ∗ z)) ∗ z) ≥ β = min{µba(x), µba(y)}.
Suppose that a ∗ (b ∗ x) = 1 and a ∗ (b ∗ y) = 1. Then

a ∗ (b ∗ ((x ∗ (y ∗ z)) ∗ z)) = a ∗ ((b ∗ (x ∗ (y ∗ z))) ∗ (b ∗ z))
= (a ∗ (b ∗ (x ∗ (y ∗ z)))) ∗ (a ∗ (b ∗ z))
= ((a ∗ (b ∗ x)) ∗ (a ∗ (b ∗ (y ∗ z)))) ∗ (a ∗ (b ∗ z))
= (1 ∗ (a ∗ (b ∗ (y ∗ z)))) ∗ (a ∗ (b ∗ z))
= (a ∗ (b ∗ (y ∗ z))) ∗ (a ∗ (b ∗ z))
= ((a ∗ (b ∗ y)) ∗ (a ∗ (b ∗ z))) ∗ (a ∗ (b ∗ z))
= (1 ∗ (a ∗ (b ∗ z))) ∗ (a ∗ (b ∗ z))
= (a ∗ (b ∗ z)) ∗ (a ∗ (b ∗ z)) = 1,
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which implies that

µba((x ∗ (y ∗ z)) ∗ z) = α = min{µba(x), µba(y)}.

Therefore µba((x ∗ (y ∗ z)) ∗ z) ≥ min{µba(x), µba(y)} for all x, y, z ∈ X. Consequently,
µba is a fuzzy ideal of X for all a, b ∈ X.

For any a, b ∈ X, the set

A(a, b) := {x ∈ X | a ∗ (b ∗ x) = 1}

is called the upper set of a and b (see [4]). Clearly, 1, a, b ∈ A(a, b) for all a, b ∈ X
(see [4]). Note that A(a, b) is not an ideal of X in general (see [1]).

Lemma 3.2. A nonempty subset I of X is an ideal of X if and only if it satisfies

(3.11) 1 ∈ I,

(3.12) (∀x, z ∈ X) (∀y ∈ I) (x ∗ (y ∗ z) ∈ I =⇒ x ∗ z ∈ I).

Proof. Let I be an ideal of X. Using (2.1) and (2.8), we have 1 = a ∗ a ∈ I for all
a ∈ I. We prove the following assertion:

(3.13) (∀x ∈ I) (∀y ∈ X) (x ∗ y ∈ I =⇒ y ∈ I).

Let x ∈ I and y ∈ X be such that x ∗ y ∈ I. Then

y = 1 ∗ y = ((x ∗ y) ∗ (x ∗ y)) ∗ y ∈ I

by (2.9). Now, let x, z ∈ X and y ∈ I be such that x∗ (y ∗z) ∈ I. Then y ∗ (x∗z) ∈ I
by (2.4). Since y ∈ I, it follows from (3.13) that x ∗ z ∈ I. Hence (3.12) is valid.

Conversely, assume that (3.11) and (3.12) are valid. Let x ∈ X and a ∈ I. Then
x ∗ (a ∗ a) = x ∗ 1 = 1 ∈ I, and so x ∗ a ∈ I by (3.12). Since (a ∗ x) ∗ (a ∗ x) = 1 ∈ I,
we have (a ∗ x) ∗ x ∈ I by (3.12). It follows that (a ∗ (b ∗ x)) ∗ (b ∗ x) ∈ I for all
a, b ∈ I and x ∈ X. Using (3.12), we get (a ∗ (b ∗ x)) ∗ x ∈ I. Therefore I is an ideal
of X.

Theorem 3.4. Let µ be a fuzzy set in X. Then µ is a fuzzy ideal of X if and only
if µ satisfies the following assertion:

(3.14) (∀a, b ∈ X) (∀α ∈ [0, 1])(a, b ∈ U(µ;α) =⇒ A(a, b) ⊆ U(µ;α)).

Proof. Assume that µ is a fuzzy ideal of X and let a, b ∈ U(µ;α). Then µ(a) ≥ α
and µ(b) ≥ α. Let x ∈ A(a, b). Then a ∗ (b ∗ x) = 1. Hence

µ(x) = µ(1 ∗ x) = µ((a ∗ (b ∗ x)) ∗ x) ≥ min{µ(a), µ(b)} ≥ α,

and so x ∈ U(µ;α). Thus A(a, b) ⊆ U(µ;α).
Conversely, suppose that µ satisfies (3.14). Note that 1 ∈ A(a, b) ⊆ U(µ;α) for

all a, b ∈ X. Let x, y, z ∈ X be such that x ∗ (y ∗ z) ∈ U(µ;α) and y ∈ U(µ;α). Since

(x ∗ (y ∗ z)) ∗ (y ∗ (x ∗ z)) = (x ∗ (y ∗ z)) ∗ (x ∗ (y ∗ z)) = 1

by (2.4) and (2.1), we have x∗z ∈ A(x∗ (y ∗z), y) ⊆ U(µ;α). It follows from Lemma
3.2 that U(µ;α) is an ideal of X. Hence µ is a fuzzy ideal of X by Theorem 3.1.
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Corollary 3.3. If µ is a fuzzy ideal of X, then

(3.15) (∀α ∈ [0, 1])
(
U(µ;α) 6= ∅ =⇒ U(µ;α) =

⋃
a,b∈U(µ;α)

A(a, b)
)
.

Proof. Let α ∈ [0, 1] be such that U(µ;α) 6= ∅. Since 1 ∈ U(µ;α), we have

U(µ;α) ⊆
⋃

a∈U(µ;α)

A(a, 1) ⊆
⋃

a,b∈U(µ;α)

A(a, b).

Now, let x ∈
⋃

a,b∈U(µ;α)

A(a, b). Then there exist u, v ∈ U(µ;α) such that x ∈

A(u, v) ⊆ U(µ;α) by Theorem 3.4. Thus
⋃

a,b∈U(µ;α)

A(a, b) ⊆ U(µ;α). This com-

pletes the proof.
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