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Abstract. In this paper, we propose an explicit viscosity approximation method

for finding a common element of the set of fixed points of strict pseudo-contrac-
tions and of the set of solutions of variational inequalities with inverse-strongly

monotone mappings. Strong convergence theorems are established in the frame-

work of Hilbert spaces.
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1. Introduction and preliminaries

Throughout this paper, we assume that H is a real Hilbert space, whose inner
product and norm are denoted by 〈·, ·〉 and ‖ ·‖. Let C be a nonempty closed convex
subset of H and let A : C → H be a nonlinear mapping. Recall the following
definitions:

(a) A is said to be monotone if

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ C.
(b) A is said to be α-strongly monotone if there exists a positive real number

α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖x− y‖2, ∀x, y ∈ C.
(c) A is said to be α-inverse-strongly monotone if there exists a positive real

number α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.
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Recall that the classical variational inequality problem, denoted by V I(C,A), is
to find u ∈ C such that

(1.1) 〈Au, v − u〉 ≥ 0, ∀v ∈ C.
For given z ∈ H and u ∈ C, we see that the following inequality holds

〈u− z, v − u〉 ≥ 0, ∀v ∈ C,
if and only if u = PCz. It is known that projection operator PC is nonexpansive.
It is also known that PCx is characterized by the property: PCx ∈ C and 〈x −
PCx, PCx− y〉 ≥ 0 for all y ∈ C.

One can see that the variational inequality problem (1.1) is equivalent to a fixed
point problem. An element u ∈ C is a solution of the variational inequality (1.1) if
and only if u ∈ C is a fixed point of the mapping PC(I−λA), where I is the identity
mapping and λ > 0 is a constant.

Let T : C → C be a mapping. In this paper, we use F (T ) to denote the set of
fixed points of the mapping T . Recall the following definitions.

(1) T is said to be α-contractive if there exists a constant α ∈ (0, 1) such that

‖Tx− Ty‖ ≤ α‖x− y‖, ∀x, y ∈ C.
(2) T is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.
(3) T is said to be strongly pseudo-contractive with the coefficient λ ∈ (0, 1) if

〈Tx− Ty, x− y〉 ≤ λ‖x− y‖2, ∀x, y ∈ C.
(4) T is said to be strictly pseudo-contractive with the coefficient k ∈ (0, 1) if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C.
For such a case, T is also said to be a k-strict pseudo-contraction.

(5) T is said to be pseudo-contractive if

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2, ∀x, y ∈ C.
Clearly, the class of strict pseudo-contractions falls into the one between classes

of nonexpansive mappings and pseudo-contractions. We remark also that the class
of strongly pseudo-contractive mappings is independent of the class of strict pseudo-
contractions; See, for example [1, 2, 20].

The class of strict pseudo-contractions is one of the most important classes of
mappings among nonlinear mappings. Within the past several decades, many au-
thors have been devoting to the studies on the existence and convergence of fixed
points for strict pseudo-contractions. Recently, Zhou [21] considered a convex com-
bination method to study strict pseudo-contractions. More precisely, take t ∈ (0, 1)
and define a mapping St by

Stx = tx+ (1− t)Tx, ∀x ∈ C,
where T is a strict pseudo-contraction. Under appropriate restrictions on t, it is
proved the mapping St is nonexpansive. Therefore, the techniques of studying non-
expansive mappings can be applied to study more general strict pseudo-contractions.
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Recently, many authors studied the problem of finding a common element of the
set of solution of variational for an inverse-strongly monotone mapping and of the
set of fixed points of a nonexpansive mapping; see, for example, [5, 6, 9, 11–13, 16,
17, 19] and the references therein. Iiduka and Takahashi [9] proved the following
theorem.

Theorem 1.1. Let C be a closed convex subset of a real Hilbert space H. Let A be
an α-inverse-strongly monotone mapping of C into H and let S be a nonexpansive
mapping of C into itself such that F (S) ∩ V I(C,A) 6= ∅. Suppose that x1 = x ∈ C
and {xn} is given by

xn+1 = αnx+ (1− αn)SPC(xn − λnAxn)

for every n = 1, 2, . . . , where {αn} is a sequence in [0, 1) and {λn} is a sequence
in [a, b]. If {αn} and {λn} are chosen so that {λn} ∈ [a, b] for some a, b with
0 < a < b < 2α,

lim
n→∞

αn = 0,

∞∑
n=1

αn =∞,
∞∑

n=1

|αn+1 − αn| <∞ and

∞∑
n=1

|λn+1 − λn| <∞,

then {xn} converges strongly to PF (S)∩V I(C,A)x.

Further, Yao and Yao [19] introduced an iterative method for finding a common
element of the set of fixed points of a single nonexpansive mapping and the set of
solution of variational inequalities for a α-inverse-strongly monotone mapping. To
be more precise, they proved the following theorem.

Theorem 1.2. Let C be a closed convex subset of a real Hilbert space H. Let A be
an α-inverse-strongly monotone mapping of C into H and let S be a nonexpansive
mapping of C into itself such that F (S)∩Ω 6= ∅, where Ω denotes the set of solutions
of a variational inequality for the α-inverse-strongly monotone mapping. Suppose
that x1 = u ∈ C and {xn}, {yn} are given by x1 = u ∈ C,

yn = PC(xn − λnAxn),
xn+1 = αnu+ βnxn + γnSPC(I − λnA)yn, n ≥ 1,

where {αn}, {βn}, {γn} are three sequences in [0, 1] and {λ} is a sequence in [0, 2a].
If {αn}, {βn}, {γn} and {λn} are chosen so that λ ∈ [a, b] for some a, b with
0 < a < b < 2a and

(a) αn + βn + γn = 1,∀n ≥ 1;
(b) limn→∞ αn = 0,

∑∞
n=1 αn =∞;

(c) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(d) limn→∞(λn+1 − λn) = 0,

then {xn} converges strongly to PF (S)∩Ωu.

In this paper, motivated by Ceng and Yao [6], Iiduka and Takahashi [9], Wang
and Guo [17], and Yao and Yao [19], we continue to study the problem of finding
a common element of the set of fixed points of strict pseudo-contractions and of
the set of solutions to variational inequalities with inverse-strongly monotone map-
pings by using viscosity approximation methods in the framework of Hilbert spaces.
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The results presented in this paper improve and extend the corresponding results
announced by many others.

In order to prove our main results, we also need the following lemmas.

Lemma 1.1. [21] Let C be a nonempty closed convex subset of a real Hilbert space
H and let T : C → C be a λ-strict pseudo-contraction with a fixed point. Define
S : C → C by Sx = αx + (1 − α)Tx for each x ∈ C. Then, as α ∈ [λ, 1), S is
nonexpansive such that F (S) = F (T ).

The following lemma is a corollary of Bruck’s result in [4].

Lemma 1.2. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T1 and T2 be two nonexpansive mappings from C into itself with a common fixed
point. Define a mapping S : C → C by

Sx = λT1x+ (1− λ)T2x, ∀x ∈ C,

where λ is a constant in (0, 1). Then S is nonexpansive and F (S) = F (T1)∩F (T2).

Proof. It is obvious that F (T1)∩F (T2) ⊂ F (S). Fixing x∗ ∈ F (S) and y ∈ F (T1)∩
F (T2), we see that

‖x∗ − y‖ = ‖λT1x
∗ + (1− λ)T2x

∗ − y‖
≤ λ‖T1x

∗ − y‖+ (1− λ)‖T2x
∗ − y‖

≤ λ‖x∗ − y‖+ (1− λ)‖x∗ − y‖
= ‖x∗ − y‖.

Since H is strictly convex, we see that

x∗ = λT1x
∗ + (1− λ)T2x

∗ = T1x
∗ = T2x

∗.

That is, x∗ ∈ F (T1)∩F (T2). This implies that F (S) = F (T1)∩F (T2). On the other
hand, it is easy to see that S is also nonexpansive. This completes the proof.

Lemma 1.3. [15] Let {xn} and {yn} be bounded sequences in a Banach space X
and let {βn} be a sequence in [0, 1] with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Suppose that xn+1 = (1− βn)yn + βnxn for all integers n ≥ 0 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

Lemma 1.4. [18] Assume that {αn} is a sequence of nonnegative real numbers such
that

αn+1 ≤ (1− γn)αn + δn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(a)
∑∞

n=1 γn =∞;
(b) lim supn→∞ δn/γn ≤ 0 or

∑∞
n=1 |δn| <∞.

Then limn→∞ αn = 0.
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2. Main results

Now, we are ready to give our main results in this paper.

Theorem 2.1. Let H be a real Hilbert space and let C be a nonempty closed convex
subset of H. Let A : C → H be an α-inverse-strongly monotone mapping and let
B : C → H be a β-inverse-strongly monotone mapping. Let f : C → C be a τ -
contraction with the 0 < τ < 1 and let S : C → C be a k-strict pseudo-contraction
with a fixed point. Define a mapping Sk : C → C by Skx = kx+ (1− k)Sx, ∀x ∈ C.
Assume that F := F (S)∩V I(C,A)∩V I(C,B) 6= ∅. Let {xn} be a sequence generated
by the following iterative algorithm:

(2.1)


x1 ∈ C,
zn = PC(xn − µnBxn),

yn = PC(xn − λnAxn),

xn+1 = αnf(xn) + βnxn + γn[δ(1,n)Skxn + δ(2,n)yn + δ(3,n)zn], n ≥ 1,

where {λn}, {µn} are positive sequences and {αn}, {βn}, {γn} {δ(1,n)}, {δ(2,n)}
and {δ(3,n)} are sequences in [0, 1]. Assume that the control sequences satisfy the
following restrictions:

(C1) αn + βn + γn = δ(1,n) + δ(2,n) + δ(3,n) = 1, ∀n ≥ 1;

(C2) limn→∞ αn = 0,
∑∞

n=1 αn =∞;
(C3) a ≤ λn ≤ 2α, b ≤ µn ≤ 2β, where a, b are two positive constants;
(C4) limn→∞(λn+1 − λn) = limn→∞(µn+1 − µn) = 0;
(C5) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(C6) limn→∞ δ(i,n) = δi ∈ (0, 1) for each i = 1, 2, 3.

Then the sequence {xn} defined by the algorithm (2.1) converges strongly to some
x̄ ∈ F which solves uniquely the following variational inequality:

(2.2) 〈f(x̄)− x̄, x− x̄〉 ≤ 0, ∀x ∈ F .

Proof. The proof is divided into four steps.

Step 1: Show that the sequence {xn} is bounded.
First, we show that the mappings I−λnA and I−µnB are nonexpansive for each

n ≥ 1. Actually, for any x, y ∈ C, from the condition (C3), we have

‖(I − λnA)x− (I − λnA)y‖2 = ‖(x− y)− λn(Ax−Ay)‖2

≤ ‖x− y‖2 − 2λn〈Ax−Ay, x− y〉+ λ2
n‖Ax−Ay‖2

≤ ‖x− y‖2 − 2λnα‖Ax−Ay‖2 + λ2
n‖Ax−Ay‖2

= ‖x− y‖2 + λn(λn − 2α)‖Ax−Ay‖2

≤ ‖x− y‖2.

This implies that I − λnA is nonexpansive for each n ≥ 1, so is, I − µnB. It follows
that

(2.3) ‖zn − p‖ = ‖PC(xn − µnBxn)− p‖ ≤ ‖xn − p‖
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and

(2.4) ‖yn − p‖ = ‖PC(xn − λnAn)− p‖ ≤ ‖xn − p‖
for any p ∈ F. On the other hand, from Lemma 1.1, we have Sk is a nonexpansive
mapping. Put

wn = δ(1,n)Skxn + δ(2,n)yn + δ(3,n)zn, ∀n ≥ 1.

From (2.3) and (2.4), we see that

‖wn − p‖ = ‖δ(1,n)Skxn + δ(2,n)yn + δ(3,n)zn − p‖
≤ δ(1,n)‖Skxn − p‖+ δ(2,n)‖yn − p‖+ δ(3,n)‖zn − p‖
≤ δ(1,n)‖xn − p‖+ δ(2,n)‖xn − p‖+ δ(3,n)‖xn − p‖
= ‖xn − p‖.(2.5)

From the algorithm (2.1), we have

‖xn+1 − p‖ = ‖αnf(xn) + βnxn + γnwn − p‖
≤ αn‖f(xn)− p‖+ βn‖xn − p‖+ γn‖wn − p‖
≤ αn‖f(xn)− f(p)‖+ αn‖f(p)− p‖+ βn‖xn − p‖+ γn‖xn − p‖
≤ αnτ‖xn − p‖+ αn‖f(p)− p‖+ (1− αn)‖xn − p‖
≤ [1− αn(1− τ)]‖xn − p‖+ αn‖f(p)− p‖.

By mathematical inductions, we obtain that

‖xn − p‖ ≤
{
‖x1 − p‖,

‖f(p)− p‖
1− τ

}
, ∀n ≥ 1.

This shows that the sequence {xn} is bounded.

Step 2: Show that xn − wn → 0 as n→∞.
First, we estimate ‖yn+1 − yn‖ and ‖zn+1 − zn‖. Notice that

‖yn+1 − yn‖
= ‖PC(I − λn+1A)xn+1 − PC(I − λnA)xn‖
≤ ‖(I − λn+1A)xn+1 − (I − λn+1A)xn + (I − λn+1A)xn − (I − λnA)xn‖
≤ ‖(I − λn+1A)xn+1 − (I − λn+1A)xn‖+ ‖(I − λn+1A)xn − (I − λnA)xn‖
≤ ‖xn+1 − xn‖+ |λn − λn+1|‖Axn‖.(2.6)

Similarly, we can obtain that

(2.7) ‖zn+1 − zn‖ ≤ ‖xn+1 − xn‖+ |µn − µn+1|‖Bxn‖.
It follows from (2.6) and (2.7) that

‖wn+1 − wn‖
= ‖δ(1,(n+1))Skxn+1 + δ(2,(n+1))yn+1 + δ(3,(n+1))zn+1

− (δ(1,n)Skxn + δ(2,n)yn + δ(3,n)zn)‖
≤ δ(1,(n+1))‖Skxn+1 − Skxn‖+ ‖Skxn‖|δ(1,(n+1)) − δ(1,n)|

+ δ(2,(n+1))‖yn+1 − yn‖+ ‖yn‖|δ(2,(n+1)) − δ(2,n)|
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+ δ(3,(n+1))‖zn+1 − zn‖+ ‖zn‖|δ(3,(n+1)) − δ(3,n)|

≤ ‖xn+1 − xn‖+M

(
3∑

i=1

|δ(i,(n+1)) − δ(i,n)|+ |λn − λn+1|+ |µn − µn+1|

)
,(2.8)

where M is an appropriate constant such that M = max {‖Skxn‖, ‖yn‖, ‖zn‖ ,
‖Axn‖, ‖Bxn‖ : n ≥ 1} . Put ln = (xn+1 − βnxn)/(1− βn) for all n ≥ 1. That
is,

(2.9) xn+1 = (1− βn)ln + βnxn, ∀n ≥ 1.

Now, we estimate ‖ln+1 − ln‖. From

ln+1 − ln =
αn+1f(xn+1) + γn+1wn+1

1− βn+1
− αnf(xn) + γnwn

1− βn

=
αn+1

1− βn+1
f(xn+1) +

1− βn+1 − αn+1

1− βn+1
wn+1 −

αn

1− βn
f(xn)

− 1− βn − αn

1− βn
wn

=
αn+1

1− βn+1
(f(xn+1)− wn+1) +

αn

1− βn
(wn − f(xn)) + wn+1 − wn,

we arrive at

‖ln+1 − ln‖ ≤
αn+1

1− βn+1
‖f(xn+1)− wn+1‖+

αn

1− βn
‖wn − f(xn)‖

+ ‖wn+1 − wn‖.(2.10)

Substituting (2.8) into (2.10), we obtain that

‖ln+1 − ln‖ − ‖xn+1 − xn‖

≤ αn+1

1− βn+1
‖f(xn+1)− wn+1‖+

αn

1− βn
‖wn − f(xn)‖

+M

(
3∑

i=1

|δ(i,(n+1)) − δ(i,n)|+ |λn − λn+1|+ |µn − µn+1|

)
.

It follows from the conditions (C2), (C4), (C5) and (C6) that

lim sup
n→∞

(‖ln+1 − ln‖ − ‖xn+1 − xn+1‖) < 0.

It follows from Lemma 1.4 that

(2.11) lim
n→∞

‖ln − xn‖ = 0.

Thanks to (2.9), we see that xn+1 − xn = (1 − βn)(ln − xn). Combining the
condition (C5) and (2.11), we obtain that

(2.12) lim
n→∞

‖xn+1 − xn‖ = 0.

On the other hand, from the iterative algorithm (2.1), we see that

xn+1 − xn = αn(f(xn)− xn) + γn(wn − xn)
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and the conditions (C2) and (C5), we obtain

(2.13) lim
n→∞

‖wn − xn‖ = 0.

Step 3: Show that lim supn→∞〈f(x̄)− x̄, xn − x̄〉 ≤ 0.
To show it, we can choose a sequence {xni

} of {xn} such that

(2.14) lim sup
n→∞

〈f(x̄)− x̄, xn − x̄〉 = lim
i→∞
〈f(x̄)− x̄, xni − x̄〉.

Since {xni
} is bounded, there exists a subsequence {xnij

} of {xni
} which converges

weakly to v. Without loss of generality, we may assume that xni ⇀ v. Assume also
that λni → λ ∈ [a, 2α] and µni → µ ∈ [b, 2β], respectively. Next, we prove that

v ∈ F := F (S) ∩ V I(C,A) ∩ V I(C,B).

In fact, define a mapping V : C → C by

V x = δ1Skx+ δ2PC(I − λA)x+ δ3PC(I − µB)x, ∀x ∈ C.
From Lemma 1.2, we see that V is a nonexpansive mapping such that

F (V ) = F (Sk) ∩ F (PC(I − λA)) ∩ F (PC(I − µB)) = F (S) ∩ V I(C,A) ∩ V I(C,B).

On the other hand, we have

‖V xni
− xni

‖ ≤ ‖V xni
− wni

‖+ ‖wni
− xni

‖
= ‖δ1Skxni + δ2PC(I − λA)xni + δ3PC(I − µB)xni

− [δ(1,ni)Skxni + δ(2,ni)yni + δ(3,ni)zni ]‖+ ‖wni − xni‖
≤ |δ1 − δ(1,ni)|‖Skxni

‖+ δ2‖PC(I − λA)xni
− PC(I − λni

A)xni
‖

+ ‖PC(I − λni
A)xni

‖|δ2 − δ(2,n)|+ δ3‖PC(I − µB)xni

− PC(I − µniB)xni‖+ ‖PC(I − µniB)xni‖|δ3
− δ(3,n)|+ ‖wni − xni‖
≤ |δ1 − δ(1,ni)|‖Skxni

‖+ δ2|λni
− λ|‖Axni

‖
+ ‖PC(I − λni

A)xni
‖|δ2 − δ(2,n)|+ δ3|µni

− µ|‖Bxni
‖

+ ‖PC(I − µniB)xni‖|δ3 − δ(3,n)|+ ‖wni − xni‖

≤M

(
3∑

i=1

|δi − δ(i,n)|+ |µni
− µ|+ |λni

− λ|

)
+ ‖wni

− xni
‖.

From (2.13) and the condition (C6), we arrive at

(2.15) lim
i→∞

‖V xni
− xni

‖ = 0.

It follows from Lemma 1.3 that

v ∈ F (V ) = F (S) ∩ V I(C,A) ∩ V I(C,B).

Thanks to (2.14), we arrive at

(2.16) lim sup
n→∞

〈f(x̄)− x̄, xn − x̄〉 = lim
i→∞
〈f(x̄)− x̄, xni − x̄〉 = 〈f(x̄)− x̄, v − x̄〉 ≤ 0.

Step 4: Show that xn → x̄ as n→∞.
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‖xn+1 − x̄‖2 = 〈αnf(xn) + βnxn + γnwn − x̄, xn+1 − x̄〉
= αn〈f(xn)− x̄, xn+1 − x̄〉+ βn〈xn − x̄, xn+1 − x̄〉

+ γn〈wn − x̄, xn+1 − x̄〉
≤ αn(〈f(xn)− f(x̄), xn+1 − x̄〉+ 〈f(x̄)− x̄, xn+1 − x̄〉)

+ βn‖xn − x̄‖‖xn+1 − x̄‖+ γn‖wn − x̄‖‖xn+1 − x̄‖
≤ αnτ‖xn − x̄‖‖xn+1 − x̄‖+ αn〈f(x̄)− x̄, xn+1 − x̄〉

+ (1− αn)‖xn − x̄‖‖xn+1 − x̄‖

≤ [1− αn(1− τ)]

2
(‖xn − x̄‖2 + ‖xn+1 − x̄‖2)

+ αn〈f(x̄)− x̄, xn+1 − x̄〉,
which implies that

(2.17) ‖xn+1 − x̄‖2 ≤ [1− αn(1− τ)]‖xn − x̄‖2 + 2αn〈f(x̄)− x̄, xn+1 − x̄〉.
From the condition (C2), (2.16) and applying Lemma 1.5 to (2.17), we obtain that

lim
n→∞

‖xn − x̄‖ = 0.

This completes the proof.

Remark 2.1. Theorem 2.1 improve the corresponding result of [19] in the following
aspects:

(1) from nonexpansive mappings to strict pseudo-contractions;
(2) from a single inverse-strongly monotone mapping to a pair of inverse-strongly

monotone mapping;
(3) the proof line is more concise than that of [19]’s.

If the mapping S is nonexpansive, then Sk = S0 = S. We can obtain the following
result from Theorem 2.1 immediately.

Corollary 2.1. Let H be a real Hilbert space and let C be a nonempty closed convex
subset of H. Let A : C → H be an α-inverse-strongly monotone mapping and let
B : C → H be a β-inverse-strongly monotone mapping, respectively. Let f : C → C
be a τ -contraction and S : C → C a nonexpansive mapping with a fixed point.
Assume that F := F (S)∩V I(C,A)∩V I(C,B) 6= ∅. Let {xn} be a sequence generated
by the following iterative algorithm:

x1 ∈ C,
zn = PC(xn − µnBxn),

yn = PC(xn − λnAxn),

xn+1 = αnf(xn) + βnxn + γn[δ(1,n)Sxn + δ(2,n)yn + δ(3,n)zn], n ≥ 1,

where {λn}, {µn} are positive sequences and {αn}, {βn}, {γn} {δ(1,n)}, {δ(2,n)}
and {δ(3,n)} are sequences in [0, 1]. Assume that the control sequences satisfy the
following restrictions:

(C1) αn + βn + γn = δ(1,n) + δ(2,n) + δ(3,n) = 1, ∀n ≥ 1;
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(C2) limn→∞ αn = 0,
∑∞

n=1 αn =∞;
(C3) a ≤ λn ≤ 2α, b ≤ µn ≤ 2β, where a, b are two positive constants;
(C4) limn→∞(λn+1 − λn) = limn→∞(µn+1 − µn) = 0;
(C5) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(C6) limn→∞ δ(i,n) = δi ∈ (0, 1) for each i = 1, 2, 3.

Then the sequence {xn} defined by the above algorithm converges strongly to some
x̄ ∈ F .

3. Applications

As some applications of Theorem 2.1, we consider another class of nonlinear map-
ping: Strict pseudo-contraction.

Theorem 3.1. Let H be a real Hilbert space and let C be a nonempty closed convex
subset of H. Let T1 : C → C be an k1-strict pseudo-contraction and let T2 : C →
C be a k2-strict pseudo-contraction. Let f : C → C be a τ -contraction with the
0 < τ < 1 and S : C → C a k-strict pseudo-contraction with a fixed point. Define
a mapping Sk : C → C by Skx = kx + (1 − k)Sx, ∀x ∈ C. Assume that F :=
F (S)∩F (T2)∩F (T2) 6= ∅. Suppose that {xn} is generated by the following iterative
algorithm:

(3.1)


x1 ∈ C,
zn = (1− µn)xn + µnBxn,

yn = (1− λn)xn + λnAxn,

xn+1 = αnf(xn) + βnxn + γn[δ(1,n)Skxn + δ(2,n)yn + δ(3,n)zn], n ≥ 1,

where {λn}, {µn} are positive sequences and {αn}, {βn}, {γn} {δ(1,n)}, {δ(2,n)}
and {δ(3,n)} are sequences in [0, 1]. Assume that the control sequences satisfy the
following restrictions:

(C1) αn + βn + γn = δ(1,n) + δ(2,n) + δ(3,n) = 1,∀n ≥ 1;

(C2) limn→∞ αn = 0,
∑∞

n=1 αn =∞;
(C3) a ≤ λn ≤ (1− k1), b ≤ µn ≤ (1− k2), where a, b are two positive constants;
(C4) limn→∞(λn+1 − λn) = limn→∞(µn+1 − µn) = 0;
(C5) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(C6) limn→∞ δ(i,n) = δi ∈ (0, 1) for each i = 1, 2, 3.

Then the sequence {xn} defined by the algorithm (3.1) converges strongly to some
x̄ ∈ F which solves uniquely the following variational inequality:

〈f(x̄)− x̄, x− x̄〉 ≤ 0, ∀x ∈ F .

Proof. Put A = I − T1 and B = I − T2. We see that A is (1 − k1)/2-inverse-
strongly monotone and B is (1 − k2)/2-inverse-strongly monotone. We also have
F (T1) = V I(C,A), F (T2) = V I(C,B). Notice that

PC(xn − λnAxn) = (1− λn)xn + λnAxn

and

PC(xn − µnBxn) = (1− µn)xn + µnBxn.

From Theorem 2.1, we can obtain the desired conclusion easily.
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Theorem 3.2. Let H be a real Hilbert space. Let A : H → H be an α-inverse-
strongly monotone mapping and let B : H → H be a β-inverse-strongly monotone
mapping. Let f : H → H be a τ -contraction with the 0 < τ < 1 and S : H → H
a nonexpansive mapping with a fixed point. Assume that F := F (S) ∩ A−1(0) ∩
B−1(0) 6= ∅. Suppose that {xn} is generated by the following iterative algorithm:

(3.2)


x1 ∈ H,
zn = xn − µnBxn,

yn = xn − λnAxn,
xn+1 = αnf(xn) + βnxn + γn[δ(1,n)Skxn + δ(2,n)yn + δ(3,n)zn], n ≥ 1,

where {λn}, {µn} are positive sequences and {αn}, {βn}, {γn} {δ(1,n)}, {δ(2,n)}
and {δ(3,n)} are sequences in [0, 1]. Assume that the control sequences satisfy the
following restrictions:

(C1) αn + βn + γn = δ(1,n) + δ(2,n) + δ(3,n) = 1, ∀n ≥ 1;

(C2) limn→∞ αn = 0,
∑∞

n=1 αn =∞;
(C3) a ≤ λn ≤ 2α, b ≤ µn ≤ 2β, where a, b are two positive constants;
(C4) limn→∞(λn+1 − λn) = limn→∞(µn+1 − µn) = 0;
(C5) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(C6) limn→∞ δ(i,n) = δi ∈ (0, 1) for each i = 1, 2, 3.

Then the sequence {xn} defined by the algorithm (3.2) converges strongly to some
x̄ ∈ F which solves the uniquely the following variational inequality:

〈f(x̄)− x̄, x− x̄〉 ≤ 0, ∀x ∈ F.

Proof. Since A−1(0) = V I(H,A), B−1(0) = V I(H,B) and PH = I, we can conclude
the desired conclusion from Theorem 2.1 immediately.

Finally, we consider the following convex feasibility problem (CFP):

Finding a x ∈
N⋂
i=1

Ci,

where N ≥ 1 is an integer and each Ci is assumed to be the solution set of the
variational inequality problem (1.1). There is a considerable investigation on CFP
in the setting of Hilbert spaces which captures applications in various disciplines
such as image restoration [8, 10], computer tomography [14] and radiation therapy
treatment planning [7].

The following result can be concluded from Theorem 2.1 easily. We, therefore,
omit the proof here.

Theorem 3.3. Let H be a real Hilbert space and let C be a nonempty closed convex
subset of H. Let {Ai}Ni=1 : C → H be a family of ηi-inverse-strongly monotone
mappings, for each i ≥ 1. Let f : C → C be a τ -contraction with the 0 < τ < 1
and let S : C → C be a k-strict pseudo-contraction with a fixed point. Define a
mapping Sk : C → C by Skx = kx + (1 − k)Sx, ∀x ∈ C. Assume that F :=
∩Ni=1V I(C,Ai) ∩ F (S) 6= ∅. Let {xn} be a sequence generated by the following
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iterative algorithm:

x1 ∈ C, xn+1 = αnf(xn)+βnxn+γn[δ1Skxn+

N∑
i=1

δi+1PC(xn−λ(i,n)Ai)xn], n ≥ 1,

where δ1, δ2, . . . , δN+1 ∈ [0, 1] such that
∑N+1

i=1 δi = 1, {λ(i,n)} are positive sequences
and {αn}, {βn}, {γn} are sequences in [0, 1]. Assume that the control sequences
satisfy the following restrictions:

(C1) αn + βn + γn = 1, ∀n ≥ 1;
(C2) limn→∞ αn = 0,

∑∞
n=1 αn =∞;

(C3) ai ≤ λ(i,n) ≤ 2ηi, where ai is some positive constant for each 1 ≤ i ≤ N ;
(C4) limn→∞(λ(i,(n+1)) − λ(i,n)) = 0 for each 1 ≤ i ≤ N ;
(C5) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then the sequence {xn} defined by the above iterative algorithm converges strongly
to some x̄ ∈ F .
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