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Abstract. The distribution of the difference between two independent Poisson

random variables involves the modified Bessel function of the first kind. Using

properties of this function, maximum likelihood estimates of the parameters of
the Poisson difference were derived. Asymptotic distribution property of the

maximum likelihood estimates is discussed. Maximum likelihood estimates were

compared with the moment estimates in a Monte Carlo study. Hypothesis test-
ing using likelihood ratio tests was considered. Some new formulas concerning

the modified Bessel function of the first kind were provided. Alternative formu-

las for the probability mass function of the Poisson difference (PD) distribution
are introduced. Finally, two new applications for the PD distribution are pre-

sented. The first is from the Saudi stock exchange (TASI) and the second is

from Dallah hospital.

2000 Mathematics Subject Classification: Primary 60E05; Secondary 62F86,

46N30

Key words and phrases: Poisson difference distribution, Skellam distribution,
Bessel function, regularized hypergeometric function, maximum likelihood esti-
mate, likelihood ratio test.

1. Introduction

The distribution of the difference between two independent Poisson random variables
was derived by Irwin [5] for the case of equal parameters. Skellam [13] and Prekopa
[11] discussed the case of unequal parameters. The distribution of the difference
between two correlated Poisson random variables was recently introduced by Karlis
and Ntzoufras [8] who proved that it reduces to the Skellam distribution (Poisson
difference of two independent Poisson). Strakee and van der Gon [14] presented
tables of the cumulative distribution function of the PD distribution to four decimal
places for some combinations of values of the two parameters. Their tables also show
the differences between the normal approximations (see [3]). Romani [12] showed
that all the odd cummulants of the PD distribution (PD(θ1, θ2)) equal to θ1 − θ2,
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and that all the even cummulant equal to θ1 + θ2. He also discussed the properties
of the maximum likelihood estimator of E (X1 −X2) = θ1 − θ2. Katti [10] studied
E |X1 −X2|. Karlis and Ntzoufras [7] discussed in details properties of the PD
distribution and obtained the maximum likelihood estimates via the Expectation
Maximization (EM) algorithm. Karlis and Ntzoufras [8] derived Bayesian estimates
and used the Bayesian approach for testing the equality of the two parameters of
the PD distribution.

The PD distribution has many applications in different fields. Karlis and Nt-
zoufras [9] applied the PD distribution for modeling the difference of the number of
goals in football games. Karlis and Ntzoufras [8] used the PD distribution and the
zero inflated PD distribution to model the difference in the decayed, missing and
filled teeth (DMFT) index before and after treatment. Hwang et al. [4] showed that
the Skellam distribution can be used to measure the intensity difference of pixels
in cameras. Strackee and van der Gon [14] state, “In a steady state the number of
light quanta, emitted or absorbed in a definite time, is distributed according to a
Poisson distribution. In view thereof, the physical limit of perceptible contrast in
vision can be studied in terms of the difference between two independent variates
each following a Poisson distribution”. The distribution of differences may also be
relevant when a physical effect is estimated as the difference between two counts,
one when a “cause” is acting, and the other a “control” to estimate the “background
effect”. For more applications see Alvarez [2].

The aim of this paper is to obtain some inference results for the parameters of the
PD distribution and give application on share and occupancy modeling. Maximum
likelihood estimates of θ1 and θ2 are obtained by maximizing the likelihood func-
tion (or equivalently the log likelihood), using the properties of the modified Bessel
function of the first kind. A Monte Carlo study is conducted to compare two esti-
mation methods, the method of moment and the maximum likelihood. Moreover,
since regularity conditions hold, asymptotic distribution of the maximum likelihood
estimates is obtained. Moreover, hypothesis testing using Likelihood ratio test for
equality of the two parameters is introduced and Monte Carlo study is presented
with the empirical power being calculated. For simplification alternative formulas
of the PD distribution are presented for which Poisson distribution and negative of
Poisson distribution can be shown by direct substitution to be special cases of the
PD distribution. These formulas are used for estimation and testing. The appli-
cations considered in this study are such that only the difference of two variables
could be estimated while each one by its own is not easily estimated. Our considered
data could take both positive and negative integer values. Hence, PD distribution
could be a good candidate for such data. The first is from the Saudi stock exchange
(TASI) and the second from Dallah hospital at Riyadh.

The remainder of this paper proceeds as follows: Properties of the PD distribution
are revised with some properties of the modified Bessel function of the first kind and
new formulas for the Bessel function are derived in Section 2. In Section 3, new
representation of the PD distribution is presented. Maximum likelihood estimates
are considered in details with their asymptotic properties in Section 4. In Section 5,
likelihood ratio tests for equality of means and for testing if one of the parameters
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has zero value are presented. A simulation study is conducted in Section 6. Finally,
two new applications of the PD distribution are illustrated in Section 7.

2. Definition and basic properties

Definition 2.1. For any pair of variables (X,Y ) that can be written as X = W1+W3

and Y = W2 + W3 with W1 ∼ Poisson (θ1) independent of W2 ∼ Poisson (θ2) and
W3 following any distribution, the probability mass function of Z = X − Y is given
by

(2.1) P (Z = z) = e−θ1−θ2
(
θ1

θ2

)z/2
Iz

(
2
√
θ1θ2

)
, z = · · · ,−1, 0, 1, · · ·

where

Iy (x) =
(x

2

)y ∞∑
k=0

(
x2/4

)k
k! (y + k)!

is the modified Bessel function of the first kind and Z is said to have the PD distri-
bution (Skellam distribution) denoted by PD(θ1, θ2). See [9].

An interesting property is a type of symmetry given by

P (Z = z| θ1, θ2) = P (Z = −z| θ2, θ1) .

The moment generating function is given by

(2.2) MZ (t) = exp
[
− (θ1 + θ2) + θ1e

t + θ2e
−t] .

The expected value is E (Z) = θ1 − θ2, while the variance is V (Z) = θ1 + θ2.
The odd cummulants are equal to θ1 − θ2 while the even cummulants are equal to
θ1 + θ2. The skewness coefficient is given by β1 = (θ1 − θ2)/(θ1 + θ2)3/2, that is the
distribution is positively skewed when θ1 > θ2 , negatively skewed when θ1 < θ2 and
symmetric when θ1 = θ2. The kurtosis coefficient β2 = 3 + 1/(θ1 + θ2). As either
θ1 or θ2 tends to infinity kurtosis coefficient tends to 3 and for a constant difference
θ1 − θ2, skewness coefficient tends to zero implying that the distribution approaches
the normal distribution. The PD distribution is strongly unimodal.

If Y1 ∼PD(θ1, θ2) independent of Y2 ∼PD(θ3, θ4) then

(1) Y1 + Y2 ∼ PD(θ1 + θ3, θ2 + θ4)
(2) Y1 − Y2 ∼ PD(θ1 + θ4, θ2 + θ3).

More properties of the PD distribution can be found in [8].
The following are some known identities for the modified Bessel function of the

first kind (see [1]) :
For any θ > 0 and y ∈ Z,

(2.3) Iy (θ) = I−y (θ) ,

(2.4)

∞∑
y=−∞

Iy (θ) = eθ,

(2.5)

∞∑
y=−∞

yIy (θ) = 0,
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(2.6) Iy (θ) =

(
θ

2

)y
0F̃1

(
y + 1,

θ2

4

)
,

where

0F̃1 (; b; z) =

∞∑
k=0

zk

k!Γ (b+ k)

is the regularized hypergeometric function and Γ (x) is the gamma function

(2.7)
∂Iy (θ)

∂θ
=
y

θ
Iy (θ) + Iy+1 (θ) ,

(2.8) Iy (θ) =
2 (y + 1)

θ
Iy+1 (θ) + Iy+2 (θ) .

In the following proposition, other relations for the Bessel function which can be
easily driven from (2.1) and (2.2) are presented.

Proposition 2.1. For any θ > 0, θ1 > 0 and θ2 > 0 then

(2.9)

∞∑
y=−∞

(
θ1

θ2

)y/2
Iy

(
2
√
θ1θ2

)
= eθ1+θ2 ,

(2.10)

∞∑
y=−∞

y

(
θ1

θ2

)y/2
Iy

(
2
√
θ1θ2

)
= (θ1 − θ2) eθ1+θ2 ,

(2.11)

∞∑
y=−∞

y2

(
θ1

θ2

)y/2
Iy

(
2
√
θ1θ2

)
=
(
θ1 + θ2 + (θ1 − θ2)

2
)
eθ1+θ2 ,

(2.12)

∞∑
y=−∞

y2Iy (θ) = θeθ for any θ > 0,

(2.13)

∞∑
y=−∞

y4Iy (θ) = θeθ (3θ + 1) for any θ > 0.

Proof. (2.9) is obtained from the fact that (2.1) is a probability mass function. (2.10)
and (2.11) follow from the mean and the variance representations. (2.12) is a special
case of (2.11) by setting θ1 = θ2 = θ/2. (2.13) follows from the fact that the fourth
cummulant K4 = µ4 − 3µ2

2.
If Y ∼ PD

(
θ
2 ,

θ
2

)
, then the fourth cummulant is θ and µ2 = θ. Hence

E
(
Y 4
)

= θ + 3θ2

and
∞∑

y=−∞
y4Iy (θ) = θeθ (3θ + 1)

for any θ > 0.
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3. New representation of the Poisson difference distribution

The regularized hypergeometric function 0F̃1 is linked with the modified Bessel func-
tion of the first kind through the identity given by equation (2.6). It has the property

(3.1) 0F̃1 (;−y + 1; θ) = θy0F̃1 (; y + 1; θ) .

Using (2.6) and (3.1) the PD distribution can be expressed using any of the following
equivalent formulas:

Formula I

P (Y = y) = e−θ1−θ2
(
θ1

θ2

)y/2
Iy

(
2
√
θ1θ2

)
, y = · · · ,−1, 0, 1, · · ·

Formula II

P (Y = y) = e−θ1−θ2θy1 0F̃1 (y + 1, θ1θ2) , y = · · · ,−1, 0, 1, · · ·
Formula III

P (Y = y) = e−θ1−θ2θ−y2 0F̃1 (−y + 1, θ1θ2) , y = · · · ,−1, 0, 1, · · ·
Formula IV

P (Y = y) = e−θ1−θ2 (θ1θ2)
max{0,−y}

θy1 0F̃1 (|y|+ 1, θ1θ2) , y = · · · ,−1, 0, 1, · · · .
The advantages of the new formulas are:

(1) Easier and more direct notation. Following the steps of deriving the PD
distribution, it is more logical to use the regularized hypergeometric function
instead of the Bessel function as follows.
Let X1 ∼Poisson(θ1) be independent of X2 ∼Poisson(θ2) then Y = X1 −
X2 ∼PD(θ1, θ2).

P (Y = y) = P (X1 −X2 = y) =

∞∑
k=0

P (X1 −X2 = y |X2 = k )P (X2 = k)

=

∞∑
k=max(−y,0)

P (X1 = y + k)P (X2 = k)

= e−θ1−θ2θy1

∞∑
k=max(−y,0)

(θ1θ2)
k

k! (y + k)!

P (Y = y) = e−θ1−θ2θy1

∞∑
k=0

(θ1θ2)
k

k! (y + k)!
, y = · · · ,−1, 0, 1, · · ·

with the convention that any term with negative factorial in the denominator
is zero.

P (Y = y) = e−θ1−θ2θy10F̃1 (; y + 1; θ1θ2) , y = · · · ,−1, 0, 1, · · ·
(2) The special case when θ2 = 0 can be considered directly using Formula II

to get the Poisson difference(θ1,0)≡Poisson(θ1). Let Y ∼PD(θ1, θ2), and
assume that θ2 = 0 then

P (Y = y) = e−θ1θy10F̃1 (; y + 1; 0) , y = · · · ,−1, 0, 1, · · ·
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=


e−θ1θy1
y! , y = 0, 1, 2, · · ·

0, otherwise,

since

0F̃1 (; y + 1; 0) =

{
1
y! , y = 0, 1, 2, · · ·
0, otherwise.

This special case is not applicable when using the notation with the modified
Bessel function of the first kind since θ2 appears in the denominator.

(3) The special case when θ1 = 0 can be considered directly using Formula III to
get the Poisson difference (0, θ2) ≡’negative’ Poisson(θ2). Let Y ∼PD(θ1,θ2),
and assume that θ1 = 0 then

P (Y = y) = e−θ2θ−y2 0F̃1 (;−y + 1; 0) , y = · · · ,−1, 0, 1, · · ·

=


e−θ2θ−y2

(−y)! , y = 0,−1,−2, · · ·

0, otherwise,

since

0F̃1 (;−y + 1; 0) =

{
1

(−y)! , y = 0,−1,−2, · · ·
0, otherwise.

This special case is not applicable using the notation with the modified
Bessel function of the first kind since θ1 appears in the numerator and a
direct substitution will yield zero.

(4) A more general formula for the probability mass function of the PD distri-
bution for which Formula II and III are special cases is as follows:
Formula IV

P (Y = y) = e−θ1−θ2 (θ1θ2)
max{0,−y}

θy10F̃1 (; |y|+ 1; θ1θ2) ,

for y = · · · ,−1, 0, 1, · · · .

4. Estimation

The PD distribution had been introduced more than 70 years ago. Till now only mo-
ment estimates are used in the literature and recently maximum likelihood estimates
via EM algorithm were obtained by Karlis and Ntzoufras [7] avoiding to maximize
the likelihood directly. Karlis and Ntzoufras [8] derived also Bayesian estimates and
used the Bayesian approach for testing the equality of the two parameters of the PD
distribution.

In this section, we focus on the estimation of the parameters θ1 and θ2 of the PD
distribution. The maximum likelihood estimates are presented and are compared
with the moment estimates via a Monte Carlo study. Asymptotic properties of
the maximum likelihood estimates are exploited and confidence interval for each
parameter is obtained for the first time. Likelihood ratio test for testing the equality
of the two parameters is introduced.



On The Poisson Difference Distribution Inference and Applications 23

4.1. The method of moments

Let Z1, Z2, · · · , Zn be i.i.d. PD (θ1, θ2), then

(4.1) θ̂1MM =
1

2

(
S2 + Z̄

)
and

(4.2) θ̂2MM =
1

2

(
S2 − Z̄

)
,

where Z̄ is the sample mean and S2 is the sample variance. The moment estimators
are unbiased estimators. The moment estimates do not exist if S2 −

∣∣Z̄∣∣ < 0 since
in this case we would obtain negative estimates of θ1 or θ2 [7]. That is, moment
estimates do not exist when the sample variance is less than the absolute value of
the sample mean. In simulated samples or real data, cases like this happen usually
when one of the parameters is very small compared to the other i.e. θi/θj ≥ 10
for i, j = 1, 2. To solve this problem, a modification is done such that the negative
estimate is set to zero since zero is the smallest possible value and the other estimate
is set to equal the absolute value of the mean.

4.2. Maximum likelihood estimation

Let Z1, Z2, · · · , Zn be i.i.d. PD (θ1, θ2). The likelihood function is given by

L =

n∏
i=1

P (Zi = zi) =

n∏
i=1

[
e−θ1−θ2

(
θ1

θ2

)zi/2
Izi

(
2
√
θ1θ2

)]
.

Using the differentiation formula for the modified Bessel function we differentiate
the log-likelihood with respect to θ1 and θ2 as follows

∂ lnL

∂θ1
= −n+

∑n
i=1 zi
2θ1

+
θ2√
θ1θ2

n∑
i=1

zi
2
√
θ1θ2

Izi
(
2
√
θ1θ2

)
+ Izi+1

(
2
√
θ1θ2

)
Izi
(
2
√
θ1θ2

)
= −n+

∑n
i=1 zi
θ1

+
θ2√
θ1θ2

n∑
i=1

Izi+1

(
2
√
θ1θ2

)
Izi
(
2
√
θ1θ2

)(4.3)

∂ lnL

∂θ2
= −n−

∑n
i=1 zi
2θ2

+
θ1√
θ1θ2

n∑
i=1

zi
2
√
θ1θ2

Izi
(
2
√
θ1θ2

)
+ Izi+1

(
2
√
θ1θ2

)
Izi
(
2
√
θ1θ2

)
= −n+

θ1√
θ1θ2

n∑
i=1

Izi+1

(
2
√
θ1θ2

)
Izi
(
2
√
θ1θ2

) .(4.4)

The maximum likelihood estimators θ̂1MLE and θ̂2MLE are obtained by setting (4.3)
and (4.4) to zero and solving the two nonlinear equations

(4.5) 0 = −n+

n∑
i=1

zi

θ̂1MLE

+
θ̂2MLE√

θ̂1MLE θ̂2MLE

n∑
i=1

Izi+1

(
2
√
θ̂1MLE θ̂2MLE

)
Izi

(
2
√
θ̂1MLE θ̂2MLE

)
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and

(4.6) 0 = −n+
θ̂1MLE√

θ̂1MLE θ̂2MLE

n∑
i=1

Izi+1

(
2
√
θ̂1MLE θ̂2MLE

)
Izi

(
2
√
θ̂1MLE θ̂2MLE

) .

Note that multiplying equation (4.5) by θ̂1MLE and equation (4.6) by θ̂2MLE and
subtracting them we get

−nθ̂1MLE − nθ̂2MLE +

n∑
i=1

zi = 0,

(4.7) θ̂1MLE = θ̂2MLE + z.

Now, substituting equation (4.7) into equation (4.6) we obtain

(4.8) 0 = −n+

(
θ̂2MLE + z

)
√(

θ̂2MLE + z
)
θ̂2MLE

n∑
i=1

Izi+1

(
2

√(
θ̂2MLE + z

)
θ̂2MLE

)
Izi

(
2

√(
θ̂2MLE + z

)
θ̂2MLE

) .

Hence, we can find θ̂2MLE by solving the nonlinear equation (4.8) and then find

θ̂1MLE using equation (4.7).

Using the identity, (∂0F̃1 (;x+ 1; θ))/∂θ = 0F̃1 (;x+ 2; θ), maximum likelihood
estimates could also be obtained using Formulas II and III.

Using Formula II, one can find θ̂2MLE by solving the nonlinear equation

(4.9) 0 = −n+
(
θ̂2MLE +X

) n∑
i=1

0F̃1

(
;xi + 2;

(
θ̂2MLE +X

)
θ̂2MLE

)
0F̃1

(
;xi + 1;

(
θ̂2MLE +X

)
θ̂2MLE

)
and

(4.10) θ̂1MLE = θ̂2MLE +X.

Remark 4.1. All three Formulas (I, II and III) gave identical maximum likelihood
estimates when the relative difference between θ1 and θ2 was not large (less than 10)
when solving the nonlinear equation. But when θ1 > 10θ2, the nonlinear equations
using Formulas I or III were not as fast to converge as using Formula II and were
more willing to obtain negative estimate for θ2 than Formula II. On the other side, for
θ2 > 10θ1, the nonlinear equations using Formulas I or II were not as fast to converge
as using Formula III and were more willing to obtain negative estimates for θ1 than
Formula III. Hence, for maximum likelihood estimation, when the relative difference
between θ1 and θ2 is not large any formula can be used. If θ1 is much larger than θ2,
Formula II gives better estimate. If θ2 is much larger than θ1, Formula III gives better
estimate. This is also an advantage of using the new representation. It is possible
(but very rare) that the maximum likelihood estimates result as negative values
when the relative difference between the two estimates is very large a modification
as stated in the method of moments is considered.
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4.3. Asymptotic properties of the maximum likelihood estimates

Tests and confidence intervals can be based on the fact that the maximum likelihood
estimator Θ̂ = (θ̂1MLE , θ̂2MLE) is asymptotically normally distributedN2

(
Θ, I−1(Θ)

)
or more accurately that

√
n(Θ̂−Θ) is asymptotically N2(0, nI−1(Θ)), where I(Θ)

is the Fisher information matrix with entries

(4.11) Ii,j (Θ) = E

(
−∂2 logL (Θ)

∂θi∂θj

)
, i, j = 1, 2.

Under mild regularity conditions, n−1 times the observed information matrix I(Θ̂)
is a consistent estimator of I(Θ)/n.

The observed information matrix using Formula II is given by

I
(

Θ̂
)

=

(
I11 I12

I21 I22

)
where

I11 = −∂
2 logL

∂θ2
1

∣∣∣∣
θ1=θ̂1

=

n∑
i=1

zi

θ̂2
1MLE

− θ̂2
2MLE

n∑
i=1

 0F̃1

(
zi + 1, θ̂1MLE θ̂2MLE

)
0F̃1

(
zi + 3, θ̂1MLE θ̂2MLE

)
0F̃1

(
zi + 1, θ̂1MLE θ̂2MLE

)2

−
0F̃1

(
zi + 2, θ̂1MLE θ̂2MLE

)2

0F̃1

(
zi + 1, θ̂1MLE θ̂2MLE

)2

 ,

I22 = −∂
2 logL

∂θ2
2

∣∣∣∣
θ2=θ̂2

= −θ̂2
1MLE

n∑
i=1

 0F̃1

(
zi + 1, θ̂1MLE θ̂2MLE

)
0F̃1

(
zi + 3, θ̂1MLE θ̂2MLE

)
0F̃1

(
zi + 1, θ̂1MLE θ̂2MLE

)2

−
0F̃1

(
zi + 2, θ̂1MLE θ̂2MLE

)2

0F̃1

(
zi + 1, θ̂1MLE θ̂2MLE

)2


and

I21 = I12 = −∂
2 logL

∂θ1∂θ2

∣∣∣∣
θ1=θ̂1,θ2=θ̂2

= −
n∑
i=1

0F̃1

(
zi + 2, θ̂1MLE θ̂2MLE

)
0F̃1

(
zi + 1, θ̂1MLE θ̂2MLE

)



26 A. A. Alzaid and M. A. Omair

− θ̂1MLE θ̂2MLE

n∑
i=1

 0F̃1

(
zi + 1, θ̂1MLE θ̂2MLE

)
0F̃1

(
zi + 3, θ̂1MLE θ̂2MLE

)
0F̃1

(
zi + 1, θ̂1MLE θ̂2MLE

)2

−
0F̃1

(
zi + 2, θ̂1MLE θ̂2MLE

)2

0F̃1

(
zi + 1, θ̂1MLE θ̂2MLE

)2

 .
The 95% confidence intervals for θ1 and θ2 are obtained by

(4.12) θ̂1 ± 1.96

√
I22

I11I22 − I2
12

and θ̂2 ± 1.96

√
I11

I11I22 − I2
12

.

5. Testing

The likelihood ratio test is a statistical test for making a decision between two
hypotheses based on the value of this ratio.

5.1. Likelihood ratio test for equality of the parameters

Let x1, x2, · · · , xn be the outcome of a random sample of size n with respect to the
variable X. We consider the likelihood ratio test (LRT) for the null hypothesis:
H0 : The data is drawn from PD (θ, θ) against the alternative,
H1 : The data is drawn from PD (θ1, θ2).

The LRT statistic is written as

(5.1) λn =
f
(
x1, x2, · · · , xn; θ̂

)
f
(
x1, x2, · · · , xn; θ̂1, θ̂2

) ,
where f(x1, x2, · · · , xn; θ̂) denotes the likelihood function of the sample under the

null hypothesis calculated at maximum likelihood estimate of θ and f(x1, x2, · · · , xn; θ̂1, θ̂2)
denotes the likelihood function of the sample under the alternative hypothesis cal-
culated at maximum likelihood estimates of θ1 and θ2.

Under H0 the likelihood function is given by

(5.2) f (x1, x2, · · · , xn; θ) = e−2nθθ
∑n
i=1 xi

n∏
i=1

0F̃1

(
xi + 1, θ2

)
.

The log-likelihood is given by

(5.3) ln f (x1, x2, · · · , xn; θ) = −2nθ +

(
n∑
i=1

xi

)
ln θ +

n∑
i=1

ln 0F̃1

(
xi + 1, θ2

)
.

The maximum likelihood estimate θ̂ of θ is obtained by solving the nonlinear equation

(5.4)
∂ ln f (x1, x2, · · · , xn; θ)

∂θ
= −2n+

∑n
i=1 xi
θ

+ 2θ

n∑
i=1

0F̃1

(
xi + 2, θ2

)
0F̃1 (xi + 1, θ2)

= 0.
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And hence,

(5.5) f
(
x1, x2, · · · , xn; θ̂

)
= e−2nθ̂ θ̂

∑n
i=1 xi

n∏
i=1

0F̃1

(
xi + 1, θ̂2

)
.

Under H1,

(5.6) f
(
x1, x2, · · · , xn; θ̂1, θ̂2

)
= e−nθ̂1−nθ̂2 θ̂

∑n
i=1 xi

1

n∏
i=1

0F̃1

(
xi + 1, θ̂1θ̂2

)
,

− 2 lnλn

= −2

 −2nθ̂ + (
∑n
i=1 xi) ln θ̂ +

∑n
i=1 ln 0F̃1

(
xi + 1, θ̂2

)
−
(
−nθ̂1 − nθ̂2 + (

∑n
i=1 xi) ln θ̂1 +

∑n
i=1 ln 0F̃1

(
xi + 1, θ̂1θ̂2

))  .(5.7)

Under regularity condition for large values of n, −2 lnλn has chi-square distribution
with one degree of freedom. We reject H0 if −2 lnλn > χ2

1−α,1.

5.2. Likelihood ratio test for θ2 = 0

If the observed data were all nonnegative integer values even though they are differ-
ences, it is interesting to test if Poisson distribution can fits the data as well as the
Poisson difference or not.

Let x1, x2, · · · , xn be the outcomes of a random sample of size n with respect to
the variable X where all these outcomes are nonnegative integer values. We consider
the LRT for the null hypothesis:
H0 : The data is drawn from Poisson (θ1) (i.e. θ2 = 0) against the alternative,
H1 : The data is drawn from PD (θ1, θ2).

The LRT statistic is written as

(5.8) λn =
f
(
x1, x2, · · · , xn; θ̂01

)
f
(
x1, x2, · · · , xn; θ̂1, θ̂2

) ,
where f(x1, x2, · · · , xn; θ̂01) denotes the likelihood function of the sample under the
null hypothesis calculated at maximum likelihood estimate of θ1 and f(x1, x2, · · · , xn;

θ̂1, θ̂2) denotes the likelihood function of the sample under the alternative hypothesis
calculated at maximum likelihood estimates of θ1 and θ2.

Under H0 the likelihood function is given by

(5.9) f
(
x1, x2, · · · , xn; θ̂01

)
= e−nx̄x̄

∑n
i=1 xi /

n∏
i=1

xi!

Under H1,

(5.10) f
(
x1, x2, · · · , xn; θ̂1, θ̂2

)
= e−nθ̂1−nθ̂2 θ̂

∑n
i=1 xi

1

n∏
i=1

0F̃1

(
xi + 1, θ̂1θ̂2

)
.

Therefore,

−2 lnλn = −2

[
−nX̄ +

(
n∑
i=1

xi

)
ln X̄ −

n∑
i=1

lnxi!
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−

(
−nθ̂1 − nθ̂2 +

(
n∑
i=1

xi

)
ln θ̂1 +

n∑
i=1

ln 0F̃1

(
xi + 1, θ̂1θ̂2

))]
.(5.11)

Under regularity condition for large values of n, −2 lnλn has chi-square distribution
with one degree of freedom. We reject H0 if −2 lnλn > χ2

1−α,1.

6. Simulation study

The main objective of this section is to discuss some simulation results for computing
the estimates of the parameters of PD (θ1, θ2) using the method of moments and the
maximum likelihood method.

To generate one observation, Z, from PD (θ1, θ2) we generated one observation,
X, from the Poisson distribution with parameter θ1 and an independent observation,
Y , from the Poisson distribution with parameter θ2 and computed Z = X − Y .

In this simulation study we used 1000 samples of size n = 10, 20, 30, 50, 100, 150
and 200 and different values of θ1 and θ2.

We calculated the bias and used the relative mean square error (RMSE) as mea-
sures of the performance of the estimates in all the considered methods of estimation,
where

(6.1) BIAS
(
θ̂i

)
=

1

r

r∑
j=1

(
θ̂ji − θi

)
,

(6.2) RMSE
(
θ̂i

)
=

1

θi

1

r

r∑
j=1

(
θ̂ji − θi

)2

1/2

for i = 1, 2 and r = 1000.
Tables 1–3 and Figures 1–8 illustrate some of the results.
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Table 1. Estimation result when θ1 = 0.1 and θ2 = 0.1, 0.5, 1, 5, 10, 20, 40, 100

θ1 θ2 n BIAS
θ1MLE

BIAS
θ2MLE

RMSE
θ1MLE

RMSE
θ2MLE

BIAS
θ1MM

BIAS
θ2MM

RMSE
θ1MM

RMSE
θ2MM

0.1 0.1 10 -0.0132 -0.0054 1.2930 1.0322 -0.0002 0.0076 1.1212 1.1572
0.1 0.1 30 0.0013 -0.0018 0.6077 0.5903 0.0019 -0.0011 0.6379 0.6200
0.1 0.1 50 -0.0010 0.0004 0.4777 0.4769 -0.0007 0.0007 0.4990 0.5052
0.1 0.5 10 0.0046 0.0000 1.3411 0.4941 0.0085 0.0039 1.8019 0.5563
0.1 0.5 30 -0.0054 -0.0025 0.7032 0.2721 -0.0081 -0.0052 0.9085 0.2986
0.1 0.5 50 -0.0041 0.0003 0.5905 0.2083 -0.0041 0.0003 0.7721 0.2264
0.1 1 10 -0.0002 0.0006 1.7204 0.3463 0.0718 0.0726 2.4962 0.4272
0.1 1 30 -0.0004 -0.0061 0.9780 0.1993 0.0196 0.0139 1.2906 0.2223
0.1 1 50 -0.0039 -0.0018 0.7238 0.1494 0.0102 0.0124 1.0872 0.1768
0.1 5 10 -0.0865 -0.0641 1.3821 0.1442 0.3465 0.3689 8.9107 0.2359
0.1 5 30 -0.0785 -0.0782 1.2607 0.0835 0.2210 0.2214 5.5154 0.1390
0.1 5 50 -0.0646 -0.0498 1.1949 0.0684 0.1444 0.1592 3.9078 0.1062
0.1 10 10 -0.0971 -0.0599 0.9916 0.1013 0.7334 0.7706 17.4268 0.2055
0.1 10 30 -0.0942 -0.0942 0.9819 0.0588 0.4983 0.4983 10.9426 0.1244
0.1 10 50 -0.0919 -0.0726 0.9752 0.0468 0.3464 0.3657 7.7686 0.0935
0.1 20 10 -0.0984 -0.1232 0.9937 0.0730 1.8747 1.8499 37.9693 0.2089
0.1 20 30 -0.0964 -0.0974 0.9895 0.0407 0.9964 0.9954 20.5929 0.1123
0.1 20 50 -0.0954 -0.0866 0.9856 0.0319 0.7507 0.7595 15.1794 0.0808
0.1 40 10 -0.0992 -0.1304 0.9968 0.0514 3.8079 3.7767 76.1753 0.2009
0.1 40 30 -0.0978 -0.0974 0.9931 0.0286 2.0356 2.0360 41.0485 0.1077
0.1 40 50 -0.0982 -0.0855 0.9929 0.0224 1.5613 1.5741 30.3452 0.0779
0.1 100 10 -0.0997 -0.1514 0.9990 0.0324 9.5382 9.4865 187.956 0.1927
0.1 100 30 -0.0996 -0.1001 0.9985 0.0180 5.1811 5.1806 102.720 0.1049
0.1 100 50 -0.0993 -0.0773 0.9976 0.0141 4.0074 4.0294 76.3022 0.0769
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Table 2. Estimation result when θ1 = 3 and θ2 = 0.1, 0.5, 1, 5, 10, 20, 40, 100

θ1 θ2 n BIAS
θ1MLE

BIAS
θ2MLE

RMSE
θ1MLE

RMSE
θ2MLE

BIAS
θ1MM

BIAS
θ2MM

RMSE
θ1MM

RMSE
θ2MM

3 0.1 10 -0.0400 -0.0363 0.1968 2.4765 0.2439 0.2476 0.2856 6.2152
3 0.1 30 -0.0352 -0.0322 0.1164 1.6012 0.1039 0.1069 0.1503 3.1133
3 0.1 50 -0.0259 -0.0302 0.0918 1.3618 0.0719 0.0676 0.1152 2.3882
3 0.5 10 -0.1100 -0.1131 0.2514 1.1856 0.0088 0.0057 0.3295 1.7551
3 0.5 30 -0.0570 -0.0482 0.1558 0.7619 -0.0064 0.0024 0.1791 0.9222
3 0.5 50 -0.0404 -0.0471 0.1254 0.6125 -0.0124 -0.0191 0.1412 0.7116
3 1 10 -0.1593 -0.1720 0.3146 0.8777 0.0037 -0.0090 0.3568 1.0020
3 1 30 -0.0661 -0.0544 0.1866 0.5056 -0.0101 0.0016 0.1977 0.5373
3 1 50 -0.0436 -0.0501 0.1461 0.3867 -0.0138 -0.0203 0.1525 0.4104
3 5 10 -0.3663 -0.3912 0.6018 0.3752 0.0061 -0.0188 0.6450 0.4043
3 5 30 -0.1499 -0.1201 0.3542 0.2171 -0.0219 0.0080 0.3559 0.2209
3 5 50 -0.0834 -0.0901 0.2618 0.1620 -0.0137 -0.0204 0.2679 0.1655
3 10 10 -0.5394 -0.5760 0.8937 0.2858 0.0221 -0.0145 1.0264 0.3236
3 10 30 -0.2851 -0.2418 0.5563 0.1716 -0.0466 -0.0033 0.5682 0.1763
3 10 50 -0.1359 -0.1421 0.4144 0.1300 -0.0005 -0.0067 0.4256 0.1331
3 20 10 -0.6859 -0.7406 1.0528 0.1714 0.8143 0.7596 1.5387 0.2439
3 20 30 -0.3527 -0.2938 0.8026 0.1237 0.0872 0.1460 0.9013 0.1400
3 20 50 -0.1722 -0.1821 0.6868 0.1070 0.0792 0.0692 0.7179 0.1115
3 40 10 -2.0415 -2.1197 0.9312 0.0866 2.4659 2.3877 2.7106 0.2109
3 40 30 -1.2048 -1.1220 0.8843 0.0717 0.7948 0.8776 1.4775 0.1140
3 40 50 -0.9959 -1.0106 0.8395 0.0669 0.5640 0.5493 1.2099 0.0933
3 100 10 -2.5942 -2.7140 0.9712 0.0439 7.9947 7.8749 6.4012 0.1954
3 100 30 -2.3632 -2.2271 0.9413 0.0331 3.4991 3.6352 3.2574 0.0992
3 100 50 -2.2448 -2.2589 0.9291 0.0311 2.8107 2.7965 2.6622 0.0810
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Table 3. Estimation result when θ1 = 20 and θ2 = 0.1, 0.5, 1, 5, 10, 20, 40, 100

θ1 θ2 n BIAS
θ1MLE

BIAS
θ2MLE

RMSE
θ1MLE

RMSE
θ2MLE

BIAS
θ1MM

BIAS
θ2MM

RMSE
θ1MM

RMSE
θ2MM

20 0.1 10 -0.1042 -0.0982 0.0710 0.9941 1.8702 1.8762 0.2116 39.4132
20 0.1 30 -0.0957 -0.0965 0.0427 0.9909 0.9647 0.9640 0.1050 19.3010
20 0.1 50 -0.0830 -0.0957 0.0320 0.9824 0.7267 0.7140 0.0811 14.8676
20 0.5 10 -0.4656 -0.4664 0.0749 0.9784 1.6849 1.6841 0.2135 8.0079
20 0.5 30 -0.4115 -0.4064 0.0494 0.9462 0.7716 0.7767 0.1069 3.9424
20 0.5 50 -0.3680 -0.3831 0.0394 0.9215 0.5373 0.5222 0.0841 3.0937
20 1 10 -0.7847 -0.7951 0.0847 0.9564 1.4707 1.4603 0.2171 4.0909
20 1 30 -0.6256 -0.6177 0.0627 0.9020 0.5748 0.5828 0.1127 2.0982
20 1 50 -0.5054 -0.5204 0.0539 0.8781 0.3618 0.3468 0.0894 1.6696
20 5 10 -0.8775 -0.9001 0.2545 0.9957 0.0209 -0.0017 0.3039 1.2054
20 5 30 -0.4062 -0.3801 0.1517 0.5914 -0.0152 0.0109 0.1598 0.6277
20 5 50 -0.3174 -0.3326 0.1253 0.4896 -0.0684 -0.0836 0.1273 0.4976
20 10 10 -2.2817 -2.3030 0.3474 0.6982 -0.4740 -0.4953 0.3404 0.6837
20 10 30 -0.5415 -0.4884 0.2070 0.4139 0.0875 0.1405 0.2000 0.3995
20 10 50 -0.2659 -0.2673 0.1495 0.2989 0.0295 0.0281 0.1499 0.2992
20 20 10 -2.4851 -2.5179 0.4270 0.4317 -0.6085 -0.6413 0.4537 0.4584
20 20 30 -0.4914 -0.4246 0.2564 0.2570 0.1574 0.2242 0.2639 0.2649
20 20 50 -0.3720 -0.3744 0.1966 0.1978 0.0098 0.0074 0.1996 0.2008
20 40 10 -3.3294 -3.4121 0.7015 0.3503 0.4396 0.3569 0.7121 0.3549
20 40 30 -1.1249 -1.1077 0.4036 0.2034 0.1001 0.1173 0.3873 0.1956
20 40 50 -0.5934 -0.6097 0.3193 0.1605 0.1552 0.1390 0.3087 0.1553
20 100 10 -2.4862 -2.5904 1.0489 0.2105 0.7053 0.6011 1.4005 0.2800
20 100 30 -1.1913 -1.1674 0.7057 0.1421 0.3341 0.3580 0.7704 0.1550
20 100 50 -0.8106 -0.8495 0.5775 0.1161 0.3308 0.2919 0.6079 0.1221
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Figure 1. Bias of θ1 using MM and ML versus sample size when θ1 = 0.3, θ2 = 0.3

Figure 2. Bias of θ1 using MM and ML versus sample size when θ1 = 0.3, θ2 = 3
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Figure 3. Bias of θ1 using MM and ML versus sample size when θ1 = 1, θ2 = 1

Figure 4. Bias of θ1 using MM and ML versus sample size when θ1 = 1, θ2 = 20
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Figure 5. RMSE of θ1 using MM and ML versus sample size when θ1 =

0.3, θ2 = 0.3

Figure 6. RMSE of θ1 using MM and ML versus sample size when θ1 =

0.3, θ2 = 3
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Figure 7. RMSE of θ1 using MM and ML versus sample size when θ1 = 1, θ2 = 1

Figure 8. RMSE of θ1 using MM and ML versus sample size when θ1 = 1, θ2 = 20



36 A. A. Alzaid and M. A. Omair

In order to investigate the power of LRT for equality of the two parameters, the
empirical power of the test was examined. The empirical power of the test is defined
as the proportion of times the null hypothesis was rejected when the data actually
were generated under the alternative hypothesis using 1000 replications.

For each of a sample size n = 30, 50 and 100, the power of the test is com-
puted under various choices for the parameters of the alternative distribution. We
obtain the power at θ1 = 0.1, 0.3, 0.5, 1, 3, 5, 10, 20 and 50 and θ2 = cθ1 for
c = 0.1, 0.2, 0.3, 0.5, 1, 1.1, 1.2, 1.3 and 1.5. Note that c = 1 corresponds to the
null hypothesis and the calculated values are the empirical type one error of the test.

Table 4 shows the power of the test when the significance level is 5%, while Table
5 shows the power of the test when the significance level is 1%.

Table 4. Power of the LRT of equal parameters when the significance level is 5%

θ1 n c=0.1 c=0.2 c=0.3 c=0.5 c=1 c=1.1 c=1.2 c=1.3 c=1.5

0.1

30 0.498 0.373 0.314 0.179 0.064 0.053 0.037 0.039 0.049
50 0.645 0.463 0.324 0.152 0.033 0.05 0.046 0.063 0.1
100 0.868 0.702 0.535 0.262 0.047 0.046 0.063 0.1 0.171

0.3

30 0.83 0.653 0.467 0.233 0.036 0.064 0.076 0.095 0.147
50 0.96 0.853 0.689 0.339 0.052 0.056 0.079 0.125 0.239
100 1 0.994 0.949 0.645 0.041 0.043 0.092 0.206 0.42

0.5

30 0.958 0.853 0.688 0.337 0.048 0.058 0.088 0.127 0.247
50 1 0.983 0.892 0.542 0.053 0.066 0.099 0.165 0.347
100 1 1 0.998 0.86 0.039 0.067 0.136 0.307 0.635

1

30 0.999 0.992 0.931 0.612 0.064 0.076 0.131 0.21 0.411
50 1 1 0.996 0.827 0.046 0.081 0.156 0.283 0.598
100 1 1 1 0.991 0.045 0.112 0.282 0.531 0.904

3

30 1 1 0.999 0.965 0.056 0.115 0.261 0.474 0.837
50 1 1 1 0.999 0.055 0.136 0.372 0.674 0.98
100 1 1 1 1 0.041 0.219 0.63 0.939 1

5

30 1 1 1 1 0.06 0.13 0.368 0.664 0.972
50 1 1 1 1 0.061 0.189 0.536 0.885 1
100 1 1 1 1 0.045 0.334 0.835 0.993 1

10

30 1 1 1 1 0.064 0.215 0.639 0.911 1
50 1 1 1 1 0.057 0.308 0.844 0.991 1
100 1 1 1 1 0.043 0.563 0.994 1 1

20

30 1 1 1 1 0.063 0.373 0.914 0.999 1
50 1 1 1 1 0.06 0.58 0.987 1 1
100 1 1 1 1 0.042 0.855 1 1 1

50

30 1 1 1 1 0.057 0.769 0.999 1 1
50 1 1 1 1 0.061 0.923 1 1 1
100 1 1 1 1 0.041 1 1 1 1
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Table 5. Power of the LRT of equal parameters when the significance level is 1%

θ1 n c=0.1 c=0.2 c=0.3 c=0.5 c=1 c=1.1 c=1.2 c=1.3 c=1.5

0.1

30 0.091 0.059 0.045 0.031 0.007 0.005 0.001 0.004 0.006
50 0.38 0.248 0.162 0.061 0.009 0.013 0.016 0.015 0.029
100 0.711 0.472 0.302 0.119 0.009 0.014 0.018 0.024 0.065

0.3

30 0.605 0.382 0.235 0.082 0.006 0.008 0.011 0.025 0.052
50 0.877 0.647 0.42 0.153 0.011 0.011 0.018 0.033 0.082
100 1 0.962 0.807 0.387 0.006 0.009 0.022 0.068 0.215

0.5

30 0.854 0.625 0.425 0.149 0.013 0.012 0.022 0.04 0.082
50 0.989 0.908 0.707 0.3 0.01 0.015 0.026 0.046 0.152
100 1 1 0.979 0.658 0.01 0.012 0.038 0.135 0.388

1

30 0.996 0.937 0.797 0.335 0.017 0.026 0.054 0.086 0.212
50 1 1 0.97 0.625 0.01 0.02 0.054 0.115 0.345
100 1 1 1 0.943 0.012 0.026 0.099 0.293 0.732

3

30 1 1 0.997 0.885 0.019 0.028 0.123 0.242 0.634
50 1 1 1 0.984 0.013 0.042 0.17 0.429 0.896
100 1 1 1 1 0.008 0.078 0.378 0.817 0.998

5

30 1 1 1 0.985 0.02 0.046 0.166 0.41 0.867
50 1 1 1 1 0.011 0.068 0.304 0.69 0.99
100 1 1 1 1 0.006 0.133 0.661 0.964 1

10

30 1 1 1 1 0.025 0.083 0.371 0.761 0.998
50 1 1 1 1 0.014 0.128 0.654 0.966 1
100 1 1 1 1 0.006 0.333 0.946 1 1

20

30 1 1 1 1 0.023 0.161 0.746 0.983 1
50 1 1 1 1 0.01 0.328 0.949 1 1
100 1 1 1 1 0.005 0.685 1 1 1

50

30 1 1 1 1 0.019 0.492 0.993 1 1
50 1 1 1 1 0.014 0.786 1 1 1
100 1 1 1 1 0.008 0.993 1 1 1
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Discussion of the simulation results:

(1) The maximum likelihood estimates are better than the moment estimates in
terms of relative mean square error. Out of the 700 different cases considered

in this simulation the RMSE of θ̂1MLE is less than θ̂1MM in 669 cases and
RMSE of θ̂2MLE is less than θ̂2MM in 672 cases.

(2) The RMSE differ substantially between the two methods of estimation when
there is a large relative difference between the two parameters. In these
cases the maximum likelihood estimates are much better than the moment
estimates in terms of relative mean square error as shown by the Figures
1–8.

(3) In terms of bias, the method of moment is better than the maximum like-
lihood method when the relative difference between the two parameters is
small or moderate since the moment estimates are unbiased. The maximum
likelihood estimates are much better than the moment estimates in terms
of the bias when the relative difference between the two parameters is large
and the sample size is small, while the method of moment becomes better
for large sample size.

(4) When there is no large relative difference between the two parameters, both
methods are good. As well as, for large sample size, both methods can be
used even when there is large relative difference.

(5) When both θ1 and θ2 are large, moment estimates and ML estimates are
very close as expected since the distribution approaches normality.

(6) As expected, the RMSE always decreases as the sample size increases in
both methods of estimation. It has been noticed that the RMSE increases
with the decreases of the parameter in both methods.

(7) The maximum likelihood estimators are frequently negatively biased and the
bias decreases as the sample size increases.

(8) The LRT test has lower performance when it is used to detect components
that are very close, in other words the power of the test increase with the
relative distance of the components.

(9) Considering the value of c fixed, the power increases as the values of θ1 and
θ2 increase.

(10) When we increase the sample size, the power improves as expected.
(11) At c = 1, the type one error is smaller or around 0.05 in the 5% level of

significance table and is smaller or around 0.01 in the 1% level of significance
table.

7. Applications

7.1. Application to the Saudi Stock Exchange data

The data has been downloaded from the Saudi Stock Exchange and further filtered.
Trading in Saudi Basic Industry (SABIC) and Arabian Shield from the Saudi stock
exchange (TASI) were recorded at June 30, 2007, every minute. The Saudi Stock
Exchange opens at 11.00 am and closes at 3.30 pm. Missing minutes have been
added with a zero price change. The first and final 15 minutes of the trading day,
were deleted from the data. The reason for this is that we only focus on studying the
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price formation during ordinary trading. The minimum amount a price can move
is SAR 0.25 in Saudi stock i.e. the tick size is 0.25. The price change is therefore
characterized by discrete jumps. The data consists of the difference in price every
minute as number of ticks = (close price-open price) ∗ 4. Note that, our considered
data could take both positive and negative integer values.

In Figure 9 and 10, the price change at every minute is illustrated in terms
of number of ticks for SABIC and Arabian Shield. Descriptive statistics of the
considered data are presented in Table 6.

Figure 9. Plot of the price change every minute for SABIC

Figure 10. Plot of the price change every minute for Arabian Shield
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Table 6. Descriptive statistics for SABIC and Arabian Shield

Variable Sample size Mean Standard Deviation Minimum Maximum
SABIC 240 -0.0833 0.6479 -2 2
Arabian
Shield

240 -0.1042 1.0276 -5 2

In order to test if our samples are random samples we conduct the runs test
on every sample. (Runs tests test whether or not the data order is random. No
assumptions are made about population distribution parameters.)

For SABIC the p-value = 0.852 and for Arabian Shield the p-value = 0.123.
Since both p-values are greater than 0.05, our samples can be considered as random
samples.

The numbers of ticks of price change take values on the integer numbers. An
appropriate distribution to fit these samples could be the PD distribution. Maximum
likelihood and moment estimates of θ1 and θ2 are obtained using methods discussed
in the previous section and illustrated in the Table 7.

Table 7. Estimation result for SABIC and Arabian Shield

Stock θ̂1MLE θ̂2MLE θ̂1MM θ̂2MM

SABIC 0.1681 0.2514 0.1682 0.2516
Arabian Shield 0.451 0.5551 0.4737 0.5779

The Pearson Chi-square test is performed to both samples to test if PD distribu-
tion gives good fit to the data. The null hypothesis is that the sample comes from PD
distribution and the alternative hypothesis is that sample does not come from PD
distribution. For SABIC the p-value = 0.449862, which implies that PD(0.168,0.251)
fits the data well. For Arabian Shield the p-value = 0.137931, which implies that
PD(0.451,0.5551) fits the data well.

The 95% confidence intervals for θ1 and θ2 are calculated for SABIC and Arabian
Shield.
SABIC: The 95% confidence intervals for θ1 is (0.1088, 0.2273) and 95% CI for θ2 is
(0.1818, 0.3211).
Arabian Shield: The 95% confidence intervals for θ1 is (0.3355, 0.5664) and 95% CI
for θ2 is (0.4327, 0.6776).

In both cases, SABIC and Arabian Shield the two confidence intervals overlapped
indicating that θ1 and θ2 could be equal. The likelihood ratio test for equality of
means is conducted and the statistic for SABIC = 3.979 and for Arabian Shield
= 2.582. The tabulated value to compare with is χ2

1,0.95 = 3.84146. For SABIC,
we reject the hypothesis that θ1 and θ2 are equal. While for Arabian Shield we fail
to reject the hypothesis that θ1 and θ2 are equal confirming the overlapping in the

confidence intervals. The maximum likelihood estimate of θ is θ̂MLE = 0.507185.
Hence PD(0.507,0.507) gives a good fit for these data.

Bar charts of the relative frequency, PD distribution estimated using the method
of moments and the maximum likelihood method for the two stocks are plotted in the
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Figures 11 and 12. In Figure 12, PD distribution with equal parameters estimated
using maximum likelihood is also plotted. Clearly, from the graphs that PD fits well
both data and no significance difference is found from the two methods of estimation
for SABIC while this is not the case for Arabian Shield.

Figure 11. SABIC and fitted distributions

Figure 12. Arabian Shield and fitted distributions

7.2. Application to nursery intensive care unit data

The numbers of occupied beds of the NICU (nursery intensive care unit) in Dallah
hospital at Riyadh, Saudi Arabia from December 12, 2005 to March 22, 2006 are
time dependent but after taking difference of every two consecutive days the resulting
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data is a random sample of size 100. This data represents the change in number of
beds during 24 hours in NICU.

Descriptive statistics of the original and the differenced data are as in Table 8.

Table 8. Number of occupied beds and the difference

Variable Sample size Mean Standard
Deviation

Minimum Maximum

No. of occu-
pied beds

100 9.861 2.250 5 17

Difference 101 -0.0300 1.654 -4 4

Figures 13 and 14 illustrate the plots of the number of occupied beds and the
difference of every two consecutive days, respectively. The runs test was applied to
both the original and the differenced data. The result of the test was that the number
of occupied beds is not a random sample (p-value=0), while after differentiating the
resulting data is a random sample (p-value=0.979).

Figure 13. Number of occupied beds in NICU
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Figure 14. Difference in number of occupied beds in NICU

The changes in number of occupied beds during 24 hours in NICU take values
on the integer numbers. A good candidate to fit this sample could be the PD
distribution. The estimation result are summarized in Table 9. Figure 15 represents
the fitted PD distributions using both methods with the relative frequency of the
data.

Table 9. Estimation result for NICU

θ̂1MLE θ̂2MLE θ̂1MM θ̂2MM

1.34236 1.37236 1.35323 1.38323

The Pearson Chi-square test is performed to test if PD distribution gives good fit
to the data. The p-value = 0.407497, which implies that PD(1.342, 1.372) fits the
data well.

The 95% CI for θ1 is (0.9089, 1.7758) and the 95% CI for θ2 is (0.93761, 1.8071).
The likelihood ratio test for equality of the parameters is conducted. The statistic

= 0.0331479 < χ2
1,0.95 = 3.84146 which implies that a Poisson difference with equal

parameters fits the data well.

The maximum likelihood estimate of θ is given by θ̂ = 1.3578.
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Figure 15. Relative frequency of occupied beds of NICU and fitted distributions

Interpretation:
If a is positive, then P (X = a) represent the probability that the number of

occupied beds in NICU increase by a during 24 hours, and if a is negative it is
the probability that the number of occupied beds in NICU decrease by a during 24
hours, while a zero value of a gives the probability that the number of occupied beds
remain the same during 24 hours.
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