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Abstract. In this work, we propose a dynamical system (state space) model
approach to find a unique minimum of quadratic programming (QP) problems
with equality constrained. The unique minimum of the optimization problem
is also proved to be asymptotically stable equilibrium point of the state space
model. To obtain the optimal solution of QP optimization problem, we seek
the limit point of the solution of the state space model by using the transfer
function rather than discretization scheme. The numerical results are shown
that the applicability and efficiency of the approach by compared with sequential
quadratic programming (SQP) method in three examples.
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1. Introduction

Optimization is an area that finds optimal solution for problems which are defined
mathematically in science, economics, engineering and other related areas. Qua-
dratic programming (QP) problem is a subclass of optimization problem with a
quadratic objective function and linear constraints.

Many efficient methods have been developed for solving these problems in the
last three decades. One of them is called penalty method. In this class of methods
we replace the original constrained problem with a sequence of unconstrained sub-
problems that minimizes the penalty function. Thereby, it is an important approach
to solve constrained optimization problems. Further information can be found in
references, [3, 4, 6, 16].

The further approaches are Ordinary Differential Equation (ODE) methods and
gradient flow method. ODE methods, which is for solving equality constrained
optimization problem is proposed by Arrow and Hurwicz [2], and developed by Pan
[15]. Recently, Jin and Zhang [10] have prepared a differential equation approach for
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solving nonlinear programming problems. Therewithal, gradient flow method was
first introduced by Evtushenko and Zhadan in 1994 [7, 8], and then used for solving
nonlinear optimization problems by Andrei [1] and Wang et al. [17].

In the same manner, state space approach can be shown as a gradient flow algo-
rithm for solving quadratic programming problems. This approach is based on the
concept of state. An important advantage of the state variable representation is that
it allows the systems to operate with several inputs and outputs without changing
the notational framework. Furthermore, state variables give us the internal behavior
of the system. It is represented as the transfer function G(s) which indicates the
input-output behavior of the system. For more details, see Kwakernaak [11] and
Ogata [14].

To obtain the solution of QP problem, we seek the limit point of the solution of
the state space model by using the transfer function of the corresponding dynamical
system rather than the forward Euler’s time-stepping scheme proposed in [7, 8] which
is known to be unstable for solving ODEs, and two level implicit time discretization
scheme in [17].

In this work, we apply the technique of state space (dynamic system) modeling to
the equality constrained QP optimization problem to find the unique optimum. The
state space approach is constructed from the gradient vector of the unconstrained
optimization problem, which is obtained from QP problem by using the quadratic
penalty function method. The paper also shows that the unique optimal solution of
the original optimization is also the asymptotically stable equilibrium point of the
state space model, vice versa.

The structure of this paper is given as follows. In Section 2, we present essen-
tial background material. In Section 3, we prove the main result, which states a
new approach for solving QP problem with equality constrained for strictly convex
functions. In Section 4, the approach presented in this paper is illustrated by three
numerical examples. And finally, conclusions will be presented.

2. Problems and preliminaries

Let us consider the following equality constrained quadratic programming problem,

(2.1) minimize f(x) =
1

2
xTGx+ gTx subject to Ex = d,

where x ∈ Rn is decision variable, G is an (n× n), real, symmetric, positive definite
matrix and the constraints are defined by an (m× n) full row rank matrix E and an
m-dimensional column vector d of right hand side coefficient. If the Hessian matrix
G is positive definite, then (2.1) is a strict convex quadratic programming problem
and x∗ is a unique global solution. We assume that a feasible solution exists and
the constraint region is bounded.

The penalty function is defined as

P (x) = f(x) + φ(x),

where the penalty term φ(x) is a function defined on Rm and satisfies

φ(x) =

{
0, if Ex− d = 0
nonnegative, if Ex− d 6= 0.
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A popular choice for φ(x) has been also called quadratic penalty term and defined
as

(2.2) φ(x) =
1

2
‖Ex− d‖22 .

In many studies a penalty function of the problem (2.1) has been defined as

(2.3) Ppk
(x) = f(x) + pkφ(x),

where pk is a penalty sequence satisfying 0 < pk < pk+1 for ∀k, pk → ∞. Indeed, the
scalar quantity pk is called the penalty parameter. Note that the penalty parameter
sequence {pk} can be chosen randomly in a rule. It means that you can choose
pk in positive constant which depends on the difficulty of minimizing the penalty
function at every iteration. The idea of the penalty function method is to reformulate
constrained optimization problem by using a sequence of unconstrained optimization
subproblems of the form

(2.4) minimize
x∈Rn

Ppk
(x).

Throughout this paper we will assume that the problem given in (2.4) has a
solution for each k. Let us denote the minimizer of Ppk

(x) by xk.

Theorem 2.1. Let {xk} be a sequence generated by the quadratic penalty method.
Then any limit point of the sequence is a solution to (2.1), [12].

3. A state space modeling with quadratic penalty function

In this section, we aim at solving the equality constrained QP problem given in (2.1).
To do that we will use trajectory defined as a system of state space equation.

We will consider the following ordinary differential equations system

(3.1)
dx

dt
= ∇xPpk

(x(t)),

which is equal to,

ẋ(t) =




ẋ1(t)
ẋ2(t)
...

ẋn(t)




=




a11(p) a12(p) · · · a1n(p)
a21(p) a22(p) · · · a2n(p)

...
...

. . .
...

an1(p) an2(p) · · · ann(p)







x1(t)
x2(t)
...

xn(t)


+




b1(p)
b2(p)
...

bn(p)


u(t).(3.2)

Equation (3.2) can be called as state space equation or vector matrix differential
equations such that

ẋ(t) = A(p)x(t) +B(p)u(t)(3.3)

y(t) = Cx(t),

where p > 0 is the large enough penalty parameter, A is the (n×n) constant matrix,
x is the (n× 1) state vector, B is the (n× 1) constant matrix, C is the (n× n) unit
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matrix and u is a constant input. We assume that the input u will be chosen as in
the following form

u(t) =

{
1; t ≥ 0
0; otherwise.

The transfer function of the system (3.3) corresponding u to y is defined by
Y (s) = G(s)U(s), where U(s) and Y (s) are the Laplace transform with respect to
u(t) and y(t) with the initial condition x(0) = 0, see Kwakernaak [11]. Hence, the
transfer function of (3.3) is

G(s) = C(sI −A)
−1

B +D(3.4)

=
1

det (sI −A)
C [Adj (sI −A)]B.

Remark 3.1. In this study, we assume that,

(a) All eigenvalues of A(p) satisfy either Re λi ≤ 0 or Re λi ≥ 0 and every
eigenvalue with Re λi = 0 has an associated Jordan block of order one.

(b) The linear system (3.3) has a minimal realization.

Definition 3.1. For big enough penalty parameter p > 0, the linear system given
in (3.3) is asymptotically stable if all eigenvalues of A(p) are in the open left half
plane.

From the Definition 3.1 and MATLAB code, we get a linear system from (3.3),
which is always stable, by using the transformation below,

(a) Re λ [A(p)] ≤ 0 =⇒ Ã(p) := A(p) and B̃(p) := B(p),

(b) Re λ [A(p)] ≥ 0 =⇒ Ã(p) := −A(p) and B̃(p) := −B(p).

Now we consider the system as follows;

ẋ(t) = Ã(p)x(t) + B̃(p)u(t)(3.5)

y(t) = Cx(t).

Definition 3.2. A point xe ∈ Rn is said to be an equilibrium point of the system of
(3.5) if x(t, xe) = xe for all t ≥ 0.

Definition 3.3. A point xe is said to be stable in the sense of Lyapunov if for any
x(t0) = x0, and any scalar ε > 0 there exists a δ > 0 such that ‖x0 − xe‖ < δ, then
‖x(t, x0)− xe‖ < ε for all t ≥ t0.

Definition 3.4. If xe is a stable equilibrium point and

(3.6) lim
t→∞

‖x(t, x0)− xe‖ = 0,

then it is said to be asymptotically stable.

Definition 3.5. A system is said to be bounded-input, bounded-output (BIBO)
stable if for all t0 and zero initial conditions at t = t0, every bounded input defined
on [t0,∞) gives rise to a bounded response on [t0,∞).

Theorem 3.1. If the linear system (3.3) is a minimal realization, then bounded-
input, bounded output stability implies asymptotic stability [18].
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Lemma 3.1. If A(p) is the (n×n) stability matrix for big enough penalty parameter
p, then there exist positive constants K and k such that∥∥∥eA(p)t

∥∥∥ ≤ Ke−kt for all t ≥ 0.

Proof. Suppose x is a generalized eigenvector of multiplicity m : ∃ λ ∈ σ(A(p))
(eigenvalue of A(p)) such that (A(p) − λI)mx = 0 but (A(p) − λI)kx 6= 0 for k =
0, 1, · · · ,m− 1. Then

eA(p)tx = eλIte(A(p)−λI)tx = eλIt
m−1∑

k=0

(A(p)− λI)ktk

k!
x.

Since the exponential series
∑∞

k=0(t
k/k!) is absolutely convergence for every operator

t, tke−εt is bounded in t for any ε > 0. Then, it follows that∥∥∥eA(p)tx
∥∥∥ ≤ KeRe λt |cos (Im λt) + i sin (Im λt)| eεt ‖x‖
≤ Ke−kt ‖x‖ ,

for sufficiently small ε.

Theorem 3.2. Suppose that Ppk
(x) is a differentiable function for a large enough

penalty parameter pk > 0. Then x∗ is a unique optimal solution for problem (2.1) if
and only if x∗ is the asymptotically stable equilibrium point for the system (3.5).

Proof. We first prove the necessary condition. Suppose that x∗ be a unique opti-
mum of the equality constrained quadratic programming problem as in (2.1). By
Theorem 2.1, x∗ is also a unique optimum of the quadratic unconstrained optimiza-
tion problem as in (2.4). By virtue of the equation (3.1) and the Definition 3.1,
we get the state space modeling of the unconstrained problem. Then, by using the
optimality conditions, we have

∇xPpk
(x∗) = 0.

In other words, x∗ is an equilibrium point of the system (3.5). Let x(t0) = x0 and
M > 0 such that ‖u(t)‖ < M . Hence, the solution of the system (3.5) is

x(t, x0) = eÃ(p)(t−t0)x0 +

∫ t

t0

eÃ(p)(t−τ)B̃(p)u(τ)dτ .

To show the stability of the solution, we have to satisfy that for each ε > 0, there is
δ > 0 such that

‖x0 − x‖ < δ =⇒ ‖x(t, x0)− x∗‖ < ε, ∀t ≥ 0.

Therefore,

‖x(t, x0)− x∗‖ =

∥∥∥∥eÃ(p)(t−t0)x0 +

∫ t

t0

eÃ(p)(t−τ)B̃(p)u(τ)dτ − x∗
∥∥∥∥

≤
∥∥∥eÃ(p)(t−t0)x0 − x∗

∥∥∥+

∥∥∥∥
∫ t

t0

eÃ(p)(t−τ)B̃(p)u(τ)dτ

∥∥∥∥

≤
∥∥∥eÃ(p)(t−t0) (x0 − x∗)

∥∥∥+
∥∥∥
(
eÃ(p)(t−t0) − In×n

)
x∗

∥∥∥
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+M
∥∥∥B̃(p)

∥∥∥
∫ t

t0

∥∥∥eÃ(p)(t−τ)
∥∥∥ dτ

≤ Kek(t0−t) ‖x0 − x∗‖+Kek(t0−t) ‖x∗‖+ ‖x∗‖

+MK
∥∥∥B̃(p)

∥∥∥
∫ t

t0

ek(τ−t)dτ

= Kek(t0−t) ‖x0 − x∗‖+Kek(t0−t) ‖x∗‖+ ‖x∗‖
+MKk−1

∥∥∥B̃(p)
∥∥∥
(
1− ek(t0−t)

)

≤ K ‖x0 − x∗‖+K ‖x∗‖+ ‖x∗‖+MKk−1
∥∥∥B̃(p)

∥∥∥ .

Now if we choose

δ = K−1
(
ε− ‖x∗‖ (K + 1)−MKk−1

∥∥∥B̃(p)
∥∥∥
)
,

then x∗ becomes a stable equilibrium point of (3.5). Furthermore, we get

‖y(t)‖ =

∥∥∥∥CeÃ(p)(t−t0)x0 +

∫ t

t0

CeÃ(p)(t−τ)B̃(p)u(τ)dτ

∥∥∥∥

≤ ‖C‖
∥∥∥eÃ(p)(t−t0)

∥∥∥ ‖x0‖+ ‖C‖
∥∥∥B̃(p)

∥∥∥M
∫ t

t0

∥∥∥eÃ(p)(t−τ)
∥∥∥ dτ

≤ K ‖C‖
[
‖x0‖ ek(t0−t) +

∥∥∥B̃(p)
∥∥∥M

∫ t

t0

ek(τ−t)dτ

]

= K ‖C‖
[
‖x0‖ ek(t0−t) + k−1

∥∥∥B̃(p)
∥∥∥M

(
1− ek(t0−t)

)]
,

and so

‖y(t)‖ ≤ M1,

where

M1 = K ‖C‖
(
‖x0‖+ k−1

∥∥∥B̃(p)
∥∥∥M

)
> 0.

Thus, the output y(t) is bounded, that is, x∗ is BIBO stable equilibrium point of
(3.5) for every initial condition x(t0) = x0. Finally, by the Theorem 3.1 and Remark
3.1, x∗ is asymptotically stable equilibrium point of the system (3.5).

Now the sufficient part will be proved. Suppose that x∗ is the asymptotically
stable equilibrium point of (3.5). Thereby, for each ε > 0, there is δ > 0 and t0 = 0,
we have x(t0) = x0 such that

‖x0 − x∗‖ < δ =⇒ ‖x(t, x0)− x∗‖ < ε

and limt→∞ ‖x(t, x0)− x∗‖ = 0. Then

lim
t→∞

‖x(t, x0)− x∗‖ =
∥∥∥ lim
t→∞

(x(t, x0)− x∗)
∥∥∥ = 0

⇐⇒ lim
t→∞

(x(t, x0)− x∗) = 0 ⇐⇒ lim
t→∞

x(t, x0) = x∗.

Hence, we say that x∗ is the unique optimal solution of the problem (2.1).
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In the following part, using the Lemma 3.1 and Theorem 3.2 we developed a solu-
tion technique, which is called penalty function with state space modeling (PFSS) to
generate a global optimal solution for the problem (2.1). Moreover, we use MATLAB
program in order to execute steps in our technique.

The steps of PFSS approach summarize as follow:

Step 1. Given ε > 0, p1 > 0, k = 1.

Step 2. Replace constrained problem with unconstrained subproblem by using qua-
dratic penalty term φ(x(t)).

Step 3. Compose state space model of the quadratic penalty function Ppk
(x(t))

using the ordinary differential equation (3.1).

Step 4. Check the stability of the matrix A(p) using Definition 3.1.

Step 5. Compute transfer function G(s).

Step 6. Use the step response [c, x, t] = step (num, den, t) to find minx∈Rn Ppk
(x(t))

on MATLAB.

Step 7. If ‖Exk − d‖22 ≤ ε, stop; otherwise pk+1 = pk + 100, k = k + 1, go to Step
5.

4. Numerical results

Example 4.1. Let us consider the problem [13],

(4.1) minimize f(x) = x2
1−2x1+x2

2−x2
3+4x3 subject to x1−x2+2x3−2 = 0.

The optimal solution of the equality constrained optimization problem (4.1) is x∗ =
(2.5,−1.5,−1)T . Firstly, let us replace equality constrained optimization problem
with unconstrained subproblem by using quadratic penalty function (2.3). So we
have

(4.2) Ppk
(x) = x2

1 − 2x1 + x2
2 − x2

3 + 4x3 +
1

2
p(x1 − x2 + 2x3 − 2)2.

Then we obtain the state space modeling of the equation (4.2) by using equation
(3.1) and Definition 3.1. Thus,




ẋ1(t)
ẋ2(t)
ẋ3(t)


 =




−2− p p −2p
p −2− p 2p

−2p 2p 2− 4p







x1(t)
x2(t)
x3(t)


+




2p+ 2
−2p
4p− 4


(4.3)

y(t) =




1 0 0
0 1 0
0 0 1







x1(t)
x2(t)
x3(t)


 .

For a big enough penalty parameter p (the value of p should be larger than p = 1000),
the eigenvalues of A(p) are in the open left half plane, in addition, the eigenvalues of



86 N. Özdemir and F. Evirgen

A(p) are in stable domain. After that we acquire transfer function G(s) as follows;

G(s) =
1

s3 + 6002s2 + 15996s+ 7992




2002s2 + 18000s+ 19992
−2000s2 − 6000s− 12000
3996s2 + 3984s− 8016


 .

For numerical solution of this problem, we choose zero initial condition. By using
the PFSS approach, it can be seen that the optimal solution of x1, x2 and x3 reach
to x∗

1 = 2.5, x∗
2 = −1.5 and x∗

3 = −1 for zero initial point as shown in Figure 1.
The PFSS approach also finds optimal values of the problem (4.1) with different

initial points (1, 1, 1), (−1, 1,−1), (5, 2,−1) and (2,−3, 4).

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time t

x(
t)

 

 

x
1
(t)

x
2
(t)

x
3
(t)

Figure 1. The optimal value of x(t) in Example 4.1

Example 4.2. Consider the following QP problem with equality constrained [9],

minimize f(x) = (x1 − x2)
2
+ (x2 + x3 − 2)

2
+ (x4 − 1)

2
+ (x5 − 1)

2

subject to x1 + 3x2 − 4 = 0,
x3 + x4 − 2x5 = 0,
x2 − x5 = 0.

(4.4)

The theoretical optimal solution of the problem (4.4) is x∗ = (1, 1, 1, 1, 1)
T
. By

using the quadratic penalty function (2.3), we get the corresponding unconstrained
optimization problem as follow;

Ppk
(x) = (x1 − x2)

2
+ (x2 + x3 − 2)

2
+ (x4 − 1)

2
+ (x5 − 1)

2

+
1

2
p (x1 + 3x2 − 4)

2
+

1

2
p (x3 + x4 − 2x5)

2
+

1

2
p (x2 − x5)

2
.

Then we get state space modeling of the problem (4.4) by using the equation (3.1)
and Definition 3.1. Hence,

ẋ(t) = A (p)x(t) +B (p)u(t)(4.5)

y(t) = Cx(t),
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where

A (p) =




−p− 2 −3p+ 2 0 0 0
−3p+ 2 −10p− 4 2 0 p

0 −2 −p− 2 −p 2p
0 0 −p −p− 2 2p
0 p 2p 2p −5p− 2




,

B (p) =




4p
12p+ 4

4
2
2




and C = I5×5 identity matrix. For a big enough penalty parameter p (the value
of p should be larger than p = 1000), the eigenvalues of A(p) are 0,−2,−2,−6.
The transfer function of the state space model (4.5) can be defined as (3.4). As a
result, by using the PFSS approach for zero initial conditions, we have seen that
the trajectory of x(t) for the state space model (4.5) can be reached to the optimal

solution x∗ = (x1, x2, x3, x4, x5)
T
= (1, 1, 1, 1, 1)

T
, as shown in Figure 2.
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time t
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Figure 2. The optimal value of x(t) in Example 4.2

Example 4.3. In this example, we consider the following constrained optimiza-
tion problem with linear equality constrained which is a special form of the linear
quadratic regulator problem [5],

minimize
1

2

k∑

i=1

(
qx2

i + rz2i
)

(4.6)

subject to xi = axi−1 − bzi, for i = 1, 2, · · · , k,
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where xi is the account balance at the end of month i and zi is our payment in
month i. Suppose we currently have a credit card debt of x0 = 10000. Credit
card debts are subject to a monthly interest rate 2%, and the account balance is
increased by the interest amount every month. Each month, we have the option of
reducing the account balance by contributing a payment to the account. Over the
next k = 10 months, we plan to contribute a payment every month in such a way
as to minimize the overall debt level while at the same time minimize the hardship
of making monthly payments. We choose q = 1, r = 300, a = 1.02, b = 1 and the
penalty parameter p = 107 for solving problem.

Firstly, let us reformulate equality constrained QP problem to unconstrained
subproblems by using quadratic penalty function (2.3). So, we have

Ppk
(x, z) =

1

2

10∑

i=1

(
qx2

i + rz2i
)
+

1

2

10∑

i=1

p (xi − 1.02xi−1 + zi)
2
.

By virtue of the Definition 3.1, the linear ordinary differential equations system (3.5)
obtain as following

(
ẋ(t)
ż(t)

)
=

(
A11(p) A12(p)
A21(p) A22(p)

)(
x(t)
z(t)

)
+

(
B11(p)
B21(p)

)
,

where

A11(p) =




−q − 2.0404p 1.02p 0 · · · 0

1.02p −q − 2.0404p 1.02p
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1.02p −q − 2.0404p 1.02p

0 · · · 0 1.02p −q − p



,

A12(p) =




−p 1.02p 0 · · · 0

0 −p 1.02p
. . .

...
...

. . .
. . .

. . . 0
1.02p

0 · · · 0 −p



,

A21(p) =




−p 0 · · · 0

1.02p
. . .

. . .
...

0
. . .

...
. . . 0

0 · · · 0 1.02p −p



,

A22(p) =




−r − p 0 · · · 0

0
. . .

. . .
...

...
. . . 0

0 · · · 0 −r − p
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are (10× 10) dimensional square matrices and

B11(p) =




1.02× 104p
0
...
0


 0,

B21(p) =




1.02× 104p
0
...
0




are (10× 1) column matrices.
For numerical solution of all xi and zi (i = 1, 2, · · · , 10), we choose zero initial

condition. A unique optimal solution for problem (4.6) is illustrated in Figure 3,
Figure 4 and Table 1.
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Figure 3. The optimal values of x(t) and z(t) in Example 4.3

Table 1. Numerical Result of Example 4.3

i 1 2 3 4 5 6 7 8 9 10

xi 9844.7 9725.4 9641.6 9593.2 9579.9 9601.7 9658.6 9750.8 9878.8 10043

zi 355.34 316.2 278.22 241.25 205.17 169.84 135.13 100.92 67.075 33.476

We use the ordinary differential equations system (3.1) to solve the problem (4.6)
and all simulation results show that our optimal solution correspond to the theoret-
ical solution.
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Figure 4. The optimal values of x(t) and z(t) in Example 4.3

In Table 2, it shows that the PFSS approach and SQP method are compared with
CPU time. Although these two methods are very closed, the PFSS approach results
are better than SQP methods.

Table 2. PFSS and SQP methods in comparison with CPU time

Problem PFSS SQP

Example 4.1 0.04 0.07

Example 4.2 0.07 0.09

Example 4.3 0.34 0.39
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5. Conclusions

In this study, we have presented a dynamical system (state space model) approach for
solving equality constrained QP problems with quadratic penalty function method.
Necessary and sufficient conditions for the converge of optimal values to the problem
have been given under the assumptions. We have also developed an approach to
solve problem (2.1) based on the dynamic system modeling. Numerical examples
on equality constrained QP problem were performed and the numerical results show
that the PFSS approach is useful to find optimal values for this kind of problem
with different initial points. Furthermore, computational results shows that the
PFSS approach reached the optimal values in less CPU time than the SQP method.
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