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Abstract. The purpose of this paper is to prove some common fixed point
theorems in metric and 2-metric spaces for two pairs of weakly compatible
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1. Introduction

The concept of 2-metric spaces was initiated and developed (to a considerable ex-
tent) by Gähler in a series of papers [8–10] and by now there exists considerable
literature on this topic. In this course of development, a number of authors have
studied various aspects of metric fixed point theory in the setting of 2-metric spaces
which are generally motivated by the corresponding existing concepts already known
for ordinary metric spaces. Iséki [17] (also see [18]) appears to be the first mathe-
matician who studied fixed point theorems in the setting of 2-metric spaces. Since
then a multitude of results on fixed points have been proved in 2-metric spaces which
include Cho et al. [4], Imdad et al. [15], Murthy et al. [28], Naidu and Prasad [31],
Pathak et al. [34] and the references cited therein. The authors of the articles [3, 15,
28, 31, 34, 38, 39] also utilized the concepts of weakly commuting mappings, com-
patible mappings, compatible mappings of type (A) and (P) and weakly compatible
mappings of type (A) to prove fixed point theorems in 2-metric spaces.

Jungck [21] introduced the notion of weakly compatible mappings in ordinary
metric spaces which is proving handy to prove common fixed point theorems with
minimal commutativity requirement. In recent years, using this idea several general
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common fixed point theorems have been proved in metric and 2-metric spaces which
include Popa [35], Imdad et al. [16] and Abu-Donia and Atia [1] and others.

Recently, Popa [35] utilized implicit relations to prove results on common fixed
points which are proving fruitful as they cover several definitions in one go. In this
paper, we utilize slightly modified form of implicit relation of Popa [35] to prove our
results in the setting of 2-metric spaces. Here, for a change, we prove our results
in 2-metric spaces and then use them to indicate their analogous in metric spaces
which are refined versions of several recent known results (e.g. [5, 7, 12–14, 24, 29]).

2. Preliminaries

Let X be a nonempty set. A real valued function d on X3 is said to a 2-metric if,

(M1) to each pair of distinct points x, y in X, there exists a point z ∈ X such that
d(x, y, z) 6= 0,

(M2) d(x, y, z) = 0 when at least two of x, y, z are equal,
(M3) d(x, y, z) = d(x, z, y) = d(y, z, x),
(M4) d(x, y, z) ≤ d(x, y, u) + d(x, u, z) + d(u, y, z) for all x, y, z, u ∈ X.

The function d is called a 2-metric on the set X whereas the pair (X, d) stands for
2-metric space. Geometrically a 2-metric d(x, y, z) represents the area of a triangle
with vertices x, y and z.

It has been known since Gähler [8] that a 2-metric d is a non-negative continuous
function in any one of its three arguments but it need not be continuous in two
arguments. A 2-metric d is said to be continuous if it is continuous in all of its
arguments. Throughout this paper d stands for a continuous 2-metric.

Definition 2.1. A sequence {xn} in a 2-metric space (X, d) is said to be convergent
to a point x ∈ X, denoted by limxn = x, if lim d(xn, x, z) = 0 for all z ∈ X.

Definition 2.2. A sequence {xn} in a 2-metric space (X, d) is said to be Cauchy
sequence if lim d(xn, xm, z) = 0 for all z ∈ X.

Definition 2.3. A 2-metric space (X, d) is said to be complete if every Cauchy
sequence in X is convergent.

Remark 2.1. In general a convergent sequence in a 2-metric space (X, d) need not
be Cauchy but every convergent sequence is a Cauchy sequence whenever 2-metric
d is continuous. A 2-metric d on a set X is said to be weakly continuous if every
convergent sequence under d is Cauchy (see [31]).

Definition 2.4. [28] Let S and T be mappings from a 2-metric space (X, d) into
itself. The mappings S and T are said to be compatible if lim d(STxn, TSxn, z) = 0
for all z ∈ X, whenever {xn} is a sequence in X such that limSxn = limTxn = t
for some t ∈ X.

Definition 2.5. [1] A pair of self mappings S and T of a 2-metric space (X, d) is
said to be weakly compatible if Sx = Tx (for some x ∈ X) implies STx = TSx.

Definition 2.6. [28] Let (S, T ) be a pair of self mappings of a 2-metric space (X, d).
The mappings S and T are said to be compatible of type (A) if lim d(TSxn, SSxn, z) =
lim d(STxn, TTxn, z) = 0 for all z ∈ X, whenever {xn} is a sequence in X such
that limSxn = limTxn = t for some t ∈ X.
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Definition 2.7. [34] Let (S, T ) be a pair of self mappings of a 2-metric space (X, d).
Then the pair (S, T ) is said to be weakly compatible of type (A) if

lim d(STxn, TTxn, z) ≤ lim d(TSxn, TTxn, z)

and
lim d(TSxn, SSxn, z) ≤ lim d(STxn, SSxn, z)

for all z ∈ X, where {xn} is a sequence in X such that limSxn = limTxn = t for
some t ∈ X.

In view of Proposition 2.4 of [34], every pair of compatible mappings of type (A)
is weakly compatible mappings of type (A) whereas in view of Proposition 2.9 of
[34], every pair of compatible mappings of type (A) is weak compatible.

The purpose of this paper is three fold which can be described as follows.

(i) We slightly modify the implicit relation of Popa [35] so that contraction
conditions obtained involving functional inequalities (e.g. Husain and Sehgal
[13]) can also be covered.

(ii) Using modified implicit relation and weak compatibility some common fixed
point theorems are proved in 2-metric spaces and use them to indicate their
metric analogue.

(iii) As an application of our main result, a Bryant [2] type generalized common
fixed point theorem has been proved besides deriving related results and
furnishing illustrative examples.

3. Implicit relations

Let F be the set of all continuous functions F : <6
+ → < satisfying the following

conditions:

(F1) F is non-increasing in variables t5 and t6.
(F2) there exists h ∈ (0, 1) such that for u, v ≥ 0 with

(Fa) : F (u, v, v, u, u+ v, 0) ≤ 0 or (Fb) : F (u, v, u, v, 0, u+ v) ≤ 0

implies u ≤ h.v.
(F3) F (u, u, 0, 0, u, u) > 0 ∀ u > 0.

The following examples of such functions F satisfying F1, F2 and F3 are available
in [35] with verifications and other details.

Example 3.1. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t1 − kmax

{
t2, t3, t4,

1

2
(t5 + t6)

}
, where k ∈ (0, 1).

Example 3.2. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t21 − t1(αt2 + βt3 + γt4)− ηt5t6,
where α > 0; β, γ, η ≥ 0, α+ β + γ < 1 and α+ η < 1.

Example 3.3. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t31 − αt21t2 − βt1t3t4 − γt25t6 − ηt5t26,
where α > 0; β, γ, η ≥ 0, α+ β < 1 and α+ γ + η < 1.
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Example 3.4. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t31 − α
t23t

2
4 + t25t

2
6

1 + t2 + t3 + t4
, where α ∈ (0, 1).

Example 3.5. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t21 − αt22 − β
t5t6

1 + t23 + t24
, where α > 0, β ≥ 0 and α+ β < 1.

Here one may further notice that some other well known contraction conditions
(cf. [12, 14, 19]) can also be deduced as particular cases to implicit relation of
Popa [35]. In order to strengthen this view point we add some more examples to
this effect and utilize them to demonstrate that how this implicit relation can cover
several other known contractive conditions and is also good enough to yield further
unknown natural contractive conditions as well.

Example 3.6. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) =

 t1 − a1
t23 + t24
t3 + t4

− a2t2 − a3(t5 + t6), if t3 + t4 6= 0

t1, if t3 + t4 = 0

where ai ≥ 0 with at least one ai non zero and a1 + a2 + 2a3 < 1.

F1: Obvious.
F2(Fa): Let u > 0. F (u, v, v, u, u+v, 0) = u−a1(v2 + u2)/(v + u)−a2v−a3(u+v) ≤
0. If u ≥ v, then u ≤ (a1 + a2 + 2a3)u < u which is a contradiction. Hence u < v
and u ≤ hv where h ∈ (0, 1).
(Fb): Similar argument as in (Fa).
F3: F (u, u, 0, 0, u, u) = u > 0 for all u > 0.

We also add the following two examples without verification.

Example 3.7. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) =


t1 − αt2 −

βt3t4 + γt5t6
t3 + t4

, if t3 + t4 6= 0

t1, if t3 + t4 = 0

where α, β, γ ≥ 0 such that 1 < 2α+ β < 2.

Example 3.8. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t1 − a1t2 − a2t3 − a3t4 − a4t5 − a5t6 where

5∑
i=1

ai < 1.

Example 3.9. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, · · · , t6) = t1 − α
[
βmax

{
t2, t3, t4,

1

2
(t5 + t6)

}
+ (1− β)

[
max

{
t22, t3t4, t5t6,

t3t6
2
,
t4t5

2

}] 1
2
]
,

where α ∈ (0, 1) and 0 ≤ β ≤ 1.
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Example 3.10. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, · · · , t6) = t21 − αmax{t22, t23, t24} − βmax

{
t3t5

2
,
t4t6

2

}
− γt5t6

where α, β, γ ≥ 0 and α+ β + γ < 1.

In what follows, we notice that Husain and Sehgal [13] type contraction conditions
(e.g. [7, 24, 30, 31, 37]) can be deduced from similar implicit relations in addition
to all earlier ones if we slightly modify (F1) as follows:
(F ′1) F is decreasing in variables t2, . . . , t6.

Hereafter, let F : <6
+ → < be a continuous function which satisfy the conditions

F ′1, F2 and F3 and let Ψ be the family of such functions F . We employ such implicit
relation to prove our results in this paper. Before we proceed further, let us furnish
some examples to highlight the utility of the modifications instrumented herein.

Example 3.11. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t1 − φ
(

max

{
t2, t3, t4,

1

2
(t5 + t6)

})
where φ : <+ → <+ is an increasing upper semicontinuous function with φ(0) = 0
and φ(t) < t for each t > 0.

F ′1: Obvious.
F2(Fa): Let u > 0. F (u, v, v, u, u + v, 0) = u − φ(max{v, v, u, (u+ v)/2}) ≤ 0. If
u ≥ v, then u ≤ φ(u) < u which is a contradiction. Hence u < v and u ≤ hv where
h ∈ (0, 1).
(Fb): Similar argument as in (Fa).
F3: F (u, u, 0, 0, u, u) = u− φ(max{u, 0, 0, (u+ u)/2}) = u− φ(u) > 0 for all u > 0.

Example 3.12. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t1 − φ(t2, t3, . . . , t6)

where φ : <5
+ → < is an upper semicontinuous and nondecreasing function in each

coordinate variable such that φ(t, t, αt, βt, γt) < t for each t > 0 and α, β, γ ≥ 0 with
α+ β + γ ≤ 3.

Example 3.13. Define F (t1, t2, . . . , t6) : <6
+ → < as

F (t1, t2, . . . , t6) = t21 − φ(t22, t3t4, t5t6, t3t6, t4t5)

where φ : <5
+ → < is an upper semicontinuous and nondecreasing function in each

coordinate variable such that φ(t, t, αt, βt, γt) < t for each t > 0 and α, β, γ ≥ 0 with
α+ β + γ ≤ 3.

Here it may be noticed that all earlier mentioned examples continue to enjoy the
format of modified implicit relation as adopted herein.
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4. Common fixed point theorems

The following proposition notes that in the following specific setting the common
fixed point of the involved four mappings is always unique provided it exists.

Proposition 4.1. Let (X, d) be a 2-metric space and let A,B, S, T : X → X be four
mappings satisfying the condition

F (d(Ax,By, a), d(Sx, Ty, a), d(Sx,Ax, a),

d(Ty,By, a), d(Sx,By, a), d(Ty,Ax, a)) ≤ 0(4.1)

for all x, y ∈ X and for all a ∈ X, where F enjoys the property (F3). Then A,B, S
and T have at most one common fixed point.

Proof. Let on contrary that A,B, S and T have two common fixed points u and v
such that u 6= v. Then by (4.1), we have

F (d(Au,Bv, a), d(Su, Tv, a), d(Su,Au, a), d(Tv,Bv, a), d(Su,Bv, a), d(Tv,Au, a)) ≤ 0

or F (d(u, v, a), d(u, v, a), 0, 0, d(u, v, a), d(u, v, a)) ≤ 0, for all a ∈ X which contra-
dicts (F3), yielding thereby u = v.

Let A,B, S and T be mappings from a 2-metric space (X, d) into itself satisfying
the following condition:

(4.2) A(X) ⊆ T (X) and B(X) ⊆ S(X).

Since A(X) ⊆ T (X), for arbitrary point x0 ∈ X there exists a point x1 ∈ X such
that Ax0 = Tx1. Since B(X) ⊆ S(X), for the point x1, we can choose a point
x2 ∈ X such that Bx1 = Sx2 and so on. Inductively, we can define a sequence {yn}
in X such that

(4.3) y2n = Ax2n = Tx2n+1 and y2n+1 = Bx2n+1 = Sx2n+2; n = 0, 1, 2, . . . .

Lemma 4.1. If A,B, S and T be mappings from a 2-metric space (X, d) into itself
which satisfy conditions (4.1) and (4.2), then

(a) d(yn, yn+1, yn+2) = 0 for every n ∈ N ;
(b) d(yi, yj , yk) = 0 for i, j, k ∈ N , where {yn} is a sequence described by (4.3).

Proof. (a) From (4.1), we have

F (d(Ax2n+2, Bx2n+1, y2n), d(Sx2n+2, Tx2n+1, y2n), d(Sx2n+2, Ax2n+2, y2n),

d(Tx2n+1, Bx2n+1, y2n), d(Sx2n+2, Bx2n+1, y2n), d(Tx2n+1, Ax2n+2, y2n)) ≤ 0

or F (d(y2n+2, y2n+1, y2n), d(y2n+1, y2n, y2n), d(y2n+1, y2n+2, y2n),

d(y2n, y2n+1, y2n), d(y2n+1, y2n+1, y2n), d(y2n, y2n, y2n)) ≤ 0

or F (d(y2n+2, y2n+1, y2n), 0, d(y2n+2, y2n+1, y2n), 0, 0, 0) ≤ 0

or F (d(y2n+2, y2n+1, y2n), 0, d(y2n+2, y2n+1, y2n), 0, 0, d(y2n+2, y2n+1, y2n)) ≤ 0

yielding thereby d(y2n+2, y2n+1, y2n) = 0 (due to Fb). Similarly, using (Fa) we can
show that d(y2n+1, y2n, y2n−1) = 0. Thus it follows that d(yn, yn+1, yn+2) = 0 for
every n ∈ N .
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(b) For all a ∈ X, let us write dn = d(yn, yn+1, a), n = 0, 1, 2, . . .. First we shall
prove that {dn} is a non-decreasing sequence in <+. From (4.1), we have

F (d(Ax2n, Bx2n+1, a), d(Sx2n, Tx2n+1, a), d(Sx2n, Ax2n, a), d(Tx2n+1, Bx2n+1, a),

d(Sx2n, Bx2n+1, a), d(Tx2n+1, Ax2n, a)) ≤ 0,

or F (d(y2n, y2n+1, a), d(y2n−1, y2n, a), d(y2n−1, y2n, a), d(y2n, y2n+1, a),

d(y2n−1, y2n+1, a), d(y2n, y2n, a)) ≤ 0,

or F (d(y2n, y2n+1, a), d(y2n−1, y2n, a), d(y2n−1, y2n, a), d(y2n, y2n+1, a),

d(y2n−1, y2n+1, y2n) + d(y2n−1, y2n, a) + d(y2n+1, y2n, a), 0) ≤ 0

or F (d(y2n, y2n+1, a), d(y2n−1, y2n, a), d(y2n−1, y2n, a), d(y2n, y2n+1, a),

d(y2n−1, y2n, a) + d(y2n, y2n+1, a), 0) ≤ 0

implying thereby d2n ≤ hd2n−1 < d2n−1 (due to (Fa)). Similarly using (Fb), we
have d2n+1 ≤ hd2n. Thus dn+1 < dn for n = 0, 1, 2, . . .. Now proceeding on the
lines of the proof of Lemma 3.2 [34, p. 355], we can show that d(yi, yj , yk) = 0 for
i, j, k ∈ N .

Lemma 4.2. Let {yn} be a sequence in a 2-metric space (X, d) described by (4.3),
then lim d(yn, yn+1, a) = 0 for all a ∈ X.

Proof. As in Lemma 4.1, we have d2n+1 ≤ hd2n and d2n ≤ hd2n−1. Therefore, we
obtain dn ≤ hnd0. Hence lim d(yn, yn+1, a) = lim dn = 0.

Lemma 4.3. Let A,B, S and T be mappings from a 2-metric space (X, d) into itself
satisfying (4.1) and (4.2). Then the sequence {yn} described by (4.3) is a Cauchy
sequence.

Proof. Since lim d(yn, yn+1, a) = 0 by Lemma 4.2, it is sufficient to show that a
subsequence {y2n} of {yn} is a Cauchy sequence in X. Suppose that {y2n} is not
a Cauchy sequence in X. Then for every ε > 0 there exists a ∈ X and strictly
increasing sequences {mk}, {nk} of positive integers such that k ≤ nk < mk with
d(y2nk−1, y2mk

, a) ≥ ε and d(y2nk
, y2mk−2, a) < ε. Now proceeding on the lines of

the proof of Lemma 1.3 [4] (or Lemma 3.3 [34]), we obtain lim d(y2nk
, y2mk

, a) = ε,
lim d(y2nk

, y2mk−1, a) = ε, lim d(y2nk+1, y2mk
, a) = ε and lim d(y2nk+1, y2mk−1, a) =

ε. Now using (4.1), we have

F (d(Ax2mk
, Bx2nk+1, a), d(Sx2mk

, Tx2nk+1, a), d(Sx2mk
, Ax2mk

, a),

d(Bx2nk+1, Tx2nk+1, a), d(Sx2mk
, Bx2nk+1, a), d(Tx2nk+1, Ax2mk

, a) ≤ 0

or F (d(y2mk
, y2nk+1, a), d(y2mk−1, y2nk

, a), d(y2mk−1, y2mk
, a), d(y2nk

, y2nk+1, a),

d(y2mk−1, y2nk+1, a), d(y2nk
, y2mk

, a) ≤ 0.

Letting n→∞, we have
F (ε, ε, 0, 0, ε, ε) ≤ 0

which is a contradiction to (F3). Therefore {y2n} is a Cauchy sequence.

Theorem 4.1. Let A,B, S and T be self mappings of a 2-metric space (X, d) sat-
isfying the conditions (4.1) and (4.2). If one of A(X), B(X), S(X) or T (X) is a
complete subspace of X, then
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(c) the pair (A,S) has a point of coincidence,
(d) the pair (B, T ) has a point of coincidence.

Moreover, A,S,B and T have a unique common fixed point provided both the pairs
(A,S) and (B, T ) are weakly compatible.

Proof. Let {yn} be the sequence defined by (4.3). By Lemma 4.3, {yn} is a Cauchy
sequence in X. Suppose that S(X) is a complete subspace of X, then the sub-
sequence {y2n+1} which is contained in S(X) must have a limit z in S(X). As
{yn} is a Cauchy sequence containing a convergent subsequence {y2n+1}, therefore
{yn} also converges implying thereby the convergence of the subsequence {y2n}, i.e.
limAx2n = limBx2n+1 = limTx2n+1 = limSx2n+2 = z. Let u ∈ S−1(z), then
Su = z. If Au 6= z, then using (4.1), we have

F (d(Au,Bx2n−1, a), d(Su, Tx2n−1, a), d(Su,Au, a), d(Tx2n−1, Bx2n−1, a),

d(Su,Bx2n−1, a), d(Tx2n−1, Au, a)) ≤ 0

which on letting n→∞, reduces to

F (d(Au, z, a), d(z, z, a), d(z,Au, a), d(z, z, a), d(z, z, a), d(z,Au, a)) ≤ 0

or

F (d(Au, z, a), 0, d(z,Au, a), 0, 0, d(z,Au, a)) ≤ 0

implying thereby d(z,Au, a) = 0 for all a ∈ X (due to Fb). Hence z = Au = Su.
Since A(X) ⊆ T (X), there exists v ∈ T−1(z) such that Tv = z. By (4.1), we

have

F (d(Au,Bv, a), d(Su, Tv, a), d(Su,Au, a), d(Tv,Bv, a),

d(Su,Bv, a), d(Tv,Au, a)) ≤ 0

or F (d(z,Bv, a), 0, 0, d(z,Bv, a), d(z,Bv, a), 0) ≤ 0

yielding thereby d(z,Bv, a) = 0 for all a ∈ X (due to (Fa)). Therefore z = Bv.
Hence Au = Su = Bv = Tv = z which establishes (c) and (d).

If one assumes that T (X) is a complete subspace of X, then analogous arguments
establish (c) and (d). The remaining two cases also pertain essentially to the previous
cases. Indeed, if A(X) is complete, then z ∈ A(X) ⊆ T (X). Similarly if B(X) is
complete, then z ∈ B(X) ⊆ S(X). Thus in all cases, (c) and (d) are completely
established.

Since A and S are weakly compatible and Au = Su = z, then ASu = SAu which
implies Az = Sz. By (4.1), we have

F (d(Az,Bv, a), d(Sz, Tv, a), d(Sz,Az, a), d(Tv,Bv, a), d(Sz,Bv, a), d(Tv,Az, a)) ≤ 0

or F (d(Az, z, a), d(Az, z, a), 0, 0, d(Az, z, a), d(Az, z, a)) ≤ 0

a contradiction to (F3) if d(Az, z, a) > 0. Hence z = Az = Sz.
Since B and T are weakly compatible and Bv = Tv = z, then BTv = TBv which

implies Bz = Tz. Again by (4.1), we have

F (d(Az,Bz, a), d(Sz, Tz, a), d(Sz,Az, a), d(Tz,Bz, a), d(Sz,Bz, a), d(Tz,Az, a)) ≤ 0

or F (d(z,Bz, a), d(z,Bz, a), 0, 0, d(z,Bz, a), d(z,Bz, a)) ≤ 0
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a contradiction to (F3) if d(z,Bz, a) > 0. Hence z = Bz = Tz. Therefore, z =
Az = Sz = Bz = Tz which shows that z is a common fixed point of the mappings
A,B, S and T . In view of Proposition 4.1, z is the unique common fixed point of
the mappings A,B, S and T .

Corollary 4.1. The conclusions of Theorem 4.1 remain true if (for all x, y, a ∈ X)
implicit relation (4.1) is replaced by any one of the following.

(a1)

d(Ax,By, a) ≤ kmax
{
d(Sx, Ty, a), d(Sx,Ax, a), d(Ty,By, a),

1

2
(d(Sx,By, a) + d(Ty,Ax, a))

}
, where k ∈ (0, 1).

(a2)

d2(Ax,By, a) ≤ d(Ax,By, a)[αd(Sx, Ty, a) + βd(Sx,Ax, a) + γd(Ty,By, a)]

+ ηd(Sx,By, a).d(Ty,Ax, a)

where α > 0; β, γ, η ≥ 0, α+ β + γ < 1 and α+ η < 1.

(a3)

d3(Ax,By, a) ≤ αd2(Ax,By, a)d(Sx, Ty, a)

+ βd(Ax,By, a)d(Sx,Ax, a)d(Ty,By, a)

+ γd2(Sx,By, a)d(Ty,Ax, a) + ηd(Sx,By, a)d2(Ty,Ax, a)

where α > 0; β, γ, η ≥ 0, α+ β < 1 and α+ γ + η < 1.

(a4)

d3(Ax,By, a) ≤ αd
2(Sx,Ax, a)d2(Ty,By, a) + d2(Sx,By, a)d2(Ty,Ax, a)

1 + d(Sx, Ty, a) + d(Sx,Ax, a) + d(Ty,By, a)

where α ∈ (0, 1).

(a5)

d2(Ax,By, a) ≤ αd2(Sx, Ty, a) + β
d(Sx,By, a)d(Ty,Ax, a)

1 + d2(Sx,Ax, a) + d2(Ty,By, a)

where α > 0, β ≥ 0 and α+ β < 1.

(a6)

d(Ax,By, a) ≤ a1
d2(Sx,Ax, a) + d2(Ty,By, a)

d(Sx,Ax, a) + d(Ty,By, a)
+ a2d(Sx, Ty, a)

+ a3(d(Sx,By, a) + d(Ty,Ax, a))

where ai ≥ 0 with at least one ai non zero and a1 + a2 + 2a3 < 1.
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(a7)

d(Ax,By, a) ≤ αd(Sx, Ty, a)

+
βd(Sx,Ax, a)d(Ty,By, a) + γd(Sx,By, a)d(Ty,Ax, a)

d(Sx,Ax, a) + d(Ty,By, a)

where α, β, γ ≥ 0 such that 1 < 2α+ β < 2.

(a8)

d(Ax,By, a) ≤ a1d(Sx, Ty, a) + a2d(Sx,Ax, a) + a3d(Ty,By, a)

+ a4d(Sx,By, a) + a5d(Ty,Ax, a),

where
5∑

i=1

ai < 1.

(a9)

d(Ax,By, a) ≤ α
[
βmax

{
d(Sx, Ty, a), d(Sx,Ax, a), d(Ty,By, a),

1

2
(d(Sx,By, a) + d(Ty,Ax, a))

}
+ (1− β)

[
max

{
d2(Sx, Ty, a),

d(Sx,Ax, a)d(Ty,By, a), d(Sx,By, a)d(Ty,Ax, a),

d(Sx,Ax, a)d(Ty,Ax, a)

2
,
d(Ty,By, a)(d(Sx,By, a)

2

}] 1
2
]

where α ∈ (0, 1) and 0 ≤ β ≤ 1.

(a10)

d2(Ax,By, a) ≤ αmax{d2(Sx, Ty, a), d2(Sx,Ax, a), d2(Ty,By, a)}

+ βmax

{
d(Sx,Ax, a)d(Sx,By, a)

2
,
d(Ty,By, a)d(Ty,Ax, a)

2

}
+ γd(Sx,By, a)d(Ty,Ax, a)

where α, β, γ ≥ 0 and α+ β + γ < 1.

(a11)

d(Ax,By, a) ≤ φ(max{d(Sx, Ty, a), d(Sx,Ax, a), d(Ty,By, a),

1

2
[d(Sx,By, a) + d(Ty,Ax, a)]})

where φ : <+ → <+ is an upper semicontinuous and increasing function with
φ(0) = 0 and φ(t) < t for each t > 0.

(a12)

d(Ax,By, a) ≤ φ(d(Sx, Ty, a), d(Sx,Ax, a), d(Ty,By, a), d(Sx,By, a), d(Ty,Ax, a))

where φ : <5
+ → < is an upper semicontinuous and nondecreasing function in each

coordinate variable such that φ(t, t, αt, βt, γt) < t for each t > 0 and α, β, γ ≥ 0 with
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α+ β + γ ≤ 3.

(a13)

d2(Ax,By, a) ≤ φ(d2(Sx, Ty, a), d(Sx,Ax, a)d(Ty,By, a),

d(Sx,By, a)d(Ty,Ax, a), d(Sx,Ax, a)d(Ty,Ax, a),

d(Ty,By, a)d(Sx,By, a))

where φ : <5
+ → < is an upper semicontinuous and nondecreasing function in each

coordinate variable such that φ(t, t, αt, βt, γt) < t for each t > 0 and α, β, γ ≥ 0 with
α+ β + γ ≤ 3.

Proof. The proof follows from Theorem 4.1 and Examples 3.1–3.13.

Remark 4.1. The majority of results corresponding to various above contraction
conditions present generalized and improved versions of numerous existing results
which include Cho [3], Constantin [6], Gajić [11], Imdad et al. [15], Iséki et al. [18],
Khan and Fisher [23], Murthy et al. [28], Naidu and Prasad [31], Singh et al. [36]
and others whereas some of these present 2-metric space version of certain existing
results of literature (e.g. Chugh and Kumar [5], Imdad and Ali [14], Jeong and
Rhoades [19], Hardy and Rogers [12], Lal et al. [26] and others) besides yielding
some results which are seeming new to the literature (e.g. (a2), (a3), (a4) and (a5)).

The following example illustrates Theorem 4.1.

Example 4.1. Let X = {a, b, c, d} be a finite subset of <2 equipped with natural
area function on X3 where a = (0, 0), b = (4, 0), c = (8, 0) and d = (0, 1). Then
clearly (X, d) is a 2-metric space. Define the self mappings A,B, S and T on X as
follows.

Aa = Ab = Ad = a, Ac = b, Sa = Sb = a, Sc = c, Sd = b

Ba = Bb = Bc = a, Bd = b and Ta = Tb = a, T c = b, Td = c.

Notice that A(X) = {a, b} ⊂ {a, b, c} = T (X) and B(X) = {a, b} ⊂ {a, b, c} =
S(X). Also A(X), T (X), B(X) and S(X) are complete subspaces of X. The pair
(A,S) is weakly compatible but not commuting as ASc 6= SAc whereas the pair
(B, T ) is commuting and hence weakly compatible. Define F (t1, t2, . . . , t6) : <+

6 →
<+ as

F (t1, t2, . . . , t6) = t1 − kmax

{
t2, t3, t4,

1

2
(t5 + t6)

}
.

Then by a routine calculation, one can verify that the condition (4.1) is satisfied
with k = 1

2 . Thus all the conditions of Theorem 4.1 are satisfied and a = (0, 0) is
a unique common fixed point of A,B, S and T . Here one may notice that both the
pairs have two points of coincidence, namely a = (0, 0) and b = (4, 0).

For a mapping T : (X, d)→ (X, d), we denote F (T ) = {x ∈ X : x = Tx}.

Theorem 4.2. Let A,B, S and T be mappings from a 2-metric space (X, d) into
itself. If inequality (4.1) holds for all x, y, a ∈ X, then

(F (S) ∩ F (T )) ∩ F (A) = (F (S) ∩ F (T )) ∩ F (B).
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Proof. Let x ∈ (F (S) ∩ F (T )) ∩ F (A). Then using (4.1), we have

F (d(Ax,Bx, a), d(Sx, Tx, a), d(Sx,Ax, a), d(Tx,Bx, a), d(Sx,Bx, a), d(Tx,Ax, a)) ≤ 0

or
F (d(x,Bx, a), 0, 0, d(x,Bx, a), d(x,Bx, a), 0) ≤ 0

yielding thereby d(x,Bx, a) = 0, ∀ a ∈ X (due to Fa). Hence x = Bx. Thus
(F (S) ∩ F (T )) ∩ F (A) ⊂ (F (S) ∩ F (T )) ∩ F (B). Similarly, using (Fb) we can show
that (F (S) ∩ F (T )) ∩ F (B) ⊂ (F (S) ∩ F (T )) ∩ F (A).

Theorems 4.1 and 4.2 imply the following one.

Theorem 4.3. Let A,B and {Ti}i∈N∪{0} be mappings of a 2-metric space (X, d)
into itself such that

(e) T0(X) ⊆ A(X) and Ti(X) ⊆ B(X),
(f) the pairs (T0, B) and (Ti, A)(i ∈ N) are weakly compatible,
(g) the inequality

F (d(T0x, Tiy, a), d(Ax,By, a), d(Ax, T0x, a), d(By, Tiy, a),

d(Ax, Tiy, a), d(By, T0x, a)) ≤ 0

for each x, y, a ∈ X, ∀ i ∈ N , where F ∈ Ψ (or F).

Then A,B and {Ti}i∈N∪{0} have a unique common fixed point in X provided one of
A(X), B(X) or T0(X) is a complete subspace of X.

Next, as an application of Theorem 4.1, we prove a Bryant [2] type generalized
common fixed point theorem for four finite families of self mappings which runs as
follows:

Theorem 4.4. Let {A1, . . . , Am}, {B1, B2, . . . , Bn}, {S1, S2, . . . , Sp} and {T1, T2, . . .,
Tq} be four finite families of self-mappings on a 2-metric space (X, d) with A =
A1A2 . . . Am, B = B1B2 . . . Bn, S = S1S2 . . . Sp and T = T1T2 . . . Tq so that A,B, S
and T satisfy (4.1) and (4.2). If one of A(X), B(X), S(X) or T (X) is a complete
subspace of X, then

(h) the pair (A,S) has a point of coincidence,
(i) the pair (B, T ) has a point of coincidence.

Moreover, if AiAj = AjAi, SkSl = SlSk, BrBs = BsBr, TtTu = TuTt, AiSk =
SkAi and BrTt = TtBr for all i, j ∈ I1 = {1, 2, . . . ,m}, k, l ∈ I2 = {1, 2, . . . , p},
r, s ∈ I3 = {1, 2, . . . , n} and t, u ∈ I4 = {1, 2, . . . , q}, then (for all i ∈ I1, k ∈ I2,
r ∈ I3 and t ∈ I4) Ai, Br, Sk and Tt have a common fixed point.

Proof. The conclusions (h) and (i) are immediate as A,B, S and T satisfy all the
conditions of Theorem 4.1. In view of pairwise commutativity of various pairs of
the families {A,S} and {B, T}, the weak compatibility of pairs (A,S) and (B, T )
are immediate. Thus all the conditions of Theorem 4.1 (for mappings A,B, S and
T ) are satisfied ensuring the existence of a unique common fixed point, say z. Now,
one needs to show that z remains the fixed point of all the component maps. For
this consider

A(Aiz) = ((A1A2 . . . Am)Ai)z = (A1A2 . . . Am−1)((AmAi)z)

= (A1 . . . Am−1)(AiAmz) = (A1 . . . Am−2)(Am−1Ai(Amz))
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= (A1 . . . Am−2)(AiAm−1(Amz))

= . . . = . . . = . . . = . . . = . . . = . . . = . . . = . . . = . . .

= A1Ai(A2A3A4 . . . Amz) = AiA1(A2A3 . . . Amz) = Ai(Az) = Aiz.

Similarly, one can show that

A(Skz) = Sk(Az) = Skz, S(Skz) = Sk(Sz) = Skz,

S(Aiz) = Ai(Sz) = Aiz, B(Brz) = Br(Bz) = Brz,

B(Ttz) = Tt(Bz) = Ttz, T (Ttz) = Tt(Tz) = Ttz,

and
T (Brz) = Br(Tz) = Brz,

which show that (for all i, k, r and t) Aiz and Skz are other fixed points of the pair
(A,S) whereas Brz and Ttz are other fixed points of the pair (B, T ). Now in view
of uniqueness of the fixed point of A,B, S and T (for all i, k, r and t), one can write

z = Aiz = Skz = Brz = Ttz,

which shows that z is a common fixed point of Ai, Sk, Br and Tt for all i, k, r and
t.

By setting A1 = A2 = . . . Am = A, B1 = B2 . . . Bn = B, S1 = S2 = . . . = Sp = S
and T1 = T2 = . . . = Tq = T , one deduces the following corollary for various iterates
of A,B, S and T which can also be viewed as partial generalization of Theorem 4.1.

Corollary 4.2. Let (A,S) and (B, T ) be two commuting pairs of self mappings of a
2-metric space (X, d) such that Am(X) ⊆ T q(X) and Bn(X) ⊆ Sp(X) which satisfy

F (d(Amx,Bny, a), d(Spx, T qy, a), d(Spx,Amx, a), d(T qy,Bny, a),

d(Spx,Bny, a), d(T qy,Amx, a)) ≤ 0(4.4)

for all x, y ∈ X and for all a ∈ X, where F ∈ Ψ (or F). If one of Am(X), T q(X),
Bn(X) or Sp(X) is a complete subspace of X, then A,B, S and T have a unique
common fixed point.

Remark 4.2. A result similar to Corollary 4.1 involving various iterates of mappings
corresponding to Corollary 4.2 can also be derived. Due to repetition, the details
are avoided.

Next, we furnish an example which establishes the utility of Corollary 4.2 over
Theorem 4.1.

Example 4.2. Consider X = {a, b, c, d} is a finite subset of <2 with a = (0, 0),
b = (1, 0), c = (2, 0) and d = (0, 1) equipped with natural area function on X3.
Define self mappings A,B, S and T on X as follows.

Aa = Ab = Ad = a, Ac = b Sa = Sb = a, Sc = Sd = b

Ba = Bb = Bc = a, Bd = c and Ta = Tb = Tc = Td = a.

Notice that A2(X) = {a} = T 1(X) and B2(X) = {a} = S2(X) and the pairs (A,S)
and (B, T ) are commuting. Define F (t1, t2, . . . , t6) : <+

6 → <+ as

F (t1, t2, . . . , t6) = t1 − kmax

{
t2, t3, t4,

1

2
(t5 + t6)

}
.
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Then it is straightforward to verify that contraction condition (4.4) is satisfied for
A2, B2, S2 and T 1 as d(A2x,B2y, z) = d(a, a, z) = 0 for all x, y, z ∈ X. Thus all the
conditions of Corollary 4.2 are satisfied for A2, B2, S2 and T 1 and hence in view of
Corollary 4.2, the mappings A,B, S and T have a unique common fixed point.

However, Theorem 4.1 is not applicable in the context of this example, as A(X) =
{a, b} 6⊆ {a} = T (X) and B(X) = {a, c} 6⊆ {a, b} = S(X). Moreover, the contrac-
tion condition (4.1) is not satisfied for A,B, S and T . To substantiate this, consider
the case when x = c and y = a, then one gets

1 ≤ kmax{1, 0, 0, 0, 1} = k

which is a contradiction to the fact that k < 1. Thus, in all, Corollary 4.2 is genuinely
different to Theorem 4.1.

We now indicate how the metric space versions of various earlier obtained re-
sults involving functional inequalities can be deduced from metric space version of
Theorem 4.1 which remain unaccommodated in earlier general common fixed point
theorems contained in Imdad et al. [16]. Hereafter, unless otherwise stated, A,B, S
and T are self mappings of the metric space (X, d). Generally, it may be pointed out
that Theorems 4.1–4.4 remain true if one replaces 2-metric space X with a metric
space X retaining rest of the hypotheses. As a sample, we state the metric space ver-
sion of Theorem 4.1 without proof whose is essentially the same as that of Theorem
2.1 of Imdad et al. [16] except using F ∈ Ψ instead of F ∈ F .

Theorem 4.5. Let A,B, S and T be self mappings of a metric space (X, d) with
A(X) ⊆ T (X) and B(X) ⊆ S(X) satisfying the condition

(4.5) F (d(Ax,By), d(Sx, Ty), d(Sx,Ax), d(Ty,By), d(Sx,By), d(Ty,Ax)) ≤ 0

for all x, y ∈ X where F ∈ Ψ. If one of A(X), B(X), S(X) or T (X) is a complete
subspace of X, then

(j) the pair (A,S) has a point of coincidence,
(k) the pair (B, T ) has a point of coincidence.

Moreover, A,S,B and T have a unique common fixed point provided the pairs (A,S)
and (B, T ) are weakly compatible.

Proof. Proof follows on the lines of Imdad et al. [16], hence it is omitted.

Remark 4.3. The modified implicit relation enables us to derive the refined and
sharpened versions of some fixed point theorems involving functional inequalities
contained in Chugh and Kumar [5], Daneš [7], Husain and Sehgal [13], Khan and
Imdad [24], Naidu [29], Naidu and Prasad [30], Singh and Meade [37] whereas results
due to Gajić [11], Imdad and Ali [14], Jeong and Rhoades [19], Jungck [20], Kang
and Kim [22], Mudgal and Vats [27], Pant [32, 33] and some others can also be
deduced from Theorem 4.5 which were not covered by Corollary 2.1 of Imdad et al.
[16].

Acknowledgement. Authors are grateful to the learned referees for their sugges-
tions towards improvement of the paper.
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