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1. Introduction

Let A denote the class of functions of the form:

(1.1) f(z) = z +

∞∑
k=2

akz
k,

which are analytic in the open unit disk

U := {z : z ∈ C and |z| < 1}.
Let H(U) be the linear space of all analytic functions in U. For a positive integer

number n and a ∈ C, we let

H[a, n] := { f ∈ H(U) : f(z) = a+ anz
n + an+1z

n+1 + · · · }.
Let f, g ∈ A, where f is given by (1.1) and g is defined by

g(z) = z +

∞∑
k=2

bkz
k.
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Then the Hadamard product (or convolution) f ∗g of the functions f and g is defined
by

(f ∗ g)(z) := z +

∞∑
k=2

akbkz
k =: (g ∗ f)(z).

For two functions f and g, analytic in U, we say that the function f is subordinate
to g in U, and write

f(z) ≺ g(z),

if there exists a Schwarz function ω, which is analytic in U with

ω(0) = 0 and |ω(z)| < 1 (z ∈ U)

such that

f(z) = g
(
ω(z)

)
(z ∈ U).

Indeed, it is known that

f(z) ≺ g(z) =⇒ f(0) = g(0) and f(U) ⊂ g(U).

Furthermore, if the function g is univalent in U, then we have the following equiva-
lence:

f(z) ≺ g(z)⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

We recall the general Hurwitz-Lerch Zeta function Φ(z, s, a) defined by (cf., e.g.,
[30, p. 121 et seq.])

Φ(z, s, a) :=

∞∑
k=0

zk

(k + a)s

(a ∈ C \ Z−0 ; s ∈ C when |z| < 1; Re(s) > 1 when |z| = 1),

where, as usual,

Z−0 := Z \ N (Z := {0,±1,±2, . . .}; N := {1, 2, 3, . . .}).

Several interesting properties and characteristics of the Hurwitz-Lerch Zeta function
Φ(z, s, a) can be found in the recent investigations by, for example, Choi and Sri-
vastava [9], Ferreira and López [11], Garg et al. [12], Lin and Srivastava [13], Lin et
al. [14] and Luo and Srivastava [17].

In 2007, Srivastava and Attiya [29] (see also Rǎducanu and Srivastava [25], Liu [16]
and Prajapat and Goyal [24]) introduced and investigated the linear operator

Js, b(f) : A −→ A

defined in terms of the Hadamard product (or convolution) by

(1.2) Js, b(f)(z) := Gs, b(z) ∗ f(z) (z ∈ U; b ∈ C \ Z−0 ; s ∈ C; f ∈ A),

where, for convenience,

(1.3) Gs, b(z) := (1 + b)s[Φ(z, s, b)− b−s] (z ∈ U).

It is easy to observe from (1.2) and (1.3) that

Js, b(f)(z) = z +

∞∑
k=2

(
1 + b

k + b

)s
akz

k.
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Motivated essentially by the Srivastava-Attiya operator, Al-Shaqsi and Darus [4]
(see also Darus and Al-Shaqsi [10]) introduced and investigated the integral operator

(1.4) J λ, µs, b (f)(z) = z +

∞∑
k=2

(
1 + b

k + b

)s
λ!(k + µ− 2)!

(µ− 2)!(k + λ− 1)!
akz

k (z ∈ U),

where (and throughout this paper unless otherwise mentioned) the parameters s, b, µ
and λ are constrained as follows:

s ∈ C; b ∈ C \ Z−0 ; µ > 0 and λ > −1.

We note that J 1, 2
s, b is the Srivastava-Attiya operator, and J λ, µ0, b is the well-known

Choi-Saigo-Srivastava operator (see [8, 15,28]).
It is readily verified from (1.4) that

(1.5) z
(
J λ+1, µ
s, b f

)′
(z) = (λ+ 1)J λ, µs, b f(z)− λJ λ+1, µ

s, b f(z),

(1.6) z
(
J λ, µs+1, bf

)′
(z) = (b+ 1)J λ, µs, b f(z)− bJ λ, µs+1, bf(z),

and

(1.7) z
(
J λ, µs, b f

)′
(z) = µJ λ, µ+1

s, b f(z)− (µ− 1)J λ, µs, b f(z).

In the present paper, we aim at proving some subordination-preserving and

superordination-preserving properties associated with the operator J λ, µs, b . Several

sandwich-type results involving this operator are also derived (some recent sandwich-
type results in analytic function theory can be found in [1–3, 5–7, 22, 26, 27, 31] and
the references cited therein).

2. Preliminary results

To derive our main results, we need the following definitions and lemmas.

Definition 2.1. [21] A function P(z, t) (z ∈ U; t ≥ 0) is said to be a subordination
chain if P(., t) is analytic and univalent in U for all t ≥ 0, P(z, 0) is continuously
differentiable on [0,∞) for all z ∈ U and P(z, t1) ≺ P(z, t2) for all 0 ≤ t1 ≤ t2.

Definition 2.2. [19] Denote by Q the set of all functions f that are analytic and
injective on U− E(f), where

E(f) =
{
ε ∈ ∂U : lim

z→ε
f(z) =∞

}
,

and such that f ′(ε) 6= 0 for ε ∈ ∂U − E(f). The subclass of Q for which f(0) =
a (a ∈ C) is denoted by Q(a).

Lemma 2.1. [23] The function P(z, t) : U× [0,∞)→ C of the form

P(z, t) = a1(t)z + a2(t)z2 + · · · (a1(t) 6= 0; t ≥ 0) ,
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and lim
t→∞

|a1(t)| =∞ is a subordination chain if and only if

Re

(
z ∂P/∂z
∂P/∂t

)
> 0 (z ∈ U; t ≥ 0).

Lemma 2.2. [18] Suppose that the function H : C2 → C satisfies the condition

Re(H(is, t)) ≤ 0

for all real s and for all

t ≤ −
n
(
1 + s2

)
2

(n ∈ N).

If the function
p (z) = 1 + pnz

n + pn+1z
n+1 + · · ·

is analytic in U and

Re (H(p (z), zp′(z))) > 0 (z ∈ U),

then
Re(p (z)) > 0 (z ∈ U).

Lemma 2.3. [19] Let κ, γ ∈ C with κ 6= 0 and let h ∈ H(U) with h(0) = c. If

Re(κh(z) + γ) > 0 (z ∈ U),

then the solution of the following differential equation:

q(z) +
zq′(z)

κq(z) + γ
= h(z) (z ∈ U; q(0) = c)

is analytic in U and satisfies the inequality given by

Re(κq(z) + γ) > 0 (z ∈ U).

Lemma 2.4. [20] Let p ∈ Q(a) and

q(z) = a+ anz
n + an+1z

n+1 + · · · (q 6= a; n ∈ N)

be analytic in U. If q is not subordinate to p, then there exists two points

z0 = r0e
iθ ∈ U and ξ0 ∈ ∂U\E(f)

such that

q(Ur0) ⊂ p (U), q(z0) = p (ξ0) and z0q
′(z0) = mξ0p

′(ξ0) (m ≥ n).

Lemma 2.5. [21] Let q ∈ H[a, 1] and φ : C2 → C. Also set

φ (q(z), zq′(z)) ≡ h(z) (z ∈ U).

Let
P(z, t) := φ (q(z), tzq′(z))

be a subordination chain and p ∈ H[a, 1] ∩Q(a). Then

h(z) ≺ φ (p(z), zp′(z))

implies that
q(z) ≺ p(z).

Furthermore, if φ (q(z), zq′(z)) = h(z) has a univalent solution q ∈ Q(a), then q is
the best subordinant.
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3. Main results

We begin by proving our first subordination property given by Theorem 3.1 below.

Theorem 3.1. Let f, g ∈ A and µ > 0. Further let

(3.1) Re

(
1 +

zϕ′′(z)

ϕ′(z)

)
> −%

(
z ∈ U; ϕ(z) :=

J λ, µ+1
s, b g(z)

z

)
,

where

(3.2) % :=
1 + µ2 − |1− µ2|

4µ
.

Then the subordination

J λ, µ+1
s, b f(z)

z
≺
J λ, µ+1
s, b g(z)

z

implies that

J λ, µs, b f(z)

z
≺
J λ, µs, b g(z)

z
.

Furthermore, the function (J λ, µs, b g(z))/z is the best dominant.

Proof. Let the functions F , G and Q be defined by

(3.3) F :=
J λ, µs, b f(z)

z
, G :=

J λ, µs, b g(z)

z
and Q := 1 +

zG′′(z)
G′(z)

.

We assume here, without loss of generality, that G is analytic and univalent on U
and

G′(ζ) 6= 0 (|ζ| = 1).

If not, then we replace F and G by F(ρz) and G(ρz), respectively, with 0 < ρ < 1.
These new functions have the desired properties on U, and we can use them in the
proof of our result. Therefore, the result would follow by letting ρ→ 1.

We first show that

Re(Q(z)) > 0 (z ∈ U).

By virtue of (1.7) and the definitions of G and ϕ, we know that

(3.4) ϕ(z) = G(z) +
1

µ
zG′(z).

Differentiating both sides of (3.4) with respect to z yields

(3.5) ϕ′(z) =

(
1 +

1

µ

)
G′(z) +

1

µ
zG′′(z).

Combining (3.3) and (3.5), we easily get

(3.6) 1 +
zϕ′′(z)

ϕ′(z)
= Q(z) +

zQ′(z)
Q(z) + µ

:= h(z) (z ∈ U).

It follows from (3.1) and (3.6) that

(3.7) Re (h(z) + µ) > 0 (z ∈ U).
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Moreover, by Lemma 2.3, we conclude that the differential equation (3.6) has a
solution Q ∈ H(U) with h(0) = Q(0) = 1.

Let

H(u, v) := u+
v

u+ µ
+ %,

where % is given by (3.2). From (3.6) and (3.7), we obtain

Re (H(Q(z), zQ′(z))) > 0 (z ∈ U).

To verify the condition that

(3.8) Re(H(is, t)) ≤ 0

(
s ∈ R; t ≤ −1 + s2

2

)
,

we proceed it as follows:

Re(H(is, t)) = Re

(
is+

t

is+ µ
+ %

)
=

tµ

|µ+ is|2
+ % ≤ − Ψ(µ, s)

2 |µ+ is|2
,

where

(3.9) Ψ(µ, s) := (µ− 2%)s2 − 4%µs− 2%µ2 + µ.

For % given by (3.2), we note that the coefficient of s2 in the quadratic expression
Ψ(µ, s) given by (3.9) is positive or equal to zero. Furthermore, we observe that
the quadratic expression Ψ(µ, s) by s in (3.9) is a perfect square, which implies that
(3.8) holds. Thus, by Lemma 2.2, we conclude that

Re(Q(z)) > 0 (z ∈ U).

By the definition of Q, we know that G is convex. To prove F ≺ G, let the
function P be defined by

(3.10) P(z, t) := G(z) +

(
1 + t

µ

)
zG′(z) (z ∈ U; 0 ≤ t <∞).

Since G is convex and µ > 0, then

∂P(z, t)

∂z
|z=0 = G′(0)

(
1 +

1 + t

µ

)
6= 0 (z ∈ U; 0 ≤ t <∞)

and

Re

(
z ∂P(z, t)/∂z

∂P(z, t)/∂t

)
= Re (µ+ (1 + t)Q(z)) > 0 (z ∈ U).

Therefore, by Lemma 2.1, we deduce that P is a subordination chain. It follows from
the definition of subordination chain that

ϕ(z) = G(z) +
1

µ
zG′(z) = P(z, 0),

and

P(z, 0) ≺ P(z, t) (0 ≤ t <∞),

which implies that

(3.11) P(ζ, t) /∈ P(U, 0) = ϕ(U) (ζ ∈ ∂U; 0 ≤ t <∞).
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If F is not subordinate to G, by Lemma 2.4, we know that there exist two points
z0 ∈ U and ζ0 ∈ ∂U such that

(3.12) F(z0) = G(ζ0) and z0F ′(z0) = (1 + t)ζ0G′(ζ0) (0 ≤ t <∞).

Hence, by virtue of (1.7) and (3.12), we have

P(ζ0, t) = G(ζ0) +
1 + t

µ
ζ0G′(ζ0) = F(z0) +

1

µ
z0F ′(z0) =

J λ, µ+1
s, b f(z0)

z0
∈ ϕ(U).

This contradicts to (3.11). Thus, we deduce that F ≺ G. Considering F = G, we
see that the function G is the best dominant. This completes the proof of Theorem
3.1.

By similarly applying the method of proof of Theorem 3.1 as well as (1.5) and
(1.6), we easily get the following results.

Corollary 3.1. Let f, g ∈ A and λ > −1. Further let

Re

(
1 +

zχ′′(z)

χ′(z)

)
> −$

(
z ∈ U; χ(z) :=

J λ, µs, b g(z)

z

)
,

where

(3.13) $ :=
1 + (λ+ 1)2 −

∣∣1− (λ+ 1)2
∣∣

4(λ+ 1)
.

Then the subordination
J λ, µs, b f(z)

z
≺
J λ, µs, b g(z)

z
implies that

J λ+1, µ
s, b f(z)

z
≺
J λ+1, µ
s, b g(z)

z
.

Furthermore, the function (J λ+1, µ
s, b g(z))/z is the best dominant.

Corollary 3.2. Let f, g ∈ A and b ∈ R \ Z−0 with b > −1. Further let

Re

(
1 +

zχ′′(z)

χ′(z)

)
> −ϑ

(
z ∈ U; χ(z) :=

J λ, µs, b g(z)

z

)
,

where

(3.14) ϑ :=
1 + (b+ 1)2 −

∣∣1− (b+ 1)2
∣∣

4(b+ 1)
.

Then the subordination
J λ, µs, b f(z)

z
≺
J λ, µs, b g(z)

z
implies that

J λ, µs+1, bf(z)

z
≺
J λ, µs+1, bg(z)

z
.

Furthermore, the function (J λ, µs+1, bg(z))/z is the best dominant.
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If f is subordinate to F , then F is superordinate to f . We now derive the following
superordination result.

Theorem 3.2. Let f, g ∈ Ap and µ > 0. Further let

Re

(
1 +

zϕ′′(z)

ϕ′(z)

)
> −%

(
z ∈ U; ϕ(z) :=

J λ, µ+1
s, b g(z)

z

)
,

where % is given by (3.2). If the function (J λ, µ+1
s, b f)/z is univalent in U and

(J λ, µs, b f)/z ∈ Q, then the subordination

J λ, µ+1
s, b g(z)

z
≺
J λ, µ+1
s, b f(z)

z
implies that

J λ, µs, b g(z)

z
≺
J λ, µs, b f(z)

z
.

Furthermore, the function (J λ, µs, b g(z))/z is the best subordinant.

Proof. Suppose that the functions F and G and Q are defined by (3.3). By applying
the similar method as in the proof of Theorem 3.1, we get

Re(Q(z)) > 0 (z ∈ U).

Next, to arrive at our desired result, we show that G ≺ F . For this, we suppose that
the function P be defined by (3.10). Since µ > 0 and G is convex, by applying a sim-
ilar method as in Theorem 3.1, we deduce that P is subordination chain. Therefore,
by Lemma 2.5, we conclude that G ≺ F . Moreover, since the differential equation

ϕ(z) = G(z) +
1

µ
zG′(z) := φ (G(z), zG′(z))

has a univalent solution G, it is the best subordinant. This completes the proof of
Theorem 3.2.

Applying a similar proof as in Theorem 3.2 and using (1.5) and (1.6), the following
results are easily obtained.

Corollary 3.3. Let f, g ∈ A and λ > −1. Further let

Re

(
1 +

zχ′′(z)

χ′(z)

)
> −$

(
z ∈ U; χ(z) :=

J λ, µs, b g(z)

z

)
,

where $ is given by (3.13). If the function (J λ, µs, b f)/z is univalent in U and

(J λ+1, µ
s, b f)/z ∈ Q, then the subordination

J λ, µs, b g(z)

z
≺
J λ, µs, b f(z)

z
implies that

J λ+1, µ
s, b g(z)

z
≺
J λ+1, µ
s, b f(z)

z
.

Furthermore, the function (J λ+1, µ
s, b g(z))/z is the best subordinant.
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Corollary 3.4. Let f, g ∈ A and b ∈ R \ Z−0 with b > −1. Further let

Re

(
1 +

zχ′′(z)

χ′(z)

)
> −ϑ

(
z ∈ U; χ(z) :=

J λ, µs, b g(z)

z

)
,

where ϑ is given by (3.14). If the function (J λ, µs, b f)/z is univalent in U and

(J λ, µs+1, bf)/z ∈ Q, then the subordination

J λ, µs, b g(z)

z
≺
J λ, µs, b f(z)

z

implies that

J λ, µs+1, bg(z)

z
≺
J λ, µs+1, bf(z)

z
.

Furthermore, the function (J λ, µs+1, bg(z))/z is the best subordinant.

Combining the above-mentioned subordination and superordination results in-

volving the operator J λ, µs, b , the following “sandwich-type results” are derived.

Corollary 3.5. Let f, gk ∈ A (k = 1, 2) and µ > 0. Further let

Re

(
1 +

zϕ′′k(z)

ϕ′k(z)

)
> −%

(
z ∈ U; ϕk(z) :=

J λ, µ+1
s, b gk(z)

z
(k = 1, 2)

)
,

where % is given by (3.2). If the function (J λ, µ+1
s, b f)/z is univalent in U and

(J λ, µs, b f)/z ∈ Q, then the subordination chain

J λ, µ+1
s, b g1(z)

z
≺
J λ, µ+1
s, b f(z)

z
≺
J λ, µ+1
s, b g2(z)

z

implies that

J λ, µs, b g1(z)

z
≺
J λ, µs, b f(z)

z
≺
J λ, µs, b g2(z)

z
.

Furthermore, the functions (J λ, µs, b g1)/z and (J λ, µs, b g2)/z are, respectively, the best
subordinant and the best dominant.

Corollary 3.6. Let f, gk ∈ A (k = 1, 2) and λ > −1. Further let

Re

(
1 +

zχ′′k(z)

χ′k(z)

)
> −$

(
z ∈ U; χk(z) :=

J λ, µs, b gk(z)

z
(k = 1, 2)

)
,

where $ is given by (3.13). If the function (J λ, µs, b f)/z is univalent in U and

(J λ+1, µ
s, b f)/z ∈ Q, then the subordination chain

J λ, µs, b g1(z)

z
≺
J λ, µs, b f(z)

z
≺
J λ, ps, b g2(z)

z

implies that

J λ+1, µ
s, b g1(z)

z
≺
J λ+1, µ
s, b f(z)

z
≺
J λ+1, µ
s, b g2(z)

z
.
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Furthermore, the functions (J λ+1, µ
s, b g1)/z and (J λ+1, µ

s, b g2)/z are, respectively, the
best subordinant and the best dominant.

Corollary 3.7. Let f, gk ∈ A (k = 1, 2) and b ∈ R \ Z−0 with b > −1. Further let

Re

(
1 +

zχ′′k(z)

χ′k(z)

)
> −ϑ

(
z ∈ U; χk(z) :=

J λ, µs, b gk(z)

z
(k = 1, 2)

)
,

where ϑ is given by (3.14). If the function (J λ, µs, b f)/z is univalent in U and

(J λ, µs+1, bf)/z ∈ Q, then the subordination chain

J λ, µs, b g1(z)

z
≺
J λ, µs, b f(z)

z
≺
J λ, µs, b g2(z)

z

implies that

J λ, µs+1, bg1(z)

z
≺
J λ, µs+1, bf(z)

z
≺
J λ, µs+1, bg2(z)

z
.

Furthermore, the functions (J λ, µs+1, bg1)/z and (J λ, µs+1, bg2)/z are, respectively, the best
subordinant and the best dominant.
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