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Abstract. The Kadison-Singer problem asks: does every pure state on the
C∗-algebra `∞(Z) admit a unique extension to the C∗-algebra B(`2(Z))? A

yes answer is equivalent to several open conjectures including Feichtinger’s:

every bounded frame is a finite union of Riesz sequences. We prove that for
measurable S ⊂ T, {χS e2πikt}k∈Z is a finite union of Riesz sequences in L2(T)

if and only if there exists a nonempty Λ ⊂ Z such that χΛ is a minimal sequence

and {χS e2πikt}k∈Λ is a Riesz sequence. We also suggest some directions for
future research.
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1. Introduction

Recently there has been considerable interest in two deep problems that arose from
very separate areas of mathematics. The
Kadison-Singer Problem (KSP): Does every pure state on the C∗-algebra `∞(Z)
admit a unique extension to the C∗-algebra B(`2(Z))?
arose in the area of operator algebras and has remained unsolved since 1959 [19].
Pure states correspond to points in a topological space, the Stone-Čech compactifi-
cation β(Z) of Z, whose construction requires the axiom of choice, and recent work
implicates the KSP with set-theoretic foundational issues [28]. The
Feichtinger Conjecture (FC): Every bounded frame can be written as a finite
union of Riesz sequences
arose from Feichtinger’s work in the area of signal processing involving time-frequency
analysis, [10, 17, 18], and has remained unsolved since it was formally stated in the
literature in 2005 [7, Conjecture 1.1].

Casazza and Tremain proved [9, Theorem 4.2], that a yes answer to the KSP
is equivalent to the FC and Casazza, Fickus, Tremain, and Weber explained many
other equivalent conjectures in [8]. In this paper we address the
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Feichtinger Conjecture for Exponentials (FCE): For every non-trivial mea-
surable set S ⊂ T, the sequence {χ

S
e2πikt}

k∈Z is a finite union of Riesz sequences.
Although FC implies FCE, and FCE is easily shown to be equivalent to FC for
frames of translates, it is unknown if FCE implies FC. Our intuition suggests that
FCE is weaker than FC. Our main result relates FCE to the area of Symbolic
Dynamics:

Theorem 1.1. For subsets S ⊂ T and Λ ⊂ Z set B(S,Λ) := {χ
S
e2πikt}

k∈Λ . For
every nontrivial measurable S ⊂ T the following conditions are equivalent:

(1) B(S,Z) is a finite union of Riesz sequences,
(2) there exists a syndetic subset Λ ⊂ Z such that B(S,Λ) is a Riesz sequence,
(3) there exists a nonempty subset Λ ⊂ Z such that χΛ is a minimal sequence

and B(S,Λ) is a Riesz sequence.

The remainder of this section introduces notation, derives preliminary results,
and reviews selected known results. Section 2 derives Theorems 1.1 and 2.1. Section
3 suggests some directions for further research. N = {1, 2, ...}, Z, Q, R, C are the
natural, integer, rational, real, and complex numbers, T = R/Z is the circle group,
L+(T) is the set of Lebesque measurable S ⊆ T whose Haar measure µ(S) > 0,
and Fn := {0, 1, ..., n − 1}. For Y ⊂ X, X\Y is the complement of Y in X and
χ
Y

: X → {0, 1} is the characteristic function of Y. For S ∈ L+(T) and Λ ⊂ Z,
P
S
, PΛ are orthogonal projections of L2(T) onto the closed subspace χ

S
L2(T), the

closed subspace spanned by the sequence E(Λ) := {e2πik t}
k∈Λ , respectfully.

Lemma 1.1. The following conditions are equivalent:
(1) ∃ ε1 > 0 such that ||P

S
PΛ h || ≥ ε1 ||PΛ h ||, h ∈ L2(T),

(2) ∃ ε2 > 0 such that ||P
S
h ||+ ||PZ\Λ h || ≥ ε2 ||h ||, h ∈ L2(T),

(3) ∃ ε3 > 0 such that ||PZ\Λ PT\S h || ≥ ε3 ||PT\S h ||, h ∈ L2(T).

Proof. Clearly (2) implies (1) and (3). Let h ∈ L2(T). Then h = h1 cos θ + h2 sin θ
where θ ∈ [0, π/2], h1 cos θ = PΛ h, h2 sin θ = PZ\Λ h, and ||h1|| = ||h2|| = ||h||.
Hence (1) implies ||P

S
h|| + ||PZ\Λh|| ≥ (max{0, ε1 cos θ − sin θ}+ sin θ) ||h|| so (2)

holds with ε2 = ε1
(

1 + ε21
)−1/2

. A similar argument shows that (3) implies (2).
Christenson’s book [10] explains frames and Riesz sequences. B(S,Λ) is a bounded

(below by µ(S)) frame in PSL2(T). In Lemma 1.1 condition (1) holds iff B(S,Λ) is a
Riesz sequence and condition (3) holds iff RT\SE(Z\Λ) is a frame in L2(T\S). Here
RT\S : L2(T)→ L2(T\S) is the restriction operator.

For Λ ⊂ Z we define lower and upper Beurling densities

D−(Λ) = lim
k→∞

min
a∈R

|Λ ∩ (a, a+ k)|
k

, D+(Λ) = lim
k→∞

max
a∈R

|Λ ∩ (a, a+ k)|
k

,

lower and upper asymptotic densities

d−(Λ) = lim inf
k→∞

|Λ ∩ (−k, k)|
2k

, d+(Λ) = lim sup
k→∞

|Λ ∩ (−k, k)|
2k

,

and if the cardinality |Λ| ≥ 2 we define the separation

∆(Λ) := min{ |λ2 − λ1| : λ1, λ2 ∈ Λ, λ1 6= λ2 }.
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The following result was inspired by Olevskĭı and Ulanovskii’s paper [26].

Corollary 1.1. If B(S,Λ) is a Riesz sequence then D+(Λ) ≤ µ(S).

Proof. Since E(Z\Λ) is a frame in L2(T\Λ) Landau’s result [21, Theorem 3], implies
D−(Z\Λ) ≥ µ(T\S). Therefore D+(Λ) = 1−D−1(Z\Λ) ≤ 1− µ(T\S) = µ(S).

Result 1. Montgomery and Vaughan’s result [24, Corollary 2], implies that if S con-
tains an interval having length T > 1/∆(Λ) then condition (1) in Lemma 2.1 holds
with ε1 = T − 1/∆(Λ) so B(S,Λ) is a Riesz sequence. It follows that if B(S,Z) does
not satisfy FCE then there exists a Cantor set Sc ∈ L+(T) such that Sc ⊆ S.

Result 2. Casazza, Christiansen, and Kalton [6, Theorem 2.2] showed that for
n ∈ N,m ∈ Z, B(S, nZ +m) is a Riesz basis iff S+ (1/n)Fn = T a.e. This condition
never holds if S is a Cantor set.

Result 3. The authors above also showed [6, Theorem 2.4], that for Λ ⊆ N, B(S,Λ)
is a Riesz sequence iff B(S,Λ) is a frame.

Result 4. Bourgain and Tzafriri’s restricted invertibility result for matrices [3] im-
plies that for every S ∈ L+(T) there exists Λ ⊆ Z such that d−(Λ) > 0 and B(S,Λ)
is a Riesz sequence.

Result 5. Bourgain and Tzafriri’s result [4, Theorem 4.1], implies that if χ
S

belongs
to the Besov space W τ

2,2 for some τ > 0 then B(S,Z) satisfies FCE. Moreover, the
proof of their result [4, Corollary 4.2], shows that if S is a Cantor set and T\S is
a union of disjoint open intervals In, n ∈ N satisfying µ(In) ≤ c2n for some c > 0
then χ

S
∈W τ

2,2 for all τ ∈ (0, 1).

Result 6. Bownik and Speegle [5, Theorem 4.16], used discrepancy theory to con-
struct S ∈ L+(T) and a class of Λ ⊂ Z such that B(S,Λ) is not a Riesz sequence
and related their construction to Gower’s results about Szemeredi’s Theorem [16].

Result 7. In November 2009 Spielman and Srivastava gave an elementary construc-
tive proof of Bourgain and Tzafriri’s restricted invertibility result [29].

2. Minimal sequences

The symbolic dynamical system (Ω, σ), where Ω := {0, 1}Z has the product
topology and σ : Ω → Ω is the shift homeomorphism σ(b)(j) = b(j − 1), b ∈
Ω, belongs to the class of dynamical systems introduced by Bebutov in [1]. Its
subsystems (X,σ) correspond to nonempty closed invariant X ⊆ Ω. Elements in Ω
are binary sequences and the sets Um(b) := { a ∈ Ω : a(k) = b(k),−m < k < m },
b ∈ Ω, m ∈ N are a basis for the product topology. Orbits O(b) := {σk(b) : k ∈ Z }
are (shift) invariant and orbit closures O(b) are closed and invariant.

Lemma 2.1. If B(S,Λ) is a Riesz sequence and if b is a nonzero sequence in O(χΛ)
then B(S, supp(b)) is a Riesz sequence.
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Proof. Fix ε1 > 0. Then B(S,Λ) satisfies the inequality in condition (1) of Lemma
1.1 iff B(S,Λf ) satisfies this inequality for every finite Λf ⊆ Λ. The result then
follows from the definition of orbit closure and product topology.

A nonempty closed invariant X ⊂ Ω is called a minimal set if it is minimal
with respect to these properties. Zorn’s lemma ensures that every nonempty closed
invariant set contains a minimal set. If X is a minimal set and b ∈ X then O(b) = X.
A minimal sequence is a binary sequence b such that O(b) is a minimal set.

Definition 2.1. Λ ⊂ Z is syndetic if there exists n ∈ N such that Λ + Fn = Z,
thick if for every n ∈ N there exists k ∈ Z such that k + Fn ⊂ Λ, and piecewise
syndetic if Λ = Λs ∩ Λt where Λs is syndetic and Λt is thick.

Lemma 2.2. If Z =
⋃n
i=1 Λi then one of the Λi is piecewise syndetic.

Proof. Theorem 1.23 in [13].

Lemma 2.3. If Λp is piecewise syndetic then there exists a syndetic set Λ such that
χΛ ∈ O(χΛp

).

Proof. Λp = Λ ∩ Λt where Λ is syndetic and Λt is thick. Then χΛ ∈ O(χΛp
) follows

from the definitions of thick sets, orbit closures, and product topology.

Corollary 2.1. For every S ∈ L+(T) the following conditions are equivalent:
(1) B(S,Z) is a finite union of Riesz sequences,
(2) there exists a syndetic subset Λ ⊂ Z such that B(S,Λ) is a Riesz sequence.

Proof. (2) implies (1): If Λ is syndetic there exists n ∈ N with Λ + Fn = Z. Then
B(S,Z) is the union of the Riesz sequences B(S,Λ + k), k ∈ Fn.
(1) implies (2): If B(S,Z) is a finite union of Riesz sets then Lemma 2.2 implies
that there exists a piecewise syndetic Λp such that B(S,Λp) is a Riesz sequence.
Then Lemma 2.3 implies there exists a syndetic Λ such that χΛ ∈ O(Λp). Since
Λ = supp(χΛ), Lemma 2.1 implies that B(S,Λ) is a Riesz sequence.

Lemma 2.4. If Λ is syndetic and b ∈ O(χΛ) then supp(b) is syndetic.

Proof. Since Λ is syndetic there exists n ∈ N with Λ + Fn = Z. Therefore

supp
(
σk(χΛ)

)
+ Fn = supp (χΛ) + k + Fn = Z, k ∈ Z,

so the definition of orbit closure implies supp(b) + Fn = Z whenever b ∈ O(χΛ).
For b ∈ Ω define the function θb : Z→ Ω by θb(k) = σk(b), k ∈ Z.

Definition 2.2. b ∈ Ω is almost periodic if θ−1
b (Um(b)) is syndetic for every m ∈ N.

Lemma 2.5. A sequence is minimal iff it is almost periodic.

Proof. Gottschalk and Hedlund proved this in [15, Theorems 4.05 and 4.07].

Corollary 2.2. If b is a nonzero minimal sequence then supp(b) is syndetic.

Proof. Choose k ∈ supp(b) and set m = |k|+ 1. Lemma 2.5 implies that b is almost
periodic therefore there exists n ∈ N such that θ−1

b (Um(b)) + Fn = Z. Therefore
supp(b) + Fn = Z so supp(b) is syndetic.
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Proof of Theorem 1.1. (1) equivalent to (2): This follows from Corollary 2.1.
(3) implies (2): Since Λ is nonempty χΛ is a nonzero minimal sequence and hence
Corollary 2.2 implies that Λ = supp(χΛ) is syndetic.
(2) implies (3): Zorn’s lemma implies that there exists a minimal set X ⊆ O(χΛ).
Then choose b ∈ X. Then b is a minimal sequence. Lemma 2.1 implies that
B(S, supp(b)) is a Riesz sequence. Lemma 2.4 implies that supp(b) is syndetic and
hence supp(b) is nonemepty. Then (3) follows from the fact that χ

supp(b) = b.

Definition 2.3. A subset Λ ⊂ Z is a Bohr set if there exists a compact abelian
group G, a homomorphism ψ : Z→ G with ψ(Z) = G, and a nonempty open subset
U ⊂ G such that Λ = ψ−1(U).

If Λ is a Bohr set then χΛ is a nonzero minimal sequence. These sets generalize
sets having the form nZ+m where n ∈ N and m ∈ Z and are unions of the Bohr sets
defined by Ruzsa [14, Definition 2.5.1], who studied their number theoretic proper-
ties. They are named after Harald Bohr, who pioneered the theory of (uniformly)
almost periodic functions [2], and are related to the Bohr compactification used by
Dutkay, Han, and Jorgensen in their study of spectral pairs [11]. The following
extension of Result 2 utilizes spectral properties of Bohr sets.

Theorem 2.1. If S is a Cantor set with µ(S) > 0 and Λ is a Bohr set then B(S,Λ)
is not a Riesz sequence.

Proof. Without loss of generality we can assume that Λ = ψ−1(U) where U ⊆ G is
an open set that contains 0 ∈ G and choose an open subset V ⊆ G that contains
0 and satisfies V − V ⊆ U. Set f := χ

V
∗ χ−V and g := f ◦ ψ ∈ `∞(Z). Then

supp(g) ⊂ Λ and g equals the Fourier transform ν̂ of the positive measure ν on T
given by

(2.1) ν =
∑
γ∈Ĝ

f̂(γ) δ
γ(ψ(1)) , f̂(γ) = |χ̂

V
(γ)|2

where Ĝ is the Pontryagin dual of G and f̂ ∈ `2(Ĝ) is the Fourier transform of f.
Let ε > 0. It suffices to construct h ∈ L2(T) such that ||PS (ν ∗ h)|| < ε ||ν ∗ h|| since
PΛ(ν ∗h) = ν ∗h. Partition Ĝ = Γ1∪Γ2 where Γ1 is finite, let νi be the component of
ν supported on Γi, i = 1, 2, and set α :=

∑
γ∈Γ2

f̂(γ) and β :=
∑
γ∈Γ1

f̂(γ)2. Since S
is nowhere dense supp(ν1) +S 6= T so there exists h ∈ L2(T) such that ||h|| = 1 and
supp(h) is contained in an arc I ⊂ T that is disjoint from supp(ν1)+S and such that
the intervals I+γ, γ ∈ Γ1 are mutually disjoint. Then ||PS(ν ∗h)|| = ||PS(ν2 ∗h)|| ≤
||ν2 ∗ h|| ≤ α, and ||ν ∗ h|| ≥ ||ν1 ∗ h|| = β. The result follows by choosing Γ1 so
α < εβ which is possible since as Γ1 increases α→ 0 and β → f(1) > 0.

Bohr minimal sequences are simple. We discuss methods to construct more sophis-
ticated minimal sequences. For nonempty invariant X,Y ⊆ Ω, a function ζ : X → Y
is equivariant if ζ ◦ σ = σ ◦ ζ. For m ∈ N every function c : {0, 1}{−m+1,...,m−1} →
{0, 1} defines the function ζc : Ω→ Ω by

(2.2) ζc(b)(k) = c
(
R{−m+1,...,m−1}(σk(b))

)
, b ∈ Ω, k ∈ Z.
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Furthermore, for every nonempty closed invariant X ⊆ Ω the restriction ζc : X → Ω
is continuous and equivariant and every continuous equivariant ζ : X → Ω equals ζc
for some c. Equivariant images of minimal sets and sequences are minimal.

The Thue-Morse minimal sequence b = · · · 10010110.0110100110010110 · · · , in-
troduced in [25, 30], can be constructed using substitutions 0→ 01 and 1→ 10. Its
orbit closure X = O(b) admits a unique invariant ergodic probability measure λ [20].
The spectrum of the unitary operator (Uσf)(x) = f(σ(x)), f ∈ L2(X,λ) admits a
Riesz product representation, has no point components, and is supported on a dense
set of measure zero [23,27].

3. Research directions

We suggest three questions, related to the material in this paper, as directions to-
wards a solution of the FCE. In this section we assume that S ∈ L+(T) is a Cantor
set such that χ

S
6∈ W τ

2,2 for all τ > 0 and that χΛ is a nonzero minimal sequence.
We let M(Λ), P(Λ) denote the set of measures, pseudomeasures, respectively, on T
whose Fourier transforms are supported on Λ, (see [22, (4.2)]).

Question 1. What properties of a pair (S,Λ), determine whether or not B(S,Λ)
is a Riesz sequence? Such properties include the rate of decay of the restriction of
χ̂
S

to Λ, and the sumsets S + supp(ν) where ν ∈ M(Λ) or ν ∈ P(Λ). Of particular
interest are pairs where χΛ is a substitution minimal sequence because their spectral
properties have been intensively studied [27].

Question 2. What is the spectrum of P
S

+PΛ? Condition (2) in Lemma 1.1 implies
that B(S,Λ) is a Riesz sequence iff this spectrum is bounded below by a positive
number. Let A(P

S
, PΛ) denote the C∗-subalgebra of B(L2(T)) generated by P

S
and

PΛ . A standard result [12, (8.5.5)], shows that A(P
S
, PΛ) equals a homomorphic

image of a specific crossed-product C∗-algebra and implies that A(P
S
, PΛ) is deter-

mined by the spectrum of P
S

+ PΛ .

Question 3. What are the spectrums of submatrices of the Laurent operators
L
S

: `2(Z) → `2(Z) defined by L
S
f = χ̂

S
∗ f? Spielman and Srivastava’s algo-

rithm [29] may provide an efficient method to compute these spectrums. Of particu-
lar interest are Cantor sets having the form S =

⋂
n∈N Sn where each Sn is obtained

by deleting a large number of equally spaced, equal length open arcs from T. This
construction was suggested to the author by Alexander Olevskii as a method of con-
structing Cantor sets S such that χ̂

S
decays slowly and is easily computable.
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