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Abstract. Let t ≥ 2 be an integer. In this work, we consider the number of

integer solutions of Diophantine equation D : x2 − (t2 − t)y2 − (4t − 2)x +
(4t2 − 4t)y = 0 over Z. We also derive some recurrence relations on the integer

solutions (xn, yn) of D. In the last section, we consider the same problem over

finite fields Fp for primes p ≥ 5.
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1. Introduction

A Diophantine equation is an indeterminate polynomial equation that allows the
variables to be integers only. In more technical language, they define an algebraic
curve, algebraic surface or more general object, and ask about the lattice points
on it. The word Diophantine refers to the Hellenistic mathematician of the 3rd

century, Diophantus of Alexandria, who made a study of such equations and was
one of the first mathematicians to introduce symbolism into algebra. In general, the
Diophantine equation is the equation given by

(1.1) ax2 + bxy + cy2 + dx + ey + f = 0.

Also the Diophantine equation

(1.2) x2 − dy2 = 1

which is a special case of (1.1), known as the Pell equation (see [3, 14]), which is
named after an English mathematician, John Pell, who searched for integer solutions
to equations of this type in the seventeenth century. The Pell equation in (1.2)
has infinitely many integer solutions (xn, yn) for n ≥ 1. The first positive integer
solution (x1, y1) of this equation is called the fundamental solution, because all
other solutions can be (easily) derived from it. In fact, if (x1, y1) is the fundamental
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solution, then the n-th positive solution of it, say (xn, yn), is defined by the equality
xn + yn

√
d = (x1 + y1

√
d)n for integer n ≥ 2. There are several methods for finding

the fundamental solution of x2 − dy2 = 1. For example, the cyclic method known
in India in the 12th century, and the slightly less efficient but more regular English
method in the 17th century, produce all solutions of x2 − dy2 = 1 (see [4]). But the
most efficient method for finding the fundamental solution is based on the simple
finite continued fraction expansion of

√
d (see [2,5,6,10,11]). The Pell equation was

first studied by Brahmagupta (598–670) and Bhaskara (1114–1185) (see [1]). Its
complete theory was worked out by Lagrange (1736–1813), not Pell. It is often said
that Euler (1707–1783) mistakenly attributed Brouncker’s (1620–1684) work on this
equation to Pell. However the equation appears in a book by Rahn (1622–1676)
which was certainly written with Pell’s help: Some say entirely written by Pell.
Perhaps Euler knew what he was doing in naming the equation (for further details
on Pell and Diophantine equations see [7–9,12,13,15]).

2. The Diophantine Equation x2 − (t2 − t)y2 − (4t− 2)x + (4t2 − 4t)y = 0

In [16–20], we considered some specific Pell (also Diophantine) equations and their
integer solutions. In the present paper, we consider the integer solutions of Dio-
phantine equation

(2.1) D : x2 − (t2 − t)y2 − (4t− 2)x + (4t2 − 4t)y = 0

over Z, where t ≥ 2 is an integer. Note that it is very difficult to solve D in its
present form, that is, we can not determine how many integer solutions D has and
what they are. So we have to transform D into an appropriate Diophantine equation
which can be easily solved. To get this let

(2.2) T :
{

x = u + h
y = v + k

be a translation for some h and k. In this case the pair {h, k} is called the base of
T and denote it by T [h; k] = {h, k}. If we apply T to D, then we get

(2.3) T (D) = D̃ : (u+h)2− (t2− t)(v +k)2− (4t−2)(u+h)+(4t2−4t)(v +k) = 0.

In (2.3), we obtain u(2h−2−4t) and v(−2kt2−2kt+4t2 +4t). So we get h = 2t−1
and k = 2. Consequently for x = u + 2t− 1 and y = v + 2, we have the Diophantine
equation

(2.4) D̃ : u2 − (t2 − t)v2 = 1

which is a Pell equation. Now we try to find all integer solutions (un, vn) of D̃ and
then we can retransfer all results from D̃ to D by using the inverse of T .

Theorem 2.1. Let D̃ be the Diophantine equation in (2.4). Then
(1) The continued fraction expansion of

√
t2 − t is

√
t2 − t =

 [1; 2] if t = 2

[t− 1; 2, 2t− 2] if t > 2.

(2) The fundamental solution of D̃ is (u1, v1) = (2t− 1, 2).
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(3) Define the sequence {(un, vn)}, where

(2.5)
(

un

vn

)
=
(

2t− 1 2t2 − 2t
2 2t− 1

)n( 1
0

)
for n ≥ 1. Then (un, vn) is a solution of D̃.

(4) The solutions (un, vn) satisfy un = (2t− 1)un−1 + (2t2 − 2t)vn−1 and vn =
2un−1 + (2t− 1)vn−1 for n ≥ 2.

(5) The solutions (un, vn) satisfy the recurrence relations un = (4t− 3)(un−1 +
un−2)− un−3 and vn = (4t− 3)(vn−1 + vn−2)− vn−3 for n ≥ 4.

(6) The n-th solution (un, vn) can be given by

(2.6)
un

vn
=

t− 1; 2, 2t− 2, · · · , 2, 2t− 2︸ ︷︷ ︸
n−1 times

, 2


for n ≥ 1.

Proof.
(1) Let t = 2. Then it is easily seen that

√
2 = [1; 2]. Now let t > 2. Then√

t2 − t = t− 1 + (
√

t2 − t− t + 1) = t− 1 +
1

√
t2−t+t−1

t−1

= t− 1 +
1

2 +
√

t2−t−t+1
t−1

= t− 1 +
1

2 + 1√
t2−t+t−1

= t− 1 +
1

2 + 1
2t−2+(

√
t2−t−t+1)

.

So
√

t2 − t = [t− 1; 2, 2t− 2].
(2) It is easily seen that (u1, v1) = (2t − 1, 2) is the fundamental solution of D̃

since (2t− 1)2 − (t2 − t)22 = 1.
(3) We prove it by induction. Let n = 1. Then by (2.5), we get (u1, v1) =

(2t− 1, 2) which is the fundamental solution and so is a solution of D̃. Let
us assume that the Diophantine equation in (2.4) is satisfied for n− 1, that
is, D̃ : u2

n−1 − (t2 − t)v2
n−1 = 1. We want to show that this equation is also

satisfied for n. Applying (2.5), we find that(
un

vn

)
=
(

2t− 1 2t2 − 2t
2 2t− 1

)n( 1
0

)
=
(

2t− 1 2t2 − 2t
2 2t− 1

)(
2t− 1 2t2 − 2t

2 2t− 1

)n−1( 1
0

)
=
(

2t− 1 2t2 − 2t
2 2t− 1

)(
un−1

vn−1

)
=
(

(2t− 1)un−1 + (2t2 − 2t)vn−1

2un−1 + (2t− 1)vn−1

)
.(2.7)
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Hence we conclude that

u2
n − (t2 − t)v2

n =
(
(2t− 1)un−1 + (2t2 − 2t)vn−1

)2
− (t2 − t) (2un−1 + (2t− 1)vn−1)2

= u2
n−1 − (t2 − t)v2

n−1 = 1.

So (un, vn) is also a solution of D̃.
(4) From (2.7), we find that un = (2t − 1)un−1 + (2t2 − 2t)vn−1 and vn =

2un−1 + (2t− 1)vn−1 for n ≥ 2.
(5) We only prove that un satisfy the recurrence relation. For n = 4, we get

u1 = 2t − 1, u2 = 8t2 − 8t + 1, u3 = 32t3 − 48t2 + 18t − 1 and u4 =
128t4 − 256t3 + 160t2 − 32t + 1. Hence

u4 = (4t− 3)(u3 + u2)− u1

= (4t− 3)(32t3 − 40t2 + 10t)− (2t− 1)

= 128t4 − 256t3 + 160t2 − 32t + 1.

So un = (4t− 3)(un−1 + un−2)− un−3 is satisfied for n = 4. Let us assume
that this relation is satisfied for n− 1, that is,

(2.8) un−1 = (4t− 3)(un−2 + un−3)− un−4.

Then applying the previous assertion, (2.7) and (2.8), we conclude that
un = (4t− 3)(un−1 + un−2)− un−3 for n ≥ 4.

(6) Note that
u1

v1
= [t− 1; 2] = t− 1 +

1
2

=
2t− 1

2

which is the fundamental solution. Let us assume that (un, vn) is a solution
of D̃, that is, u2

n − (t2 − t)v2
n = 1. Then by (2.6), we derive

un+1

vn+1
= t− 1 +

1
2 + 1

2t−2+ 1
2+ 1

2t−2+ 1
··· +2t−2+ 1

2

= t− 1 +
1

2 + 1
t−1+t−1+ 1

2+ 1
2t−2+ 1

··· +2t−2+ 1
2

= t− 1 +
1

2 + 1
t−1+ un

vn

=
(2t− 1)un + (2t2 − 2t)vn

2un + (2t− 1)vn
.

So (un+1, vn+1) is also a solution of D̃ since

u2
n+1 − (t2 − t)v2

n+1 =
(
(2t− 1)un + (2t2 − 2t)vn

)2 − (t2 − t) (2un + (2t− 1)vn)2

= u2
n − (t2 − t)v2

n = 1.

This completes the proof.
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Example 2.1. Let t = 4. Then (u1, v1) = (7, 2) is the fundamental solution of
D̃ : u2 − 12v2 = 1 and some other solutions are(

u2

v2

)
=
(

7 24
2 7

)2( 1
0

)
=
(

97
28

)
(

u3

v3

)
=
(

7 24
2 7

)3( 1
0

)
=
(

1351
390

)
(

u4

v4

)
=
(

7 24
2 7

)4( 1
0

)
=
(

18817
5432

)
(

u5

v5

)
=
(

7 24
2 7

)5( 1
0

)
=
(

262087
75658

)
(

u6

v6

)
=
(

7 24
2 7

)6( 1
0

)
=
(

3650401
1053780

)
.

Also un = 7un−1 + 24vn−1 and vn = 2un−1 + 7vn−1 for n ≥ 2; un = 13(un−1 +
un−2)− un−3 and vn = 13(vn−1 + vn−2)− vn−3 for n ≥ 4. Further

u2

v2
= [3; 2, 6, 2] =

97
28

u3

v3
= [3; 2, 6, 2, 6, 2] =

1351
390

u4

v4
= [3; 2, 6, 2, 6, 2, 6, 2] =

18817
5432

u5

v5
= [3; 2, 6, 2, 6, 2, 6, 2, 6, 2] =

262087
75658

u6

v6
= [3; 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2] =

3650401
1053780

.

From above theorem we can give the following result.

Corollary 2.1. The base of the transformation T in (2.2) is the fundamental solu-
tion of D̃, that is T [h; k] = {h, k} = {u1, v1}.

Proof. We proved that (u1, v1) = (2t− 1, 2) is the fundamental solution of D̃. Also
we showed that h = 2t−1 and k = 2. So the base of T is T [h; k] = {h, k} = {2t−1, 2}
as we claimed.

We saw as above that the Diophantine equation D could be transformed into the
Diophantine equation D̃ via the transformation T . Also we showed that x = u + 2t

−1 and y = v + 2. So we can retransfer all results from D̃ to D by using the inverse
of T . Thus we can give the following main theorem.

Theorem 2.2. Let D be the Diophantine equation in (2.1). Then

(1) The fundamental (minimal) solution of D is (x1, y1) = (4t− 2, 4).
(2) Define the sequence {(xn, yn)}n≥1 = {(un +2t−1, vn +2)}, where {(un, vn)}

defined in (2.5). Then (xn, yn) is a solution of D. So it has infinitely many
many integer solutions (xn, yn) ∈ Z× Z.
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(3) The solutions (xn, yn) satisfy

xn = (2t− 1)xn−1 + (2t2 − 2t)yn−1 − 8t2 + 10t− 2

yn = 2xn−1 + (2t− 1)yn−1 − 8t + 6

for n ≥ 2.
(4) The solutions (xn, yn) satisfy the recurrence relations

xn = (4t− 3)(xn−1 + xn−2)− xn−3 − 16t2 + 24t− 8

yn = (4t− 3)(yn−1 + yn−2)− yn−3 − 16t + 16

for n ≥ 4.

3. The Diophantine Equation x2− (t2− t)y2− (4t− 2)x + (4t2− 4t)y = 0 over
finite fields

In this section, we will consider the integer solutions of D over finite fields Fp for
primes p ≥ 5. Let t ∈ F∗p and let t2 − t ≡ d(mod p). Then D̃ becomes

(3.1) D̃d
p : u2 − dv2 ≡ 1(mod p).

Let D̃d
p(Fp) = {(u, v) ∈ Fp × Fp : u2 − dv2 ≡ 1(mod p)}. Then we can give the

following theorem.

Theorem 3.1. Let D̃d
p be the Diophantine equation in (3.1). Then

#D̃d
p(Fp) =

{
p− 1 for d ∈ Qp

p + 1 for d /∈ Qp,

where Qp denote the set of quadratic residues.

Proof. Let d ∈ Qp and let p ≡ 1, 5(mod 8). If v = 0, then u2 ≡ 1(mod p) ⇔ u ≡
±1(mod p). So D̃d

p has two integer solutions (1, 0) and (p − 1, 0). If u = 0, then
−dv2 ≡ 1(mod p) has two solutions v1, v2. So D̃d

p has two integer solutions (0, v1)
and (0, v2). Now let Sp = F∗p − {1, p − 1}. Then there are (p− 5)/2 points u in
Sp such that (u2 − 1)/d is a square. Set (u2 − 1)/d = c2 for some c 6= 0. Then
v2 ≡ c2(mod p) ⇔ v ≡ ±c(mod p). So D̃d

p has two solutions (u, c) and (u,−c), that
is, for each u in Sp, D̃d

p has two solutions. So it has 2((p− 5)/2) = p− 5 solutions.
We see as above that it has also four solutions (1, 0), (p − 1, 0), (0, v1) and (0, v2).
Therefore D̃d

p has p−5+4 = p−1 integer solutions. Now let p ≡ 3, 7(mod 8). If v = 0,
then u2 ≡ 1(mod p) and hence u = 1 and u = p−1. So D̃d

p has two integer solutions
(1, 0) and (p− 1, 0). If u = 0, then −dv2 ≡ 1(mod p) has no solution. So D̃d

p has no
integer solution (0, v). Let Hp = F∗p − {1, p− 1}. Then there are (p− 3)/2 points u

in Hp such that (u2 − 1)/d is a square. Set (u2 − 1)/d = j2 for some j 6= 0. Then
v2 ≡ j2(mod p) ⇔ v ≡ ±j(mod p). So D̃d

p has two solutions (u, j) and (u,−j), that
is, for each u in Hp, D̃d

p has two solutions. So it has 2((p− 3)/2) = p− 3 solutions.
It has also two solutions (1, 0) and (p − 1, 0). Therefore D̃d

p has p − 3 + 2 = p − 1
integer solutions.

Similarly it can be shown that if d /∈ Qp, then D̃d
p has p + 1 integer solutions.
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Example 3.1. Let t = 4. Then 12 ∈ Q23 and 12 /∈ Q31. So

D̃12
23(F23) =

 (1, 0), (2, 11), (2, 12), (3, 4), (3, 19), (5, 5), (5, 18), (6, 1), (6, 22), (7, 2),
(7, 21), (16, 2), (16, 21), (17, 1), (17, 22), (18, 5), (18, 18), (20, 4),

(20, 19), (21, 11), (21, 12), (22, 0)


D̃12

31(F31) =


(0, 7), (0, 24), (1, 0), (2, 15), (2, 16), (4, 3), (4, 28), (5, 8), (5, 23), (7, 2),
(7, 29), (10, 4), (10, 27), (11, 14), (11, 17), (13, 13), (13, 18), (18, 13),
(18, 18), (20, 14), (20, 17), (21, 4), (21, 27), (24, 2), (24, 29), (26, 8),

(26, 23), (27, 3), (27, 28), (29, 15), (29, 16), (30, 0)

 .

For the Diophantine equation D, we set

D(Fp) = {(x, y) ∈ Fp × Fp : x2 − (t2 − t)y2 − (4t− 2)x + (4t2 − 4t)y = 0(mod p)}.

Then we can give the following theorem.

Theorem 3.2. Let D be the Diophantine equation in (2.1). Then

#D(Fp) =
{

p− 1 for t2 − t ∈ Qp

p + 1 for t2 − t /∈ Qp.
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