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Abstract. An analysis is carried out to study the momentum and mass trans-
fer characteristics in a visco-elastic fluid flow over a porous stretching sheet in
the presence of a transverse magnetic field. The flow is generated solely due to
the linear stretching of the sheet. The symmetry groups obtained using a spe-
cial form of Lie group transformations viz. Scaling group of transformations,
reduce the momentum equation and the concentration conservation equation
into fourth order and second order ordinary differential equations respectively.
Closed form analytical solutions have been derived for non-dimensional concen-
tration and mass flux profiles in the form of confluent hyper geometric (Kum-
mer’s) functions, for two different cases of the boundary conditions, namely
(1) Prescribed Sheet Concentration (PSC) and
(2) Prescribed Mass Flux (PMF).

The main emphasis of this paper is to derive the final equations using the scaling
group of transformations and to study the effects of the visco-elastic parameter,
suction/blowing parameter, magnetic parameter, concentration and mass flux
parameters and Schmidt number on the mass transfer characteristics. It has
been observed that, for the case of suction and for the values of the parameters
considered, an ideal combination to obtain a reduced concentration boundary
layer thickness would be to choose smaller values of the visco-elastic and mag-
netic parameters and relatively larger value for the Schmidt number. This is
seen to be more significant in the PMF case. An increase in the concentra-
tion and mass flux parameters has shown a steep decrease in the concentration
boundary layer thickness.
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1. Introduction

In the recent past, considerable research has been reported on the momentum, heat
and mass transfer characteristics of a visco-elastic fluid in the boundary layer formed
by its flow over a stretching sheet. The study of mass transfer carried special im-
portance in energy equation. Abel et al. [1] carried out an analysis to study the
influence of momentum, mass and heat transfer characteristics on the flow of a visco-
elastic fluid (Walter’s liquid–B model) past a stretching sheet in the presence of a
transverse magnetic field. An analysis was made by Acharya et al. [2] to determine
the heat and mass transfer occurring in the laminar boundary layer on a linearly
accelerating surface with temperature dependent heat source subjected to suction
or blowing. Anuradha et al. [3] studied the effects of radiation and variable thermal
conductivity on the Magnetohydrodynamic (MHD) flow of a visco-elastic fluid and
heat transfer over a stretching porous sheet. The Prandtl boundary layer theory was
extended for an idealized elastico-viscous liquid by Beard and Walters [4]. Hayat [5,
6] discussed the influence of thermal radiation on the MHD flow of a second grade
fluid. Mukhopadhyay et al. [8] used the Lie group transformations to study the free
convective boundary layer flow and heat transfer of a fluid with variable viscosity
over a porous stretching vertical sheet in the presence of thermal radiation. Prasad
et al. [9] studied the diffusion of chemically reactive species of a non-Newtonian
fluid immersed in a porous medium over a stretching sheet. Radwan et al. [10]
considered a steady two dimensional laminar flow and studied mass transfer over
a stretching sheet with variable concentration in a transverse magnetic field. Raj-
gopal et al. [11] analysed the flow characteristics and heat transfer behaviours only
in the visco-elastic fluid flow of the type Walters’ liquid B and second order fluid.
Rollins and Vajravelu [12] investigated the heat transfer characteristics in a visco-
elastic fluid over a continuous impermeable linearly stretching sheet. Sonth et al.
[13] studied a mathematical analysis of heat and mass phenomenon in a visco-elastic
fluid flow over an accelerating stretching sheet in the presence of heat source/sink,
viscous dissipation and suction/blowing. Sujit Kumar Khan et al. [7] studied the
momentum, heat and mass transfer characteristics of a visco-elastic fluid flow over
a porous sheet.

In all the above mentioned works, a suitable similarity transformation has been
used in order to reduce the highly non-linear partial differential equations into or-
dinary differential equations. In the present study, symmetry methods are applied
to the boundary value problem. The main advantage of this method is that it
can be successfully applied to non-linear differential equations. The symmetries of
differential equations are those continuous groups of transformations under which
the differential equations remain invariant. Using these symmetry groups, fourth
order and second order ordinary differential equations corresponding to the momen-
tum and concentration conservation equations are derived. The ordinary differential
equations so obtained are compared with those [13] obtained using a similarity trans-
formation. These are found to match in the absence of a magnetic field. Closed form
analytical solutions for non-dimensional concentration and mass flux profiles in the
form of confluent hyper geometric (Kummer’s) functions are derived for two different
cases:
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(1) Prescribed Sheet Concentration (PSC) and
(2) Prescribed Mass Flux (PMF).

By giving special values to the concentration parameter and the mass flux parameter,
the results are compared with those of Sonth et al. [13] and are found to agree
in the absence of the magnetic field. The velocity profiles are not described in
detail as the main emphasis of this paper is to derive the final equations using
the scaling group of transformations and to study the effects of the visco-elastic
parameter, suction/blowing parameter, magnetic parameter, concentration and mass
flux parameters and Schmidt number on the mass transfer characteristics. The
effects of the flow parameters on the concentration distribution of the flow field have
been studied with the help of graphs and tables.

2. Formulation of the problem

Consider a steady two dimensional boundary layer flow of an electrically conducting
incompressible visco-elastic fluid in a region y > 0 over a stretching porous sheet.
The flow is caused by the linear stretching of the sheet.

The following assumptions are made:
(1) The fluid properties are assumed to be constant.
(2) The flow is exposed to the influence of a transverse uniform magnetic field

of strength B0.
(3) The magnetic Reynolds number is considered to be small and so, the induced

magnetic field is negligible.
(4) The concentration of diffusing species is very small in comparison to other

chemical species.
(5) No chemical reactions take place in the fluid.

With the above assumptions, the governing basic boundary layer equations for
momentum and mass transfer in Walters’ liquid B [4], take the following form.
Continuity equation:

(2.1)
∂u

∂x
+

∂v

∂y
= 0;

Momentum equation:

(2.2) u
∂u

∂x
+ v

∂u

∂y
= v

∂2u

∂y2
− k0

[
u

∂3u

∂x∂y2
+ v

∂3u

∂y3
+

∂u

∂x

∂2u

∂y2
− ∂u

∂y

∂2u

∂x∂y

]
− σB2

0u

ρ
;

Concentration conservation equation:

(2.3) u
∂c

∂x
+ v

∂c

∂y
= D

∂2c

∂y2
,

where u and v are the velocity components in the x and y directions, ν, ρ, σ, k0

are respectively the kinematic viscosity, fluid density, electrical conductivity and
coefficient of visco-elasticity, c represents the concentration and D is the diffusion
coefficient of the fluid. The necessary boundary conditions are

At y = 0, u = bx, v = vw

c = cw = c∞ + Axr PSC case(2.4)
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−D
∂c

∂y
= Exs PMF case.

As y →∞, u → 0, uy → 0

c → c∞(2.5)

where cw and c∞ denote the concentration at the sheet level and far away from the
sheet respectively, b is the constant stretching rate, r is the concentration parameter,
s is the mass flux parameter, vw represents suction velocity across the stretching
sheet when vw < 0 and blowing velocity when vw > 0. When vw = 0, the sheet is
impermeable. A and E are constants which depend on the properties of the fluid.

3. Method of solution

Introduce the following relations for u, v and c as follows:

u =
∂φ

∂y
, v = −∂φ

∂x
,

χ =
c− c∞
cw − c∞

PSC case(3.1)

g =
c− c∞
cw − c∞

PMF case

where φ is the stream function, χ and g are the non-dimensional concentration
parameters for the PSC and PMF cases respectively.

Using (3.1) in (2.2) and (2.3),

∂φ

∂y

∂2φ

∂x∂y
− ∂φ

∂x

∂2φ

∂y2
= v

∂3φ

∂y3
− k0

[
∂2φ

∂x∂y

∂3φ

∂y3
+

∂φ

∂y

∂4y

∂x∂y3
− ∂2φ

∂y2

∂3φ

∂x∂y2
− ∂φ

∂x

∂4φ

∂y4

]

− σB2
0

ρ

∂φ

∂y
,(3.2)

(3.3)
r

x
χ

∂φ

∂y
+

∂φ

∂y

∂χ

∂x
− ∂φ

∂x

∂χ

∂y
= D

∂2χ

∂y2
PSC case,

(3.4)
∂φ

∂y

∂g

∂x
− ∂φ

∂x

∂g

∂y
= D

∂2g

∂y2
PMF case.

The boundary conditions (2.4) and (2.5) are rewritten in the following form

At y = 0,
∂φ

∂y
= bx,

∂φ

∂x
= −vw

χ = 1 PSC case(3.5)

−D(cw − c∞)
∂g

∂y
= Exs PMF case.

As y →∞,
∂φ

∂y
→ 0,

∂2φ

∂y2
→ 0

χ → 0 PSC case(3.6)
g → 0 PMF case.
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3.1. Scaling group of transformations

The simplified form of Lie-group transformations, namely the scaling group of trans-
formations as given by Mukhopadhyay et al. [8] are given by

Γ : x∗ = xeεα1 , y∗ = yeεα2 , φ∗ = φeεα3 , u∗ = ueεα4 ,

v∗ = veεα5 , χ∗ = χeεα6 , g∗ = geεα7(3.7)

where α1, α2, α3, α4, α5, α6 and α7 are transformation parameters.
Equation (3.7) is considered as a point-transformation transforming co-ordinates

(x, y, φ, u, v, χ, g) into the co-ordinates (x∗, y∗, φ∗, u∗, v∗, χ∗, g∗).
Substituting (3.7) in (3.2), (3.3) and (3.4)

eε(α1+2α2−2α3)

[
∂φ∗

∂y∗
∂2φ

∂x∗∂y∗
− ∂φ∗

∂x∗
∂2φ

∂y2

]

= νeε(3α2−α3)
∂3φ∗

∂y∗3
− k0e

ε(α1+4α2−2α3)

[
∂φ∗

∂y∗
∂4φ∗

∂x∗∂y∗3
− ∂φ∗

∂x∗
∂4φ∗

∂y∗4

−∂2φ∗

∂y∗2
∂3φ∗

∂x∗∂y∗2
+

∂2φ∗

∂x∗∂y∗
∂3φ∗

∂y∗3

]
− σB2

0

ρ
eε(α2−α3)

∂φ∗

∂y∗
,(3.8)

(3.9) eε(α1+α2−α3−α6)

[
r

x∗
χ∗

∂φ∗

∂y∗
+

∂φ∗

∂y∗
∂χ∗

∂x∗
− ∂φ∗

∂x∗
∂χ∗

∂y∗

]
= Deε(2α2−α6)

∂2χ∗

∂y∗2
,

(3.10) eε(α1+α2−α3−α7)

[
∂φ∗

∂y∗
∂g∗

∂x∗
− ∂φ∗

∂x∗
∂g∗

∂y∗

]
= Deε(2α2−α7)

∂2g∗

∂y∗2
.

Since the system remains invariant under the group of transformations Γ, the fol-
lowing relations among the parameters are deduced.

α1 + 2α2 − 2α3 = 3α2 − α3 = α1 + 4α2 − 2α3 = α2 − α3,

α1 + α2 − α3 − α6 = 2α2 − α6,

α1 + α2 − α3 − α7 = 2α2 − α7.

The relation 3α2 − α3 = α2 − α3 gives the value α2 = 0. Hence, α1 + 2α2 − 2α3 =
3α2 − α3 gives α1 = α3. Thus, the boundary conditions become

At y∗ = 0,
∂φ∗

∂y∗
= bx,

∂φ∗

∂x∗
= −vw

χ∗ = 1 PSC case(3.11)

−D(cw − c∞)
∂g∗

∂y∗
= Ex∗s PMF case.

As y∗ →∞,
∂φ∗

∂y∗
→ 0,

∂2φ∗

∂y∗2
→ 0,

χ∗ → 0 PSC case(3.12)

g∗ → 0 PMF case

with the conditions α1 = α3 = α4, α2 = α5 = α6 = 0, α7 = sα1. Thus, the set Γ
reduce to a one parameter group of transformations as



300 P. Anuradha and S. Krishnambal

(3.13) x∗ = xeεα1 , y∗ = y, φ∗ = φeεα1 , u∗ = ueεα1 , v∗ = v, χ∗ = χ, g∗ = geεsα1 .

Expanding by Taylor’s method in powers of ε and keeping terms up to the order ε,

x∗ − x = xεα1, y∗ − y = 0, φ∗ − φ = φεα1, u∗ − u = uεα1,

v∗ − v = 0, χ∗ − χ = 0, g∗ − g = gεsα1.

In terms of differentials, this yield,
dx

xα1
=

dy

0
=

dφ

φα1
=

du

uα1
=

dv

0
=

dχ

0
=

dg

gsα1
.

Solving, one gets,

(3.14) y∗ = η, x∗F (η) = φ∗, χ∗ = χ, g∗ = x∗sG (η) .

Substituting (3.14) in (3.8), (3.9), (3.10),

(3.15) F ′2 − FF ′′ = νF ′′′ − k0

(
2F ′F ′′′ − FF iv − F ′′2

)− σB2
0

ρ
F ′,

(3.16) rχF ′ − Fχ′ = Dχ′′ PSC case,

(3.17) sGF ′ − FG′ = DG′′ PMF case.

The boundary conditions are transformed to

At η = 0, F ′ = 1, F = − vw√
bν

χ = 1 PSC case(3.18)

G′ = −1 PMF case.

As η →∞, F ′ → 0, F ′′ → 0

χ → 0 PSC case(3.19)
G → 0 PMF case.

The following transformations for η, F , χ and G are introduced in equations (3.15),
(3.16) and (3.17).

η = ναbβη∗

F = να1
bβ1

F ∗

χ = να11
bβ11

χ∗(3.20)

G = να111
bβ111

G∗

where α, α1, α11, α111, β, β1, β11 and β111 are transformation parameters.
Taking F ∗ = f , χ∗ = χ, G∗ = g in the final equations, the following relations are

obtained

(3.21) f ′2 − ff ′′ = f ′′′ − k1

(
2f ′f ′′′ − ff iv − f ′′2

)
−Mnf ′,
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(3.22) χ′′ − rScf ′χ + Scχ′f = 0 PSC case,

(3.23) g
′′ − sScf ′g + Scg′f = 0 PMF case

where k1 = k0b/ν is the dimensionless visco-elastic parameter, Mn = σB0/(ρb) is
the dimensionless magnetic parameter and Sc = ν/D is the Schmidt number.

The modified boundary conditions are

At η∗ = 0, f ′ = 1, f = − vw√
bν

χ = 1 PSC case(3.24)

g′ = −1 PMF case

As η∗ →∞, f ′ → 0, f ′′ → 0

χ → 0 PSC case(3.25)
g → 0 PMF case.

In the absence of magnetic field, equations (3.21), ( 3.22), (3.23) along with the
boundary conditions (3.24) and (3.25) are found to match with those derived by
Sonth et al. [13] who used similarity transformations for the particular case when
r = s = 2.

4. Solution of the momentum equation

The exact solution of the differential equation (3.21) satisfying the boundary condi-
tions (3.24) and (3.25) is derived in this section.

New variables are introduced as

(4.1) z = αη, S(z) = αf (η) .

Equation (4.1) transforms equation (3.21) and boundary conditions (3.24) and (3.25)
to the following,

(4.2) S′2 − SS′′ = α2S′′′ − k1α
2[2S′S

′′′ − SSiv − S′′2]−MS′

and

S′ = 1, S = −vwα√
bν

at z = 0

S′ → 0, S′′ → 0 as z →∞.(4.3)

The following approximation satisfies the boundary conditions as z →∞,

(4.4) S′ = exp(−z).

On integrating equation (4.4) and using equation (4.3),

(4.5) S(z) = 1− e−z − vwα√
bν

.
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To obtain an expression for α, equation (4.5) is substituted in equation (4.2) which
gives the following cubic equation,

(4.6) α3 +
1− k1

k1

(
vw/

√
bν

)α2 +
1
k1

α− 1 + M

k1

(
vw/

√
bν

) = 0.

Thus, the exact solutions for f (η) and f ′ (η) are given by

f (η) =
1− e−αη

α
− vw√

bν

f ′ (η) = e−αη(4.7)

where α is the real positive root of the cubic algebraic equation (4.6).

5. Solution of the mass transfer equation

The non-dimensional form of concentration equations for the two cases (PSC and
PMF) are derived by the Lie group method and are given by equations (3.22) and
(3.23) along with boundary conditions (3.24) and (3.25). These cases are now con-
sidered separately and solved analytically.

5.1. Case A: Prescribed Surface Concentration (PSC)

Substituting (4.7) in (3.22), we get

(5.1) χ′′ − rSce−mηχ + Scχ′
[
1− e−mη

m
− vw√

bν

]
= 0.

Introducing the following transformation

(5.2) ψ = − Sc

m2
e−mη

and using (5.2) in (5.1), the governing non-dimensional concentration equation is
obtained in the form

(5.3) ψ
d2χ

dψ2
+

dχ

dψ
(1− ψ − b0) + rχ = 0

where

(5.4) b0 =
Sc

m2
− vwSc

m
√

bν
.

The corresponding boundary conditions are

(5.5) χ

(−Sc

m2

)
= 1, χ (0) = 0.

The solution of equation (5.3) satisfying boundary conditions given in (5.5) is derived
in terms of confluent hyper geometric function

(5.6) χ (ψ) =
(−m2

Sc
ψ

)b0 M [b0 − r, b0 + 1, ψ]
M [b0 − r, b0 + 1,−Sc/m2]

where M is the Kummer’s function [14] defined by
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M(a0, b0, z) = 1 +
∞∑

n=1

(a0)n zn

(b0)n n!

(a0)n = a0(a0 + 1)(a0 + 2) . . . . . . (a0 + n− 1)(5.7)

(b0)n = b0(b0 + 1)(b0 + 2) . . . . . . (b0 + n− 1) .

Substituting (5.2) in (5.6), the solution becomes

(5.8) χ (η) = e−mb0η M
[
b0 − r, b0 + 1,−Sc e−mη/m2

]

M [b0 − r, b0 + 1,−Sc/m2]
.

The dimensionless concentration gradient χ′ (0) at the sheet level is obtained as

(5.9) χ′ (0) = −mb0 +
(

Sc

m

)(
b0 − r

b0 + 1

)
M

[
b0 − r + 1, b0 + 2,−Sc/m2

]

M [b0 − r, b0 + 1,−Sc/m2]
.

5.2. Case B: Prescribed Mass Flux (PMF)

Substituting (4.7) in (3.23),

(5.10) g′′ − rSce−mηg + Scg′
[
1− e−mη

m
− vw√

bν

]
= 0.

Introducing the following transformation

(5.11) ξ = − Sc

m2
e−mη

and using (5.11) in (5.10), the governing non-dimensional equation of concentration
is obtained in the form

(5.12) ξ
d2g

dξ2
+

dg

dξ
(1− ξ − b0) + sg = 0

where

(5.13) b0 =
Sc

m2
− vwSc

m
√

bν
.

The corresponding boundary conditions are

(5.14) g′
(−Sc

m2

)
= −m

Sc
, g (0) = 0.

The solution of equation (5.12) satisfying boundary conditions (5.14) is derived in
terms of confluent hyper geometric function.

(5.15) g (ξ) =
−mξb0M [b0 − s, b0 + 1, ξ]

(−Sc/m2
)b0

{
− b0m

2M
[
b0 − s, b0 + 1,−Sc/m2

]

+Sc
(

b0−s
b0+1

)
M

[
b0 − s + 1, b0 + 2,−Sc/m2

] }
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where M is the Kummer’s function defined in (5.7). Substituting (5.11) in (5.15),
the solution becomes

(5.16) g (η) =
−me−mb0ηM

[
b0 − s, b0 + 1,−Sc e−mη/m2

]
{
− b0m

2M
[
b0 − s, b0 + 1,−Sc/m2

]

+Sc
(

b0−s
b0+1

)
M

[
b0 − s + 1, b0 + 2,−Sc/m2

] }
.

The expression for dimensionless concentration parameter at sheet level g (0) is ob-
tained as

(5.17) g (0) =
−mM

[
b0 − s, b0 + 1,−Sc/m2

]
{
− b0m

2M
[
b0 − s, b0 + 1,−Sc/m2

]

+Sc
(

b0−s
b0+1

)
M

[
b0 − s + 1, b0 + 2,−Sc/m2

] }
.

In the absence of the magnetic field, results (5.8), (5.9) for the PSC case and (5.16)
and (5.17) for the PMF case, are seen to match with the results of Sonth et al. [13]
for the particular case when r = s = 2.

6. Discussion of the results

A boundary layer problem for momentum and mass transfer in a visco-elastic fluid
flow over a stretching porous sheet in the presence of a transverse magnetic field is
discussed in this paper. A simpler method of Lie group analysis, called the scaling
group of transformations is used to reduce the highly non-linear boundary layer
partial differential equations into a set of non-linear ordinary differential equations.
Analytic solutions are obtained in terms of confluent hyper geometric functions
(Kummer’s function). Here two cases of mass transfer are considered:

(1) Prescribed Sheet Concentration (PSC) and
(2) Prescribed Mass Flux (PMF).

Analytical expressions have been derived for each case separately. The results of the
momentum equation are not discussed in this paper as these have been discussed by
the authors in their earlier paper [3]. The main aim in this paper is to study the
effects of the flow parameters on the concentration profiles with the help of graphs
and tables assigning the values b = 1, ν = 0.04.

6.1. Concentration distribution

The concentration distribution of the flow field is shown in Figures 1–4 for both the
PSC and PMF cases under prescribed values for the visco-elastic parameter (k1),
magnetic parameter (Mn), the Schmidt number (Sc), suction/blowing parameter
(vw), concentration parameter (r) for the PSC case and the mass flux parameter (s)
for the PMF case.

6.1.1 Effect of the visco-elastic parameter (k1). Figure 1 show the concentration dis-
tribution in PSC and PMF cases respectively for chosen values of the visco-elastic
parameter (k1) and the suction/blowing parameter (vw). These figures reveal that
an increase in the visco-elastic parameter leads to a corresponding increase in the
concentration profiles in both the PSC and PMF cases. This is consistent with
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Figure 1. Dimensionless concentration profiles for different values of k1 when
Mn = 0.5, Sc = 0.2, r = s = 2.

Figure 2. Dimensionless concentration profiles for different values of Mn when
k1 = 0.001, Sc = 0.2, r = s = 2.

the fact that the thickness of the concentration boundary layer occurs due to the
presence of non-Newtonian visco-elastic normal stress. It is further observed that
the concentration boundary layer is thinner in the case of suction as compared to
blowing. This is evident from the flattening tendency of the curve for the latter as
compared to the former. Further, the concentration level at the sheet is greater than
unity in the PMF case while it is unity in the PSC case.

6.1.2. Effect of the magnetic parameter (Mn). Figures 2 are plotted to show the
concentration profiles across the flow field in the PSC and PMF cases respectively for
two chosen values each for the magnetic parameter (Mn) and the suction/blowing
parameter (vw). It is observed from these graphs that the effect of increasing the
magnetic parameter is to increase the concentration in the flow field for both the
cases. Further for the suction case, and for a particular value of η, the concentration
is higher in the PMF case in comparison with the PSC case. Further, the magnetic
field is seen to have significant effect on the concentration at the sheet level in the
PMF case as compared to the PSC case.

6.1.3. Effect of Schmidt number (Sc). The concentration distribution is vastly af-
fected by the presence of foreign species in the flow field. Figures 3 are plotted to
show the concentration profiles across the flow field in the PSC and PMF cases re-
spectively for different values of the Schmidt number (Sc) and the suction/blowing
parameter (vw). A comparative study of the curves reveals that the concentration
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Figure 3. Dimensionless concentration profiles for different values of Sc when
k1 = 0.001, Mn = 0.5, r = s = 2.

Figure 4. Dimensionless concentration profiles for (a) PSC case (r = 0, 1, 2)
(b) PMF case (s = 0, 1, 2), when k1 = 0.001, Mn = 0.5, Sc = 1.0.

boundary layer is thinner for values of Sc close to unity than for smaller values.
This is more significant in the PMF case. It is also observed that for a given value
of Sc, concentration is smaller for suction than for blowing. Physically, this implies
that suction reduces the thickness of the concentration boundary layer while blowing
increases the thickness both in the PSC and PMF cases.

6.1.4. Effect of the concentration parameter (r) and mass flux parameter (s) . Fig-
ures 4 show the effects of the concentration parameter (r for PSC case) and mass
flux parameter (s for PMF case) on the concentration distribution in the flow field
considering the cases of suction and blowing in each case. It is observed that as
r(or s) increases, the concentration boundary layer decreases. This decrease is more
pronounced in the case of suction for both the PSC and PMF cases.

6.2. Surface concentration gradient (χ′(0)) and surface concentration g(0)

The values of the surface concentration gradient in the PSC case are recorded in
Tables 1 and 2 and surface concentrations in the PMF case are recorded in Tables
3 and 4 for various values of the parameters considered.

6.2.1. Surface concentration gradient (χ′(0)). Table 1 shows the values of χ′(0) for
the PSC case for various values of r. It is noticed that for increasing values of r, the
surface concentration gradient is negative and its magnitude increases as r increases.
Also, for a particular value of the suction/blowing parameter (vw), the larger is the
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concentration parameter r, larger is the magnitude of the concentration gradient at
the surface of the sheet. The surface concentration gradient is the least for the case
of suction and maximum for the case of blowing for any particular value of r.

Table 1. Surfaces concentration gradient χ′(0) as a function of r at Sc = 1.0,
Mn = 0.5, k1 = 0.001.

r χ′(0) χ′(0) χ′(0)

vw = −0.1 vw = −0.0 vw = 0.1

0 −0.9008 −0.5366 −0.2463

1 −1.2369 −0.9407 −0.7137

2 −1.5282 −1.2695 −1.0665

Table 2 gives the values of χ′ (0) for the PSC case for different values of the
non-dimensional parameters k1, Mn, Sc and for fixed value of r = 2. The effect
of increasing Schmidt number is to decrease the concentration gradient whereas the
effects of the visco-elastic and magnetic parameters is to increase the concentration
gradient at the surface. The effect of suction parameter is to increase the numerical
value of χ′(0) and that of the blowing parameter is to decrease the same for the
same set of values of the parameters considered.

Table 2. Surfaces concentration gradient χ′(0) for the PSC case when r = 2.

k1 Mn Sc χ′(0) χ′(0) χ′(0)
vw = −0.1 vw = −0.0 vw = 0.1

0.001 0.5 0.2 −0.4258 −0.3945 −0.3757
0.1 −0.3978 −0.3812 −0.3702
0.001 1.0 −0.3975 −0.3578 −0.3250
0.1 −0.3711 −0.3446 −0.3236
0.001 0.5 1.0 −1.5282 −1.2695 −1.0665
0.1 −1.4831 −1.2508 −1.0602
0.001 1.0 −1.4825 −1.2156 −1.0028
0.1 −1.4348 −1.1941 −1.0008

6.2.2. Surface concentration g(0). The values of g (0) for the PMF case for different
values of s are recorded in Table 3. It is observed that as s increases, g (0) decreases
for any particular value of the suction/blowing parameter vw. For any particular
value of s, the surface concentration for the case of suction is the least and is greater
for the case of blowing. Table 4 gives the values of g (0) for the PMF case for different
values of the parameters considered.

The effect of the Schmidt number is to decrease the surface concentration whereas
the effects of the visco-elastic and magnetic parameters is to increase the concentra-
tion at the surface. The effect of suction parameter is to decrease the value of g (0)
and that of the blowing parameter is to increase the same for the same set of values
of the parameters considered.
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Table 3. Surfaces concentration gradient g (0) as a function of s at Sc = 1.0,
Mn = 0.5, k1 = 0.001.

s g (0) g (0) g (0)

vw = −0.1 vw = −0.0 vw = 0.1

0 1.1102 1.8634 4.0602

1 0.8084 1.0630 1.4012

2 0.6544 0.7877 0.9377

Table 4. Surface concentration g (0) for the PMF case when s = 2.

k1 Mn Sc g (0) g (0) g (0)
vw = −0.1 vw = −0.0 vw = 0.1

0.001 0.5 0.2 2.3487 2.5350 2.6619
0.1 2.5139 2.6235 2.7010
0.001 1.0 2.5159 2.7947 3.0765
0.1 2.6948 2.9017 3.0902
0.001 0.5 1.0 0.6544 0.7877 0.9377
0.1 0.6743 0.7995 0.9432
0.001 1.0 0.6745 0.8227 0.9973
0.1 0.6970 0.8374 0.9992

7. Conclusions

The following inferences are derived from the above study on the concentration
distribution of the flow field.

(1) The thickness of the concentration boundary layer occurs due to the pres-
ence of non-Newtonian visco-elastic normal stress. For small values of the
Schmidt number (around 0.2), the concentration at the surface is greater in
the PMF case when compared to the PSC case.

(2) The effect of transverse magnetic field is to increase concentration in the
flow field. In the presence of a magnetic field, greater concentration occurs
when the sheet is subjected to blowing.

(3) As the diffusing foreign species present in the flow field become heavier, there
is a decrease in the concentration at all points in the flow field and suction
reduces the concentration in the flow field while blowing increases the same
both in the PSC and PMF cases.

(4) To obtain a reduced concentration boundary layer, an ideal combination of
values for the parameters considered, would be to choose small values for
the visco-elastic (around 0.001) and magnetic parameters (around 0.5) and
a large value for the Schmidt number (around 1.0) while considering the case
of suction of the fluid through the porous stretching sheet in the PMF case.

(5) Higher the value of the concentration parameter (PSC case) or the mass flux
parameter (PMF case), the lower is the concentration in the flow field.

(6) The effect of the suction parameter is to decrease the surface concentration
gradient for the PSC case and surface concentration for the PMF case while
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that of the blowing parameter is to increase the same for the same set of
values for the parameters considered.

(7) In the absence of magnetic field and when r = s = 2, the results of this
paper are in excellent agreement with the results of Sonth et al. [13].
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