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Abstract. In this paper we give necessary and sufficient conditions for space-

like and timelike curves in a conformally flat, quasi conformally flat and confor-

mally symmetric 4-dimensional Lorentzian Para-Sasakian (LP-Sasakian) man-
ifold to be proper biharmonic. Also, we investigate proper biharmonic curves

in the Lorentzian sphere S4
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1. Introduction

The theory of biharmonic functions is an old and rich subject. Biharmonic functions
have been studied since 1862 by Maxwell and Airy to describe a mathematical model
of elasticity. The theory of polyharmonic functions was developed later on, for
example, by Almansi, Levi-Civita and Nicolescu. Recently, biharmonic functions on
Riemannian manifolds were studied by Caddeo and Vanhecke [4, 5], Sario, Nakai,
Wang and Chung [36].

In the last decade there has been a growing interest in the theory of biharmonic
maps which can be divided in two main research directions. On the one side, con-
structing the examples and classification results have become important from the
differential geometric aspect. The other side is the analytic aspect from the point of
view of partial differential equations (see [11, 24, 39, 45, 46]), because biharmonic
maps are solutions of a fourth order strongly elliptic semilinear PDE.

Let C∞(M,N) denote the space of smooth maps Ψ : (M, g) → (N,h) between
two Riemannian manifolds. A map Ψ ∈ C∞(M,N) is called harmonic if it is a
critical point of the energy functional

E : C∞(M,N)→ R,E(Ψ) =
1
2

∫
M

|dΨ|2vg
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and is characterized by the vanishing of the tension field τ(Ψ) = trace∇dΨ where ∇
is a connection induced from the Levi-Civita connection ∇M of M and the pull-back
connection ∇Ψ. As a generalization of harmonic maps, biharmonic maps between
Riemannian manifolds were introduced by Eells and Sampson in [16]. Biharmonic
maps between Riemannian manifolds Ψ : (M, g) → (N,h) are the critical points of
the bienergy functional

E2(Ψ) =
1
2

∫
M

|τ(Ψ)|2vg.

The first variation formula for the bienergy which is derived in [22, 23] shows that
the Euler-Lagrange equation for the bienergy is

τ2(Ψ) = −J(τ(Ψ)) = −∆τ(Ψ)− traceRN (dΨ, τ(Ψ))dΨ = 0,

where ∆ = − trace(∇Ψ∇Ψ −∇Ψ
∇) is the rough Laplacian on the sections of Ψ−1TN

and RN (X,Y ) = [∇X ,∇Y ] − ∇[X,Y ] is the curvature operator on N . From the
expression of the bitension field τ2, it is clear that a harmonic map is automatically
a biharmonic map. So non-harmonic biharmonic maps which are called proper
biharmonic maps are more interesting.

In a different setting, Chen [12] defined biharmonic submanifolds M ⊂ En of the
Euclidean space as those with harmonic mean curvature vector field, that is ∆H = 0,
where ∆ is the rough Laplacian, and stated the following

• Conjecture: Any biharmonic submanifold of the Euclidean space is har-
monic, that is minimal.

If the definition of biharmonic maps is applied to Riemannian immersions into
Euclidean space, the notion of Chen’s biharmonic submanifold is obtained, so the
two definitions agree.

The non-existence theorems for the case of non-positive sectional curvature codomains,
as well as the

• Generalized Chen’s conjecture: Biharmonic submanifolds of a manifold N
with RiemN ≤ 0 are minimal,

encouraged the study of proper biharmonic submanifolds, that is submanifolds such
that the inclusion map is a biharmonic map, in spheres or another non-negatively
curved spaces (see [6, 8, 17, 20, 30, 33]).

Of course, the first and easiest examples can be found by looking at differen-
tiable curves in a Riemannian manifold. Obviously geodesics are biharmonic. Non-
geodesic biharmonic curves are called proper biharmonic curves. Chen and Ishikawa
[13] showed non-existence of proper biharmonic curves in Euclidean 3-space E3.
Moreover they classified all proper biharmonic curves in Minkowski 3-space E3

1 (see
also [19]). Caddeo, Montaldo and Piu showed that on a surface with non-positive
Gaussian curvature, any biharmonic curve is a geodesic of the surface [7]. So they
gave a positive answer to generalized Chen’s conjecture. Caddeo et al. in [6] studied
biharmonic curves in the unit 3-sphere. More precisely, they showed that proper
biharmonic curves in S3 are circles of geodesic curvature 1 or helices which are
geodesics in the Clifford minimal torus. Then the same authors studied the bihar-
monic submanifolds of unit n-sphere [8].
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On the other hand, there are a few results on biharmonic curves in arbitrary
Riemannian manifolds. The biharmonic curves in the Heisenberg group H3 are
investigated in [9] by Caddeo et al. In [17] Fetcu studied biharmonic curves in the
generalized Heisenberg group and obtained two families of proper biharmonic curves.
Also, the explicit parametric equations for the biharmonic curves on Berger spheres
S3
ε are obtained by Balmuş in [3].

In contact geometry, there is a well-known analog of real space form, namely a
Sasakian space form. In particular, a simply connected three-dimensional Sasakian
space form of constant holomorphic sectional curvature 1 is isometric to S3. So in this
context Inoguchi classified in [20] the proper biharmonic Legendre curves and Hopf
cylinders in a 3-dimensional Sasakian space form and in [18] the explicit parametric
equations were obtained. Sasahara [37], analyzed the proper biharmonic Legendre
surfaces in Sasakian space forms and in the case when the ambient space is the unit
5-dimensional sphere S5 he obtained their explicit representations. Also, Özgür and
Tripathi [35] proved that a Legendre curve in an α-Sasakian manifold is biharmonic
if and only if its curvature is zero.

Other results on biharmonic Legendre curves and biharmonic anti-invariant sur-
faces in Sasakian space forms and (κ, µ)-manifolds are given in [1, 2]. In [31] it
was proved that all invariant submanifolds of non-Sasakian (κ, µ)-manifolds are al-
ways totally geodesic. Thus it is obvious that biharmonic invariant submanifolds of
(κ, µ)-manifolds are not proper.

It is known that the solution to a problem first formulated in Euclidean spaces may
sometimes look considerably different when considered in pseudo-Euclidean spaces.
Although no examples of proper biharmonic submanifolds in Euclidean spaces are
known, in the pseudo-Euclidean spaces E4

t , (t = 1, 2), many examples of proper
biharmonic spacelike surfaces with constant mean curvature were given by Chen
and Ishikawa in [14]. They also investigated biharmonic surfaces with lightlike mean
curvature vector and biharmonic surfaces with constant Gauss curvature in pseudo-
Euclidean space. In [21] W -surfaces in a 4-dimensional pseudo-Euclidean space E4

t ,
(t = 1, 2), is defined and a classification theorem for biharmonic W -surfaces with
flat normal connection in E4

t is obtained.
Despite the existence of proper biharmonic submanifolds in semi-Euclidean spaces,

biharmonicity may still imply minimality in some specific cases.The authors in [14]
showed that any biharmonic surface in E3

t , (t = 1, 2), is also minimal. In [15] it
is proved that a nondegenerate biharmonic hypersurface of 4-dimensional pseudo-
Euclidean space with diagonalizable shape operator must be minimal.

Pseudo-Riemannian spaces especially the constant curvature ones, namely de Sit-
ter, Minkowski, anti de Sitter space, play important roles in the general relativity.
Ouyang [34] and Sun [40] studied the spacelike biharmonic submanifolds in the
Pseudo-Riemannian spaces. In [47] Zhang constructed examples of proper bihar-
monic hypersurfaces in the anti de Sitter space.

In this paper we give some necessary and sufficient conditions for a spacelike and
a timelike curve lying in a 4-dimensional conformally flat, quasi conformally flat and
conformally symmetric LP -Sasakian manifold to be proper biharmonic.

The study of Lorentzian almost paracontact manifolds was initiated by Mat-
sumoto in 1989 [26]. Also he introduced the notion of LP -Sasakian manifold. Mihai
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and Rosca [28] defined the same notion independently and thereafter many authors
[25, 29, 42, 43] studied LP -Sasakian manifolds and their submanifolds.

2. Preliminaries

2.1. Biharmonic maps between Riemannian manifolds

Let (M, g) and (N,h) be Riemannian manifolds and Ψ : (M, g) → (N,h) be a
smooth map. The tension field of Ψ is given by τ(Ψ) = trace∇dΨ, where ∇dΨ is
the second fundamental form of Ψ defined by ∇dΨ(X,Y ) = ∇Ψ

XdΨ(Y )−dΨ(∇MX Y ),
X, Y ∈ Γ(TM). For any compact domain Ω ⊆M , the bienergy is defined by

E2(Ψ) =
1
2

∫
Ω

|τ(Ψ)|2vg.

Then a smooth map Ψ is called biharmonic map if it is a critical point of the bienergy
functional for any compact domain Ω ⊆ M. We have for the bienergy the following
first variation formula:

(2.1)
d

dt
E2(Ψt; Ω)|t=0 =

∫
Ω

〈τ2(Ψ), w〉vg

where vg is the volume element, w is the variational vector field associated to the
variation {Ψt} of Ψ and

τ2(Ψ) = −J(τ2(Ψ)) = −∆Ψτ(Ψ)− traceRN (dΨ, τ(Ψ))dΨ.

τ2(Ψ) is called bitension field of Ψ. Here ∆Ψ is the rough Laplacian on the sections
of the pull-back bundle Ψ−1TN which is defined by

∆ΨV = −
m∑
i=1

{∇Ψ
ei
∇Ψ
ei
V −∇Ψ

∇M
ei
ei
V }, V ∈ Γ(Ψ−1TN),

where ∇Ψ is the pull-back connection on the pull-back bundle Ψ−1TN and {ei}mi=1 is
an orthonormal frame onM.When the target manifold is semi-Riemannian manifold,
the bienergy and bitension field can be defined in the same way.

Let M be a semi-Riemannian manifold and γ : I → M be a non-null curve
parametrized by arclength. By using the definition of the tension field we have

τ(γ) = ∇γ∂
∂s

dγ(
∂

∂s
) = ∇TT,

where T = γ′. Consider a smooth variation of γ, that is a smooth map β : I ×
(−δ, δ) → M, β(s, t) = γt(s), such that γ0 = γ (see [32]). Then from (2.1) we can
write the first variation formula for the bienergy functional of γ

d

dt
E2(γt; I)|t=0 =

∫
I

〈∇β∂
∂s

∇β∂
∂s

dβ(
∂

∂t
)−∇β∇I

∂
∂s

∂
∂s

∂β

∂t
, τ(γt)〉 |t=0ds

+
∫
I

〈RM (
∂β

∂t
, dβ(

∂

∂s
))dβ(

∂

∂s
), τ(γt)〉 |t=0ds,
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where ∇I denotes the connection on I. Since ∇I∂
∂s

∂
∂s = 0 and the Laplace operator

is self-adjoint then we have
d

dt
E2(γt;D)|t=0 =

∫
I

〈∇3
TT −RM (T,∇TT )T,w〉 ds.

Here w is the variation vector field of γ and ∇ denotes the connection on M . In this
case biharmonic equation for the curve γ reduces to

(2.2) ∇3
TT −R(T,∇TT )T = 0,

that is, γ is called a biharmonic curve if it is a solution of the equation (2.2) (see
also [30]).

2.2. Lorentzian almost paracontact manifolds

Let M be an n-dimensional smooth connected paracompact Hausdorff manifold with
a Lorentzian metric g, i.e., g is a smooth symmetric tensor field of type (0, 2) such
that at every point p ∈M , the tensor gp : TpM×TpM → R is a non-degenerate inner
product of signature (−,+, ...,+), where TpM is the tangent space of M at the point
p. Then (M, g) is known to be a Lorentzian manifold. A non-zero vector Xp ∈ TpM
can be spacelike, null or timelike, if it satisfies gp(Xp, Xp) > 0, gp(Xp, Xp) = 0
(Xp 6= 0) or gp(Xp, Xp) < 0, respectively.

Let M be an n-dimensional differentiable manifold equipped with a triple (φ, ξ, η),
where φ is a (1, 1) tensor field, ξ is a vector field, η is a 1-form on M such that [26]

η(ξ) = −1,(2.3)

φ2 = I + η ⊗ ξ,(2.4)

where I denotes the identity map of TpM and ⊗ is the tensor product. The equations
(2.3) and (2.4) imply that

η ◦ φ = 0,
φξ = 0,

rank(φ) = n− 1.

Then M admits a Lorentzian metric g, such that

g(φX, φY ) = g(X,Y ) + η(X)η(Y ),

and M is said to admit a Lorentzian almost paracontact structure (φ, ξ, η, g). Then
we get

g(X, ξ) = η(X),

Φ(X,Y ) = g(X,φY ) = g(φX, Y ) = Φ(Y,X),

(∇XΦ)(Y,Z) = g(Y, (∇Xφ)Z) = (∇XΦ)(Z, Y ),

where ∇ is the covariant differentiation with respect to g. It is clear that Lorentzian
metric g makes ξ a timelike unit vector field, i.e, g(ξ, ξ) = −1. The manifold
M equipped with a Lorentzian almost paracontact structure (φ, ξ, η, g) is called
a Lorentzian almost paracontact manifold (for short LAP -manifold) [26, 27].

In equations (2.3) and (2.4) if we replace ξ by −ξ, we obtain an almost paracontact
structure on M defined by Satō [38].
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A Lorentzian almost paracontact manifoldM endowed with the structure (φ, ξ, η, g)
is called a Lorentzian paracontact manifold (for short LP -manifold) [26] if

Φ(X,Y ) =
1
2

((∇Xη)Y + (∇Y η)X).

A Lorentzian almost paracontact manifoldM endowed with the structure (φ, ξ, η, g)
is called a Lorentzian para Sasakian manifold (for short LP -Sasakian) [26] if

(∇Xφ)Y = η(Y )X + g(X,Y )ξ + 2η(X)η(Y )ξ.

In a LP -Sasakian manifold the 1-form η is closed.
Also Matsomoto in [26] showed that if an n-dimensional Lorentzian manifold

(M, g) admits a timelike unit vector field ξ such that the 1-form η associated to ξ is
closed and satisfies

(∇X∇Y η)Z = g(X,Y )η(Z) + g(X,Z)η(Y ) + 2η(X)η(Y )η(Z),

then (M, g) admits an LP -Sasakian structure.
The conformal curvature tensor C is defined by

C(X,Y )Z = R(X,Y )Z − 1
n− 2

{g(Y,Z)QX − g(X,Z)QY + S(Y,Z)X − S(X,Z)Y }

+
r

(n− 1)(n− 2)
{g(Y,Z)X − g(X,Z)Y },

where S(X,Y ) = g(QX,Y ). If C = 0 then the LP -Sasakian manifold is called
conformally flat.

The quasi-conformal curvature tensor C̃ is given by

C̃(X,Y )Z = aR(X,Y )Z + b{S(Y,Z)X − S(X,Z)Y + g(Y,Z)QX

− g(X,Z)QY } − r

n

(
a

n− 1
+ 2b

)
{g(Y,Z)X − g(X,Z)Y } ,

where a, b constants such that ab 6= 0 and S(Y,Z) = g(QY,Z). If C̃ = 0 then the
LP -Sasakian manifold is called quasi conformally flat. In [41] it was proved that a
conformally flat and a quasi conformally flat LP -Sasakian manifold is of constant
curvature and the value of this constant is +1. Also the same authors showed in [41]
that if in an LP -Sasakian manifold Mn (n > 3) the relation R(X,Y ).C = 0 holds,
then it is locally isometric to a Lorentzian unit sphere.

For a conformally symmetric Riemannian manifold [10], we have ∇C = 0. Hence
for such a manifold R(X,Y ).C = 0 holds. Thus a conformally symmetric LP -
Sasakian manifold Mn (n > 3) is locally isometric to a Lorentzian unit sphere [41].

For a conformally flat, quasi conformally flat and conformally symmetric LP -
Sasakian manifold Mn, we have [41]

(2.5) R(X,Y )Z = g(Y, Z)X − g(X,Z)Y, X, Y, Z ∈ Γ(TM).

An arbitrary curve γ : I → M, γ = γ(s), in a LP -Sasakian manifold is called
spacelike, timelike or null (lightlike), if all of its velocity vectors γ′(s) are respectively
spacelike, timelike or null (lightlike). If γ(s) is a spacelike or timelike curve, we can
reparametrize it such that g(γ′(s), γ′(s)) = ε where ε = 1 if γ is spacelike and ε = −1
if γ is timelike, respectively. In this case γ(s) is said to be unit speed or arclength
parametrization.
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Let M be a 4-dimensional LP -Sasakian manifold. Denote by {T,N,B1, B2} the
moving Frenet frame along the curve γ in M . Then T,N,B1, B2 are respectively,
the tangent, the principal normal, the first binormal and the second binormal vector
fields.

Let γ(s) be a curve in a 4-dimensional LP -Sasakian manifold parametrized by
arclength function s. Then for the curve γ the following Frenet equations are given
in [44]:

Case I. γ is a spacelike curve: Then T is a spacelike vector, so depending on the
casual character of the principal normal vector N and the first binormal vector B1,
we have the following Frenet formulas:

Case I.1. N and B1 are spacelike;

(2.6)


∇TT
∇TN
∇TB1

∇TB2

 =


0 k1 0 0
−k1 0 k2 0

0 −k2 0 k3

0 0 k3 0




T
N
B1

B2

 ,
where T, N, B1, B2 are mutually orthogonal vectors satisfying the equations

g(T, T ) = g(N,N) = g(B1, B1) = 1, g(B2, B2) = −1.

Proof. Let M be a 4-dimensional LP -Sasakian manifold and γ : I →M be a space-
like curve. Let {T,N,B1, B2} be an orthonormal frame field tangent to M along the
curve γ where T = γ

′
unit vector field tangent to γ, N is the unit spacelike principal

normal vector field in the direction ∇TT, that is k1 = |∇TT |, B1 is a unit spacelike
vector field and B2 is a unit timelike vector field. Then we can write

∇TT = k1N,

∇TN = a21T + a22N + a23B1 + a24B2,

∇TB1 = a31T + a32N + a33B1 + a34B2,

∇TB2 = a41T + a42N + a43B1 + a44B2.

By straightforward calculation we have

a21 = g(∇TN,T ) = −g(∇TT,N) = −k1, a22 = g(∇TN,N) = 0,

a23 = g(∇TN,B1) = k2, a24 = −g(∇TN,B2),

a31 = g(∇TB1, T ) = −g(∇TT,B1) = 0,

a32 = g(∇TB1, N) = −g(∇TN,B1) = −k2,

a33 = g(∇TB1, B1) = 0, a34 = −g(∇TB1, B2) = k3,

a41 = g(∇TB2, T ) = −g(∇TT,B2) = 0, a42 = g(∇TB2, N),

a43 = g(∇TB2, B1) = −g(∇TB1, B2) = k3, a44 = −g(∇TB2, B2) = 0.

Furthermore
a24 = −g(∇TN,B2) = g(∇TB2, N) = a42.

Since

∇TN = −k1T + k2B1 + a42B2,
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∇TB2 = a42N + k3B1

then

a42 = g(∇TB2, N)

= −g(∇TN,B2)

= g(−k1T + k2B1 + a42B2, B2)
= −a42

which gives a42 = a24 = 0. Therefore we obtain (2.6).
By the similar way following in the proof of Case I.1, we can deduce the Frenet

equations for all cases.

Case I.2. N is spacelike, B1 is timelike;

(2.7)


∇TT
∇TN
∇TB1

∇TB2

 =


0 k1 0 0
−k1 0 k2 0

0 k2 0 k3

0 0 k3 0




T
N
B1

B2

 ,
where T, N, B1, B2 are mutually orthogonal vectors satisfying the equations

g(T, T ) = g(N,N) = g(B2, B2) = 1, g(B1, B1) = −1.

Case I.3. N is spacelike, B1 is null;

(2.8)


∇TT
∇TN
∇TB1

∇TB2

 =


0 k1 0 0
−k1 0 k2 0

0 0 k3 0
0 −k2 0 −k3




T
N
B1

B2

 ,
where T, N, B1, B2 satisfy the equations

g(T, T ) = g(N,N) = 1, g(B1, B1) = g(B2, B2) = 0,

g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(N,B2) = 0, g(B1, B2) = 1.

Case I.4. N is timelike, B1 is spacelike;

(2.9)


∇TT
∇TN
∇TB1

∇TB2

 =


0 k1 0 0
k1 0 k2 0
0 k2 0 k3

0 0 −k3 0




T
N
B1

B2

 ,
where T, N, B1, B2 are mutually orthogonal vectors satisfying the equations

g(T, T ) = g(B1, B1) = g(B2, B2) = 1, g(N,N) = −1.

Case I.5. N is null, B1 is spacelike;

(2.10)


∇TT
∇TN
∇TB1

∇TB2

 =


0 k1 0 0
0 0 k2 0
0 k3 0 −k2

−k1 0 −k3 0




T
N
B1

B2

 ,
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where the first curvature k1 takes only two values: 0 when γ is a geodesic or 1 in all
other cases. In this case, T, N, B1, B2 satisfy the equations

g(T, T ) = g(B1, B1) = 1, g(N,N) = g(B2, B2) = 0,

g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(B1, B2) = 0, g(N,B2) = 1.

Remark 2.1. For a spacelike curve with null principal normal N , one can change
the role of first binormal B1 and the second binormal B2 in the Case I.5. In this
case we have 

∇TT
∇TN
∇TB1

∇TB2

 =


0 k1 0 0
0 0 0 k2

−k1 0 0 k3

0 −k3 −k2 0




T
N
B1

B2

 ,
where T, N, B1, B2 satisfy the equations

g(T, T ) = g(B2, B2) = 1, g(N,N) = g(B1, B1) = 0,

g(T,N) = g(T,B1) = g(T,B1) = g(N,B2) = g(B1, B2) = 0, g(N,B1) = 1.

Case II. γ is a timelike curve: In this case T is a timelike vector, so the Frenet
formulae have the form

(2.11)


∇TT
∇TN
∇TB1

∇TB2

 =


0 k1 0 0
k1 0 k2 0
0 −k2 0 k3

0 0 −k3 0




T
N
B1

B2

 ,
where T, N, B1, B2 are mutually orthogonal vectors satisfying the equations

g(N,N) = g(B1, B1) = g(B2, B2) = 1, g(T, T ) = −1.

3. Biharmonic curves in LP-Sasakian manifolds

In this section we characterize the spacelike and timelike proper biharmonic curves in
a 4-dimensional conformally flat, quasi conformally flat and conformally symmetric
LP -Sasakian manifold.

Theorem 3.1. Let M be a 4-dimensional conformally flat, quasi conformally flat or
conformally symmetric LP-Sasakian manifold and γ : I → M be a spacelike curve
parametrized by arclength. Suppose that {T,N,B1, B2} be an orthonormal Frenet
frame field tangent to M along γ such that g(T, T ) = g(N,N) = g(B1, B1) = 1 and
g(B2, B2) = −1. Then γ : I →M is a proper biharmonic curve if and only if either
γ is a circle with k1 = 1, or γ is a helix with k2

1 + k2
2 = 1.

Proof. Let M be a 4-dimensional conformally flat, quasi conformally flat or confor-
mally symmetric LP -Sasakian manifold endowed with the structure (φ, ξ, η, g) and
γ : I → M be a curve parametrized by arclength. Suppose that γ is a spacelike
curve that is its velocity vector T = γ′(s) is spacelike. Let {T,N,B1, B2} be an
orthonormal Frenet frame field tangent to M along γ, where N is the unit spacelike
vector field in the direction ∇TT , B1 is a unit spacelike and B2 is a unit timelike
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vector. The tension field of γ is τ(γ) = ∇TT. Then by using the Frenet formulas
(2.6) and the equation (2.5) we obtain the Euler-Lagrange equation of the bienergy:

τ2(γ) = ∇3
TT −R(T,∇TT )T

= ∇3
TT −R(T, k1N)T

= (−3k1k
′
1)T + (k′′1 − k3

1 − k1k
2
2)N

+ (2k′1k2 + k1k
′
2)B1 + (k1k2k3)B2 − k1R(T,N)T

= (−3k1k
′
1)T + (k′′1 − k3

1 − k1k
2
2 + k1)N

+ (2k′1k2 + k1k
′
2)B1 + (k1k2k3)B2

= 0.

where k1, k2 and k3 are respectively the first, the second and the third curvature of
the curve γ(s).

It follows that γ is a biharmonic curve if and only if

k1k
′
1 = 0,

k′′1 − k1(k2
1 + k2

2 − 1) = 0,

2k′1k2 + k1k
′
2 = 0,

k1k2k3 = 0.

If we look for nongeodesic solutions, that is for biharmonic curves with k1 6= 0, we
obtain

k1 = constant 6= 0,
k2 = constant,

k2
1 + k2

2 = 1,
k2k3 = 0.

This completes the proof.

Theorem 3.2. Let M be a 4-dimensional conformally flat, quasi conformally flat or
conformally symmetric LP-Sasakian manifold and γ : I → M be a spacelike curve
parametrized by arclength. Suppose that {T,N,B1, B2} be an orthonormal Frenet
frame field tangent to M along γ such that g(T, T ) = g(N,N) = g(B2, B2) = 1 and
g(B1, B1) = −1. Then γ : I →M is a proper biharmonic curve if and only if either
γ is a circle with k1 = 1, or γ is a helix with k2

1 − k2
2 = 1.

Proof. Let M be a 4-dimensional conformally flat, quasi conformally flat or confor-
mally symmetric LP -Sasakian manifold endowed with the structure (φ, ξ, η, g) and
γ : I → M be a curve parametrized by arclength. Suppose that γ is a spacelike
curve that is its velocity vector T = γ′(s) is spacelike. Let {T,N,B1, B2} be an
orthonormal Frenet frame field tangent to M along γ, where N is the unit spacelike
vector field in the direction ∇TT , B2 is a unit spacelike and B1 is a unit timelike
vector. Since the tension field of γ is τ(γ) = ∇TT then by using the Frenet formulas
given in (2.7) and the equation (2.5), we obtain the biharmonic equation for γ:

τ2(γ) = ∇3
TT −R(T,∇TT )T
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= ∇3
TT −R(T, k1N)T

= (−3k1k
′
1)T + (k′′1 − k3

1 + k1k
2
2)N

+ (2k′1k2 + k1k
′
2)B1 + (k1k2k3)B2 − k1R(T,N)T

= (−3k1k
′
1)T + (k′′1 − k3

1 + k1k
2
2 + k1)N

+ (2k′1k2 + k1k
′
2)B1 + (k1k2k3)B2

= 0.

where k1, k2 and k3 are respectively the first, the second and the third curvature of
curve γ(s).

It follows that γ is a biharmonic curve if and only if

k1k
′
1 = 0,

k′′1 − k1(k2
1 − k2

2 − 1) = 0,

2k′1k2 + k1k
′
2 = 0,

k1k2k3 = 0.

If we look for nongeodesic solutions , that is for biharmonic curves with k1 6= 0, we
obtain

k1 = constant 6= 0,
k2 = constant,

k2
1 − k2

2 = 1,
k2k3 = 0.

This completes the proof.

Theorem 3.3. Let M be a 4-dimensional conformally flat, quasi conformally flat
or conformally symmetric LP-Sasakian manifold and γ : I →M be a spacelike curve
parametrized by arclength. Suppose that {T,N,B1, B2} be a moving Frenet frame
such that N is a spacelike and B1 is a null vector. Then γ : I → M is a proper
biharmonic curve if and only if k1 = 1 and either k2 = 0, or ln k2(s) = −

∫
k3(s) ds.

Proof. Let γ : I → M be a spacelike curve parametrized by arclength on a 4-
dimensional conformally flat, quasi conformally flat or conformally symmetric LP -
Sasakian manifold M. Suppose that {T,N,B1, B2} be a moving Frenet frame such
that

g(T, T ) = g(N,N) = 1, g(B1, B1) = g(B2, B2) = 0,

g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(N,B2) = 0, g(B1, B2) = 1.
Then by using the Frenet equations given by (2.8), we have

τ2(γ) = ∇3
TT −R(T,∇TT )T

= ∇3
TT −R(T, k1N)T

= (−3k1k
′
1)T + (k′′1 − k3

1 + k1)N + (2k′1k2 + k1k
′
2 + k1k2k3)B1

where k1, k2 and k3 are respectively the first, the second and the third curvature of
curve γ(s). From the biharmonic equation of γ above, we can say γ is a biharmonic
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curve if and only if

k1k
′
1 = 0,

k′′1 − k3
1 + k1 = 0,

2k′1k2 + k1k
′
2 + k1k2k3 = 0.

For biharmonic curves with k1 6= 0 that is if we investigate the nongeodesic solutions,
we obtain

k1 = 1,

k′2 + k2k3 = 0.

Thus we have the assertion of the theorem.

Theorem 3.4. Let M be a 4-dimensional conformally flat, quasi conformally flat or
conformally symmetric LP-Sasakian manifold and γ : I → M be a spacelike curve
parametrized by arclength. Suppose that {T,N,B1, B2} be an orthonormal Frenet
frame field tangent to M along γ such that g(T, T ) = g(B1, B1) = g(B2, B2) = 1
and g(N,N) = −1. Then γ : I → M is a biharmonic curve if and only it is a
geodesic of M.

Proof. Let M be a 4-dimensional conformally flat, quasi conformally flat or confor-
mally symmetric LP -Sasakian manifold endowed with the structure (φ, ξ, η, g) and
γ : I → M be a curve parametrized by arclength. Suppose that γ is a spacelike
curve that is its velocity vector T = γ′(s) is spacelike. Let {T,N,B1, B2} be an
orthonormal Frenet frame field tangent to M along γ, where N is the unit timelike
vector field in the direction ∇TT , B1 and B2 are unit spacelike vectors. The tension
field of γ is τ(γ) = ∇TT. Then by using the tension field of γ, Frenet formulas in
(2.9) and the equation (2.5) we obtain the Euler-Lagrange equation of the bienergy:

τ2(γ) = ∇3
TT −R(T,∇TT )T

= ∇3
TT −R(T, k1N)T

= (3k1k
′
1)T + (k′′1 + k3

1 + k1k
2
2)N

+ (2k′1k2 + k1k
′
2)B1 + (k1k2k3)B2 − k1R(T,N)T

= (3k1k
′
1)T + (k′′1 + k3

1 + k1k
2
2 + k1)N

+ (2k′1k2 + k1k
′
2)B1 + (k1k2k3)B2

= 0.

It follows that γ is a biharmonic curve if and only if

k1k
′
1 = 0,

k′′1 + k1(k2
1 + k2

2 + 1) = 0,

2k′1k2 + k1k
′
2 = 0,

k1k2k3 = 0.

If we look for nongeodesic solutions, that is for biharmonic curves with k1 6= 0, we
obtain

k1 = constant 6= 0,
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k2 = constant,

k2
1 + k2

2 = −1,
k2k3 = 0.

This shows that we have no nongeodesic solution for the biharmonic equation for
the curve γ.

Theorem 3.5. Let M be a 4-dimensional conformally flat, quasi conformally flat
or conformally symmetric LP-Sasakian manifold and γ : I →M be a spacelike curve
parametrized by arclength. Suppose that {T,N,B1, B2} be a moving Frenet frame
along γ such that N is a null vector. Then γ : I →M is a biharmonic curve if and
only if γ is a geodesic of M .

Proof. Let γ : I → M be a spacelike curve parametrized by arclength on a 4-
dimensional conformally flat, quasi conformally flat or conformally symmetric LP -
Sasakian manifold M. Suppose that {T,N,B1, B2} be a moving Frenet frame along
the curve γ such that

g(T, T ) = g(B1, B1) = 1, g(N,N) = g(B2, B2) = 0,

g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(B1, B2) = 0, g(N,B2) = 1.
If we consider the Frenet formulas given in (2.10), we obtain the biharmonic equation
for the curve γ:

0 = τ2(γ) = (k′′1 + k1k2k3 + k1)N + (2k′1k2 + k1k
′
2)B1 + (−k1k

2
2)B2

Then γ is a biharmonic curve if and only if

k′′1 + k1k2k3 + k1 = 0,

2k′1k2 + k1k
′
2 = 0,

k1k
2
2 = 0.

Since γ is a spacelike curve with a null normal vector, k1 can take only two values:
0 and 1. If we look for nongeodesic solutions, we get k2 = 0. But from the first
equation above, we have a contradiction such that k2k3 + 1 = 0. So the only
biharmonic spacelike curves on M with a null normal vector are the geodesics of
M .

Remark 3.1. Let γ : I → M is a spacelike curve parametrized by arclength in
a 4-dimensional conformally flat, quasi conformally flat or conformally symmetric
LP -Sasakian manifold with a null principal normal N . If we change the role of B1

and B2 we can easily see by the similiar way following in the proof of Theorem 3.5
that γ : I →M is a biharmonic curve if and only if γ is a geodesic of M .

Now let us investigate the biharmonicity of a timelike curve in a 4-dimensional
conformally flat, quasi conformally flat and conformally symmetric LP -Sasakian
manifold. We have,

Theorem 3.6. Let M be a 4-dimensional conformally flat, quasi conformally flat
or conformally symmetric LP-Sasakian manifold and γ : I →M be a timelike curve
parametrized by arclength. Then γ : I → M is a proper biharmonic curve if and
only if either γ is a circle with k1 = 1, or γ is a helix with k2

1 − k2
2 = 1.
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Proof. Let M be a 4-dimensional conformally flat, quasi conformally flat or confor-
mally symmetric LP -Sasakian manifold endowed with the structure (φ, ξ, η, g) and
γ : I →M be a curve parametrized by arclength. Suppose that γ is a timelike curve
that is its velocity vector T = γ′(s) is timelike. Let {T,N,B1, B2} be an orthonor-
mal Frenet frame field tangent to M along γ, where N is the unit spacelike vector
field in the direction ∇TT , B1 and B2 are unit spacelike vectors. Then by using the
Frenet formulas (2.11), we have:

τ2(γ) = ∇3
TT −R(T,∇TT )T

= ∇3
TT −R(T, k1N)T

= (3k1k
′
1)T + (k′′1 + k3

1 − k1k
2
2)N

+ (2k′1k2 + k1k
′
2)B1 + (k1k2k3)B2 − k1R(T,N)T

= (3k1k
′
1)T + (k′′1 + k3

1 − k1k
2
2 − k1)N

+ (2k′1k2 + k1k
′
2)B1 + (k1k2k3)B2.

It follows that γ is a biharmonic curve if and only if

k1k
′
1 = 0,

k′′1 + k1(k2
1 − k2

2 − 1) = 0,

2k′1k2 + k1k
′
2 = 0,

k1k2k3 = 0.

If we look for nongeodesic solutions, that is for biharmonic curves with k1 6= 0, we
obtain

k1 = constant 6= 0,
k2 = constant,

k2
1 − k2

2 = 1,
k2k3 = 0.

4. Biharmonic curves in S4
1

Let M be a 4-dimensional conformally flat, quasi conformally flat or conformally
symmetric LP -Sasakian manifold. Since M is locally isometric to a Lorentzian
unit sphere S4

1 , by using the theorems stated in the Section 3 we shall give some
characterizations for nongeodesic biharmonic curves in a Lorentzian unit sphere S4

1 .
The Lorentzian unit sphere of radius 1 can be seen as the hyperquadric

S4
1 = {p ∈ R5

1 : 〈p, p〉 = 1}

in a Minkowski space R5
1 with the metric

〈, 〉 = −dx2
1 + dx2

2 + dx2
3 + dx2

4 + dx2
5.

Let γ : I → S4
1 be a non-null curve parametrized by arclength. Denote by ∇ the

covariant derivative along γ in S4
1 . Then for any vector field X along γ we have

∇TX = X ′ + 〈T,X〉γ.
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It’s also known that S4
1 is a Lorentzian space form of the scalar curvature 1. Then

for all vector fields X, Y, Z in the tangent bundle of S4
1 we have

R(X,Y )Z = 〈Y,Z〉X − 〈X,Z〉Y
where R is the Riemannian curvature tensor of S4

1 .

Proposition 4.1. Let γ : I → S4
1 be a spacelike nongeodesic biharmonic curve

parametrized by arclength and {T,N,B1, B2} be a Frenet frame along γ such that
the principal normal vector N and first binormal vector B1 are spacelike. Then

(4.1) γ(IV ) + 2γ′′ + (1− k2
1)γ = 0.

Proof. From the Frenet formulas (2.6), by taking the covariant derivative of ∇TN
with respect to T , we have

∇2
TN = −k1∇TT + k2∇TB1

= −k2
1N + k2(−k2N + k3B2)

= −(k2
1 + k2

2)N + k2k3B2

= −N.

If we use the Gauss equation of S4
1 ⊂ R5

1, that for any vector field X along γ is

∇TX = X ′ + 〈T,X〉γ,
we get

∇2
TN = ∇T [N ′ + 〈T,N〉γ]

= ∇TN ′

= N ′′ + 〈T,N ′〉γ
= N ′′ + 〈T,∇TN − 〈N,T 〉γ〉γ
= N ′′ + 〈T,∇TN〉γ
= N ′′ − k1γ

and
N =

1
k1

(γ′′ + γ).

By substituting the above expressions of ∇2
TN and N in the equation ∇2

TN+N = 0,
we obtain the differential equation (4.1).

From Proposition 4.1, it is obvious that to find nongeodesic biharmonic curves in
S4

1 we must investigate the solutions of (4.1). By integrating the differential equation
(4.1), we have:

Theorem 4.1. Let γ : I → S4
1 be a spacelike nongeodesic biharmonic curve parametrized

by arclength and {T,N,B1, B2} be a Frenet frame along γ such that the principal
normal vector N and first binormal vector B1 are spacelike. Then we have two cases:

• γ is a circle of radius 1/
√

2;
•

γ(s) = (0,
cos(as)√

2
,

sin(as)√
2

,
cos(bs)√

2
,

sin(bs)√
2

).
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Proof. If k1 = 1, then the general solution of (4.1) is

γ(s) = c1 + c2s+ c3 cos(
√

2s) + c4 sin(
√

2s).

Since |γ|2 = 1 and |γ′|2 = 1, we have c2 = 0, while c1, c3, c4 are constant vectors
orthogonal to each other with |c1|2 = |c3|2 = |c4|2 = 1/2. Then the solution becomes

γ(s) =

(
d1,

cos(
√

2s)√
2

,
sin(
√

2s)√
2

, d2, d3

)
,

with −d2
1+d2

2+d2
3 = 1/2. It is obvious that γ is a circle of radius 1/

√
2. If 0 < k1 < 1,

then the general solution of (4.1) is

γ(s) = c1 cos(as) + c2 sin(as) + c3 cos(bs) + c4 sin(bs)

where a =
√

1− k1 and b =
√

1 + k1. Since |γ|2 = 1 and |γ′|2 = 1, we obtain that
the vectors ci, i = 1, 2, 3, 4, are orthogonal to each other and |c1|2 = |c1|2 = |c3|2 =
|c4|2 = 1/2. Then the curve γ becomes

γ(s) =
(

0,
cos(as)√

2
,

sin(as)√
2

,
cos(bs)√

2
,

sin(bs)√
2

)
.

Proposition 4.2. Let γ : I → S4
1 be a spacelike nongeodesic biharmonic curve

parametrized by arclength and {T,N,B1, B2} be a Frenet frame along γ such that
the principal normal vector N is spacelike and first binormal vector B1 is timelike.
Then

(4.2) γ(IV ) + 2γ′′ + (1− k2
1)γ = 0.

If k1 = 1, then it is obvious that the general solution of (4.2) is a circle of radius
1/
√

2. If k1 > 1, then the general solution of (4.2) is

γ(s) = c1e
as + c2e

−as + c3 cos(bs) + c4 sin(bs)

with a =
√
k1 − 1 and b =

√
k1 + 1. Here ci, i = 1, 2, 3, 4 are constant vectors.

Since |γ|2 = 1 and |γ′|2 = 1, by choosing

c1 = (1, 0, 0, 0, 1), c2 =

(
−1,
√

7
4
, 0, 0,−3

4

)
,

c3 =
(

0, 0,
1
2
,

1
2
, 0
)
, c4 =

(
−
√

7√
2
,

1√
2
, 0, 0,−

√
7√
2

)
,

such that

〈c1, c1〉 = 〈c2, c2〉 = 0,

〈c3, c3〉 = 〈c4, c4〉 =
3
b2
,

〈c1, c2〉 =
1
a2
,

〈c1, c3〉 = 〈c1, c4〉 = 0,

〈c2, c3〉 = 〈c2, c4〉 = 0,

〈c3, c4〉 = 0,
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with a = 2, b =
√

6, we obtain following special solution of differential equation
(4.2)

γ(s) =

(
e2s − e−2s −

√
7√
2

sin(
√

6s),
√

7
4
e−2s +

1√
2

sin(
√

6s),

1
2

cos(
√

6s),
1
2

cos(
√

6s), e2s − 3
4
e−2s −

√
7√
2

sin(
√

6s)

)
,

which is a helix with k1 = 5 and k2 = 2
√

6.

Proposition 4.3. Let γ : I → S4
1 be a spacelike nongeodesic biharmonic curve

parametrized by arclength and {T,N,B1, B2} be a moving Frenet frame along γ
such that the principal normal vector N is spacelike and first binormal vector B1 is
null. Then

(4.3) γ(IV ) + 2γ′′ = 0.

It can be easily seen that the general solution of differential equation (4.3) is a
circle of radius 1/

√
2.

Proposition 4.4. Let γ : I → S4
1 be a timelike nongeodesic biharmonic curve

parametrized by arclength. Then

(4.4) γ(IV ) − 2γ′′ + (1− k2
1)γ = 0.

If k1 = 1, then the general solution of (4.4) is

γ(s) = c1 + c2s+ c3e
−
√

2s + c4e
√

2s

Here ci, i = 1, 2, 3, 4, are constant vectors. Since 〈γ(s), γ(s)〉 = 1 and 〈γ′(s), γ′(s)〉 =
−1, by choosing

c1 =
(

1√
2
, 0, 0, 0, 1

)
, c2 = (0, 0, 0, 0, 0),

c3 =
(
−1,

1√
2
, 0, 0,− 1√

2

)
, c4 =

(
1,−
√

2
4
,

1
2
√

2
,

1
2
,

1√
2

)
,

such that

〈c1, c1〉 =
1
2

〈c2, c2〉 = 〈c3, c3〉 = 〈c4, c4〉 = 0,

〈c1, c2〉 = 〈c1, c3〉 = 〈c1, c4〉 = 0,

〈c2, c3〉 = 〈c2, c4〉 = 0,

〈c3, c4〉 =
1
4
,

we obtain following special solution of differential equation (4.4)

γ(s) =

(
1√
2
− e−

√
2s + e

√
2s,

e−
√

2s

√
2
− e
√

2s

2
√

2
,
e
√

2s

2
√

2
,
e
√

2s

2
, 1− e−

√
2s

√
2

+
e
√

2s

√
2

)
,
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which is a circle. If k1 > 1, then the general solution of (4.4) is

γ(s) = c1e
as + c2e

−as + c3 cos(bs) + c4 sin(bs)

with a =
√
k1 + 1 and b =

√
k1 − 1. Here ci, i = 1, 2, 3, 4, are constant vectors.

Since again 〈γ(s), γ(s)〉 = 1 and 〈γ′(s), γ′(s)〉 = −1, by choosing

c1 = (1, 0, 0, 0, 1), c2 =

(
−1,
√

7
4
, 0, 0,−3

4

)
,

c3 =
(

0, 0,
1
2
,

1
2
, 0
)
, c4 =

(
−
√

7√
2
,

1√
2
, 0, 0,−

√
7√
2

)
,

such that c1 and c2 are null vectors and

〈c3, c3〉 = 〈c4, c4〉 =
1
b2
,

〈c1, c2〉 =
1
a2
,

〈c1, c3〉 = 〈c1, c4〉 = 0,

〈c2, c3〉 = 〈c2, c4〉 = 0,

〈c3, c4〉 = 0,

with a = 2, b =
√

2, we obtain following special solution of differential equation
(4.4)

γ(s) =

(
e2s − e−2s −

√
7√
2

sin(
√

2s),
√

7
4
e−2s +

1√
2

sin(
√

2s),

1
2

cos(
√

2s),
1
2

cos(
√

2s), e2s − 3
4
e−2s −

√
7√
2

sin(
√

2s)

)
,

which is a helix with k1 = 3 and k2 = 2
√

2.
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