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Abstract. Different multivariate regression type of estimators for finite popu-

lation variance under multiphase sampling set up in presence of two auxiliary
variables have been suggested. These estimators are compared with estimators

using no auxiliary variable or single auxiliary variable theoretically and with

the help of numerical examples.
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1. Introduction and preliminaries

The problem of estimation of finite population variance of the study variable y was
perhaps first focused through the writings of Evans [4] and Hansen, Hurwitz and
Madow [5]. The finite population variance may be required to be estimated with a
view to an idea about the variability exist in the population which is necessary for
future surveys either to advocate stratification or for determination of sample size.
In certain sampling designs like simple random sampling without replacement, the
estimation of sampling variance of the sample mean of the study variable necessitates
the estimation of finite population variance.

An exploratory work in this direction was initiated by Liu [8] in a general set up,
i.e., under unequal probability sampling. Subsequently, Chaudhuri [1] suggested a
series of non-negative estimates of the finite population variance. Liu and Thompson
[9] have estimated the general problem of estimation of polynomial finite population
parametric function in sample surveys.

Mukhopadhyay [12–14] has derived the optimum sampling strategies for estimat-
ing the finite population variance under a super population set up. Mukhopadhyay
[15] also derived the asymptotic properties of a generalized predictor of finite pop-
ulation variance. Mishra [10], Mishra and Swain [11] have discussed an alternative
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method to derive Liu’s generalized estimator of finite population variance and also
suggested an alternative estimator for this purpose.

Using auxiliary information, Das and Tripathi [2] suggested a series of estima-
tors to estimate the finite population variance of the study variable y. Srivastava
and Jhajj [18] proposed a class of estimators and have shown that the estimators
suggested by Das and Tripathi [2] belong to this class. Isaki [6] has discussed the
multivariate ratio and regression estimators to estimate finite population variance.
Mishra and Swain [11] also have suggested a regression type estimator for estimating
finite population variance.

Situations may arise when the finite population variance S2
x of the auxiliary vari-

able x is not known in advance. In order to obtain a more efficient estimator of
S2

y , the finite population variance of y, by using the relationship between auxiliary
variable x and the variable of interest y, when the population variance S2

x of x is not
known, Pradhan [16] and Diana and Tommasi [3] proposed a two phase sampling
scheme. In the first phase, an initial simple random sample (without replacement)
s′ ⊂ U of fixed size n′ is selected to observe auxiliary variable x. In the second phase,
a simple random sample (without replacement) s of fixed size n is drawn from s′ to
observe the variable of interest y. The regression type estimator of finite population
variance S2

y in two phase sampling takes the form

(1.1) Ŝ∗
2

yreg = s2y + β22(y, x)(s′2x − s2x)

where s′2x and s2x are estimates of finite population variance of x using first phase and
second phase samples respectively, s2y is an unbiased estimate of the finite population
variance of y based on second phase sample and further

β22(y, x) =
Cov(s2y, s

2
x)

Var(s2x)
.

Under bivariate normality of (y, x), β22(y, x) = β2
yx, where βyx represents regression

coefficient of y on x; and hence to first order of approximations,

(1.2) V (Ŝ∗
2

yreg) ∼= 2(1− ρ4
yx)

S4
y

n
+ 2ρ4

yx

S4
y

n′

where ρyx is the correlation coefficient between y and x.

2. Regression type estimators in two phase sampling using two auxiliary
variables

Let there be two auxiliary variables under consideration to estimate the finite pop-
ulation variance S2

y of y. When the finite population variance S2
x of one of the

auxiliary variables, say x, is not known but S2
z of z is known, we consider the fol-

lowing regression type estimators in two phase sampling following the techniques
first suggested by Swain [20] and subsequently developed by Kiregyra [7] for the
estimation of finite population mean in the presence of two auxiliary variables x and
z. In the first phase a simple random sample s′of fixed size n′ from the population
U is drawn to observe both x and z. In the second phase a simple random sample
s of fixed size n is drawn from s′ to observe the study variable y. The sampling in
both phases is carried out without replacement.
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Assuming y, x and z to follow a trivariate normal distribution, regression type
estimators for the finite population variance may be proposed as

(A) Ŝ2
(1) = s2y + β22(y, x)

(
Ŝ2

x − s2x

)
,

where
Ŝ2

x = s′
2
x + β′22(x, z)

(
S2

z − s′
2
z

)
,

β22(y, x) =
Cov(s2y, s

2
x)

Var(s2x)
and

β′22(x, z) =
Cov(s′2x, s

′2
z)

Var(s′2z)
.

Under bivariate normality of (y, x), β22(y, x) = β2
yx, where βyx is the simple regres-

sion coefficient of y on x. Under bivariate normality of (x, z) β′22(x, z) = β2
xz where

βxz is the simple regression coefficient of x on z, s′2x and s′
2
z be the estimates of

S2
x and S2

z based on the first phase sample respectively and s2y and s2x are in usual
sample estimates based on the second phase sample. Under trivariate normality of
(y, x, z), assuming N to be sufficiently large and to the first order of approximations,
the variance of Ŝ2

(1) is given by

(2.1) V (Ŝ2
(1)) ∼= 2

(
1− ρ4

yx

) S4
y

n
+ 2

(
ρ4

yx + ρ4
yxρ

4
xz − 2ρ2

yxρ
2
yzρ

2
xz

) S4
y

n′

where ρyx, ρyz and ρxz are simple correlation coefficients with usual notations. The
outline of proof of (2.1) is given in Appendix.

(B) Ŝ2
(2) = s2y + λ1(Ŝ2

x − s2x) + λ2(S2
z − s2z)

where Ŝ2
x = s′

2
x + β′22(x, z)(S2

z − s′
2
z) and λ1 and λ2 are suitable constants to be

determined so as to minimize V (Ŝ2
(2)).

The optimum values of λ1 and λ2 under the trivariate normality of (y, x, z) to the
first order of approximations are given by

(2.2) λ1(opt) =
ρ2

yx − ρ2
yzρ

2
xz

1− ρ4
xz

.
S2

y

S2
x

and λ2(opt) =
ρ2

yz − ρ2
yxρ

2
xz

1− ρ4
xz

.
S2

y

S2
z

.

Thus under trivariate normality assuming N to be sufficiently large and to the
first order of approximations

Vopt(Ŝ2
(2)) ∼= 2

[
1−

ρ4
yx + ρ4

yz − 2ρ2
yxρ

2
yzρ

2
xz

1− ρ4
xz

]
S4

y

n

+ 2

[
ρ4

yx + ρ4
yzρ

4
xz − 2ρ2

yxρ
2
yzρ

2
xz

1− ρ4
xz

]
S4

y

n′
.(2.3)

Following Isaki [6], we may consider another estimator of S2
y given by

(C) Ŝ2
(3) = s2y + λ′1(s′2x − s2x) + λ′2(s′2z − s2z) + λ′3(S2

z − s′
2
z),
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where λ′1 , λ′2 and λ′3 are suitable constants to be determined so as to minimize
V (Ŝ2

(3)).
Assuming trivariate normality of (y, x, z), the optimum values of λ′1 , λ′2 and λ′3

to the first order of approximations are

(2.4) λ′1(opt) =
ρ2

yx − ρ2
yzρ

2
xz

1− ρ4
xz

.
S2

y

S2
x

, λ′2(opt) =
ρ2

yz − ρ2
yxρ

2
xz

1− ρ4
xz

.
S2

y

S2
z

, λ′3(opt) = ρ2
yz

S2
y

S2
z

.

Thus, to the first order of approximations,

Vopt(Ŝ2
(3)) ∼= 2

[
1−

ρ4
yx + ρ4

yz − 2ρ2
yxρ

2
yzρ

2
xz

1− ρ4
xz

]
S4

y

n

+ 2

[
ρ4

yx + ρ4
yzρ

4
xz − 2ρ2

yxρ
2
yzρ

2
xz

1− ρ4
xz

]
S4

y

n′
,(2.5)

which is the same as the Vopt(Ŝ2
(2)) to same order of approximations.

(D) Ŝ2
(4) = s2y + λ(1)

(
Ŝ2

x − s2x

)
+ λ(2)

(
S2

z − s′
2
z

)
where Ŝ2

x = s′
2
x + β′22 (x, z) (S2

z − s′
2
z).

Under bivariate normality of (x, z), β′22(x, z) = β2
xz. Under trivariate normality of

(y, x, z) assuming N to be sufficiently large and to the first order of approximations,
the optimum values of λ(1) and λ(2) are given by

(2.6) λ(1)opt = ρ2
yx

S2
y

S2
x

and λ(2)opt =
(
ρ2

yz − ρ2
yxρ

2
xz

) S2
y

S2
z

.

Thus, to the first order of approximations,

(2.7) Vopt

(
Ŝ2

(4)

)
∼= 2

(
1− ρ4

yx

) S4
y

n
+ 2

(
ρ4

yx − ρ4
yz

) S4
y

n′
.

The optimized constants in Ŝ2
(2), Ŝ

2
(3) and Ŝ2

(4) are functions of population param-
eters, which are usually not known. Hence, in practice we substitute the consistent
estimators for the unknown parameters in the optimized constants for the purpose
of estimation of variance.

3. Comparison of efficiency

(a) Since

V
(
Ŝ∗

2

y reg

)
− Vopt

(
Ŝ2

(4)

)
= 2

ρ4
yz

n′
≥ 0,

we have

(3.1) Vopt

(
Ŝ2

(4)

)
≤ V

(
Ŝ∗

2

y reg

)
.

(b) Since

V
(
Ŝ2

(1)

)
− Vopt

(
Ŝ2

(4)

)
=

2
n′
(
ρ2

yz − ρ2
yxρ

2
xz

)2 ≥ 0,
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we have

(3.2) Vopt

(
Ŝ2

(4)

)
≤ V

(
Ŝ2

(1)

)
.

(c) Since

Vopt

(
Ŝ2

(4)

)
− Vopt

(
Ŝ2

(2)

)
= 2

(
1
n
− 1
n′

) (
ρ2

yz − ρ2
yxρ

2
xz

)2
1− ρ4

xz

≥ 0,

we have

(3.3) Vopt

(
Ŝ2

(2)

)
≤ Vopt

(
Ŝ2

(4)

)
.

(d) Since

V (Ŝ2
(1))− Vopt(Ŝ2

(2)) ≥ 2(ρ2
yz − ρ2

yxρ
2
xz)2

S2
y

n′
≥ 0,

we have

(3.4) Vopt(Ŝ2
(2)) ≤ V (Ŝ2

(1)).

Hence we conclude that Ŝ2
(2) is more efficient estimator than Ŝ∗

2

y reg, Ŝ2
(1) and Ŝ2

(4). It

may be noted that the estimators Ŝ2
(1) and Ŝ2

(2) due to Pradhan [16] belong to the
class of estimators proposed by Diana and Tommasi [3].

4. Regression type estimators in three phase sampling using two auxiliary
variables

In the case when the population variance of z, S2
z is not known, we first select a

large preliminary first phase sample s′′ of size n′′ from the finite population of size
N and z is observed. Subsequently, in the second phase a sub-sample s′ of size n′ is
drawn from n′′ to observed x and finally in the third phase a sub-sample of size n
is drawn from n′ to observe the study variable y. The sampling designs in all these
three phases are simple random sample without replacement.

Here, with usual notations β22(y, x) and β′22(x, z), we consider two estimators of
finite population variance when y, x and z follow trivariate normality.

(A) Ŝ∗2(1) = s2y + β22(y, x)(Ŝ2
x − s2x),

where Ŝ2
x = s′

2
x + β′22(x, z)(s′′2z − s′

2
z). Then under trivariate normality of (y, x, z)

assuming N to be sufficiently large and to the first order of approximations, we find

V (Ŝ∗2(1)) ∼= 2(1− ρ4
yx)

S4
y

n
+ 2(ρ4

yx + ρ4
yzρ

4
xz − 2ρ2

yxρ
2
yzρ

2
xz)

S4
y

n′

+ 2(2ρ2
yxρ

2
yzρ

2
xz − ρ4

yxρ
4
xz)

S4
y

n′
.(4.1)

(B) Ŝ∗2(2) = s2y + λ∗1(Ŝ2
x − s2x) + λ∗2(s′′2z − s2z),

where Ŝ2
x = s′

2
x + β′22(x, z)(s′′2z − s′

2
z) and λ∗1 and λ∗2 are suitable constants to be

determined under trivariate normality of (y, x, z). (See Appendix).
The optimized constants in Ŝ∗2(2) are functions of population parameters, which

are usually not known. Hence, in practice we substitute the consistent estimators for
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the unknown parameters in the optimized constants for the purpose of estimation
of variance.

For sufficiently large N and under the trivariate normality the approximate vari-
ance of Ŝ∗2(2) is given by

Vopt(Ŝ∗2(2)) ∼= 2

[
1−

ρ4
yx + ρ4

yz − 2ρ2
yxρ

2
yzρ

2
xz

1− ρ4
xz

]
S4

y

n
+ 2

[
ρ4

yx + ρ4
yzρ

4
xz − 2ρ2

yxρ
2
yzρ

2
xz

1− ρ4
xz

]
S4

y

n′

+ 2ρ4
yz

S4
y

n′′
.(4.2)

The outline of proof of (4.2) is given in Appendix.

5. Comparison of efficiency

V (Ŝ∗2(1))− Vopt(Ŝ∗2(2)) =
(
A

n
+
B

n′
+
C

n′′

)
× 2S4

y ,

where

A =
ρ4

yx + ρ4
yz − 2ρ2

yxρ
2
yzρ

2
xz

1− ρ4
xz

− ρ4
yx,

B = (ρ4
yx + ρ4

yzρ
4
xz − 2ρ2

yxρ
2
yzρ

2
xz)−

[
ρ4

yx + ρ4
yzρ

4
xz − 2ρ2

yxρ
2
yzρ

2
xz

(1− ρ4
xz)

]
and

C = 2ρ2
yxρ

2
yzρ

2
xz − ρ4

yxρ
4
xz − ρ4

yz.

Since (
A

n
+
B

n′

)
≥ A+B

n′
=

(ρ2
yz − ρ2

yxρ
2
xz)2

n′
,

we have

V (Ŝ∗2(1))− Vopt(Ŝ∗2(2)) ≥ 2
(

1
n′
− 1
n′′

)(
ρ2

yz − ρ2
yxρ

2
xz

)2
S4

y ≥ 0.

Hence we conclude that Vopt(Ŝ∗2(2)) ≤ V (Ŝ∗2(1)).

6. Numerical illustrations

To observe the relative performance of different estimators discussed above, we con-
sider two natural population data used earlier by others. These populations are
described below.

Population-I (Sukhatme and Chand [19])
N = 120;
y = bushels of apples harvested in 1964
x = apple tree of bearing age in 1964
z = bushels of apples harvested in 1959
ρyx = 0.93, ρyz = 0.84, ρxz = 0.77
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Population-II (Srivastava [17])
N = 50;
y = yield per plant
x = height of the plant
z = base diameter
ρyx = 0.7418, ρyz = 0.5677, ρxz = 0.2063

Table 1. Relative efficiency of different estimators of population variance

% Relative Efficiency
Estimators Auxiliary

Variables
Used

Popn. I (n′′ = 70, n′ =
50, n = 20)

Popn. II (n′′ = 30,
n′ = 20, n = 8)

s2y None 100 100
Ŝ∗2(1) x, z 215.82 122.51
Ŝ∗2(2) x, z 217.45 133.19

Remark 6.1. Ŝ∗2(2) has substantial gain in efficiency compared to Ŝ∗2(1) and s2y. The
proposed estimators depend upon population regression coefficients, correlation coef-
ficients and variances, which are generally not known. In practice, these population
values are to be estimated from the given sample and as a result, the estimators
become biased. However, in large samples, the biases are negligible and the variance
expressions are asymptotically equivalent.

7. Appendix

Outline of proof of (2.1). Consider a regression estimator of population variance of
the study variable y by

Ŝ2
(1) = s2y + β22(y, x)

(
Ŝ2

x − s2x

)
,

where
Ŝ2

x = s′
2
x + β′22(x, z)

(
S2

z − s′
2
z

)
.

Now,

V
(
Ŝ2

(1)

)
= V1E2

(
Ŝ2

(1)

)
+ E1V2

(
Ŝ2

(1)

)
∼=
[
2
(

1
n′
− 1
N

)
S4

y + 2
(

1
n′
− 1
N

)
ρ4

yxρ
4
xzS

4
y − 4

(
1
n′
− 1
N

)
ρ2

yxρ
2
yzρ

2
xzS

4
y

]
+
[
2
(

1
n
− 1
n′

)
S4

y + 2
(

1
n
− 1
n′

)
ρ4

yxS
4
y − 4

(
1
n
− 1
n′

)
ρ4

yxS
4
y

]
∼= 2

(
1− ρ4

yx

) S4
y

n
+ 2

(
ρ4

yx + ρ4
yxρ

4
xz − 2ρ2

yxρ
2
yzρ

2
xz

) S4
y

n′
,

if N is sufficiently large.
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Outline of proof of (4.2). Consider a regression estimator of population variance of
the study variable y by

Ŝ∗2(2) = s2y + λ∗1(Ŝ2
x − s2x) + λ∗2(s′′2z − s2z),

where
Ŝ2

x = s′
2
x + β′22(x, z)(s′′2z − s′

2
z)

and

β′22 (x, z) =
Cov(s′2x, s

′2
z)

Var(s′2z)

and λ∗1 and λ∗2 are preassigned constants to be estimated by minimizing V (Ŝ∗2(2))
under trivariate normality condition and for sufficiently large N . Now,

V (Ŝ∗2(2)) = V1E2E3(Ŝ∗2(2)) + E1V2E3(Ŝ∗2(2)) + E1E2V3(Ŝ∗2(2))

=
[
2
(

1
n′′

− 1
N

)
S4

y

]
+
[
2
(

1
n′
− 1
n′′

)
S4

y + 2
(

1
n′
− 1
n′′

)
λ∗21 ρ

4
xzS

4
x

+ 2
(

1
n′
− 1
n′′

)
λ∗22 S

4
z − 4

(
1
n′
− 1
n′′

)
λ∗1ρ

2
xzρ

2
yzS

2
xS

2
y

−4
(

1
n′
− 1
n′′

)
λ∗2ρ

2
yzS

2
yS

2
z + 4

(
1
n′
− 1
n′′

)
λ∗1λ

∗
2ρ

2
xzS

2
xS

2
z

]
+
[
2
(

1
n
− 1
n′

)
S4

y + 2
(

1
n
− 1
n′

)
λ∗21 S

4
x + 2

(
1
n
− 1
n′

)
λ∗22 S

4
z

− 4
(

1
n
− 1
n′

)
λ∗1ρ

2
yxS

2
yS

2
x − 4

(
1
n
− 1
n′

)
λ∗22 ρ

2
yzS

2
yS

2
z

+4
(

1
n
− 1
n′

)
λ∗1λ

∗
2ρ

2
xzS

2
xS

2
z

]
.

Applying the method of least square in order to minimize V (Ŝ∗2(2)), we find

λ∗1(opt) =
ρ2

yx − ρ2
yzρ

2
xz

1− ρ4
xz

.
S2

y

S2
x

and λ∗2(opt) =
ρ2

yz − ρ2
yxρ

2
xz

1− ρ4
xz

.
S2

y

S2
z

.

Substituting the values of λ∗1(opt) and λ∗2(opt) in V (Ŝ∗2(2)), we find

Vopt(Ŝ∗2(2)) ∼= 2

[
1−

ρ4
yx + ρ4

yz − 2ρ2
yxρ

2
yzρ

2
xz

1− ρ4
xz

]
S4

y

n

+ 2

[
ρ4

yx + ρ4
yzρ

4
xz − 2ρ2

yxρ
2
yzρ

2
xz

1− ρ4
xz

]
S4

y

n′
+ 2ρ4

yz

S4
y

n′′
.
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C 36 (1974), 23–32.

[9] T. P. Liu and M. E. Thompson, Properties of estimators of quadratic finite population func-
tions: The batch approach, Ann. Statist. 11 (1983), no. 1, 275–285.

[10] G. Mishra, On estimation of finite population variance and coefficient of variation using aux-

iliary information, Unpublished Ph.D. Thesis (1991), Utkal University, Bhubaneswar, India.
[11] G. Mishra and A. K. P. C. Swain, A modified regression type estimator for estimating finite

population variance, Sankhyikee (1994), Utkal University, Vol. I, 21–29.

[12] P. Mukhopadhyay, Estimating the variance of a finite population under a superpopulation
model, Metrika 25 (1978), no. 2, 115–122.

[13] P. Mukhopadhyay, Optimum strategies for estimating the variance of a finite population under

a superpopulation model, Metrika 29 (1982), no. 3, 143–158.
[14] P. Mukhopadhyay, Optimum estimation of finite population variance under generalised random

permutation models, Calcutta Statist. Assoc. Bull. 33 (1984), no. 129–130, 93–106.
[15] P. Mukhopadhyay, On asymptotic properties of a generalised predictor of finite population

variance, Sankhyā Ser. B 52 (1990), no. 3, 343–346.

[16] B. K. Pradhan, Some problems of estimation in multi-phase sampling, Unpublished Ph.D.
Statistics Thesis (April 2000), Utkal University, Bhubaneswar, India.

[17] S. K. Srivastava, A generalized estimator for the mean of a finite population using multi-

auxiliary information, J. Amer. Stat. Assoc. 66 (1971), 404–407.
[18] S. K. Srivastava and H. S. Jhajj, A class of estimators using auxiliary information for estimating

finite population variance, Sankhȳa Ser. C 42 (1980), 87–96.
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