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Abstract. Lexicographic product G ◦ H of two graphs G and H has vertex

set V (G)× V (H) and two vertices (u1, v1) and (u2, v2) are adjacent whenever
u1u2 ∈ E(G), or u1 = u2 and v1v2 ∈ E(H). If every matching of G of size k

can be extended to a perfect matching in G, then G is called k-extendable. In
this paper, we study matching extendability in lexicographic product of graphs.

The main result is that the lexicographic product of an m-extendable graph

and an n-extendable graph is (m + 1)(n + 1)-extendable. In fact, we prove a
slightly stronger result.
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1. Introduction

The graphs considered in this paper will be finite, undirected, simple and connected.
A matching in a graph G is a set of pairwise nonadjacent edges and a matching

M is called a perfect matching if V (M) = V (G). If every matching of size k can
be extended to a perfect matching in G, then G is called k-extendable. To avoid
triviality, we require that |V (G)| ≥ 2k + 2 for k-extendable graphs. In particular,
0-extendable means there exists a perfect matching in G.

A graph G is k-factor-critical, if it satisfies that G − S has a perfect matching
for any k-subset S of V (G). Clearly, a 2k-factor-critical graph is k-extendable, but
the reverse is not true (e.g., complete bipartite graphs). Note that if G is 2k-factor-
critical, then all graphs obtained by adding any number of edges to G are still
k-extendable. In fact, adding any number of edges to G being still k-extendable is
a sufficient and necessary condition for G being 2k-factor-critical.
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It is natural to study factor criticality and matching extendability of different
types of graph products, as such products contain a large number of perfect match-
ings. Our motivation is from the study of Cayley graphs since graph products often
form a ‘skeleton’ of Cayley graphs. Győri and Plummer [3] showed that the Carte-
sian product of an m-extendable graph and an n-extendable graph is (m + n + 1)-
extendable. Győri and Imrich [4] proved that the strong product of an m-extendable
graph and an n-extendable graph is [(m+ 1)(n+ 1)]2-factor-critical. Here, for a real
number x, [x]2 denotes the biggest even integer not greater than x. In the same
paper, they also conjectured that the factor-criticality of strong product can be im-
proved to [(m+2)(n+2)]2−2. Liu and Yu [6] studied matching extension properties
in Cartesian products and lexicographic products. In particular, they investigated
the matching extension from a prescribed vertex set in lexicographic product of
graphs. Readers can see [6] for more details. Wu, Yang and Yu [9] investigated
factor-criticality of the Cartesian product of an m-factor-critical and an n-factor-
critical graph. More research on graph products can be found in the book written
by Imrich and Klavžar [5].

In this paper, we investigate the factor-criticality and extendability in the lexico-
graphic product of an m-extendable graph and an n-extendable graph.

The lexicographic productG◦H of two graphsG andH has vertex set V (G)×V (H)
and two vertices (u1, v1) and (u2, v2) are adjacent whenever u1u2 ∈ E(G), or u1 = u2

and v1v2 ∈ E(H). The strong product G�H of two graphs G and H has vertex set
V (G) × V (H) and two vertices (u1, v1) and (u2, v2) are adjacent if either u1 = u2

and v1v2 ∈ E(H), or u1u2 ∈ E(G) and v1 = v2 , or u1u2 ∈ E(G) and v1v2 ∈ E(H).
Note that G ◦Kn = G�Kn and G ◦H � H ◦G whenever G � H and neither of G
and H is trivial. A lexicographic product of graphs may not be commutative, even
when both factors are connected. For example, K2 ◦ P3 � P3 ◦K2.

Let T ⊆ V (G) be a given subset with |T | even. An edge set F ⊆ E(G) is called
a T -join, if

dF (x) ≡

{
1 (mod 2), if x ∈ T
0 (mod 2), if x /∈ T ,

where dF (x) denotes the number of edges incident with x in F .
For terminology and notation not defined in this paper, readers are referred

to [7].

2. Main results and preliminaries

One of the main results of this paper is the following.

Theorem 2.1. Let G1 be m-extendable and G2 be n-extendable. Then their lex-
icographic product G2 ◦ G1 is 2(m + 1)(n + 1)-factor-critical. In particular, it is
(m+ 1)(n+ 1)-extendable.

Remark 2.1. For n → ∞, Theorem 2.1 is close to be sharp. To see this, take
an arbitrary m-extendable graph G1 with |V (G1)| = 2m + 2 containing a vertex x
of degree m + 1 (e.g. Km+1,m+1) and an arbitrary n-extendable graph G2 with a
vertex y of degree n + 1. Then the degree of the vertex (x, y) in the lexicographic
product G2 ◦G1 is 2(n+1)(m+1)+(m+1). Clearly, if X contains all the neighbors
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of (x, y), then (G2 ◦ G1) − X obviously does not have a perfect matching. Since
limn→∞ dG2◦G1(x, y)/[2(n + 1)(m + 1)] = 1, we are nearly able to choose a vertex
set X to contain all neighbors of (x, y).

In the special case G1 = K2 or G2 = K2, a higher factor-critical number can be
proved. With a similar discussion we see that the result is best possible.

Theorem 2.2. If G is an m-extendable graph of order 2p, then G ◦K2 is 2(m+ 1)-
factor-critical and K2 ◦G is 2p-factor-critical.

From the above theorem, it seemed to suggest the following conjecture: If G1 is
m-extendable and G2 is n-extendable (m,n ≥ 0), then their lexicographic product
G2 ◦G1 is (n+ 1)|V (G1)|-factor-critical.

Favaron [2] and Yu [10] introduced the concept of k-factor-criticality, indepen-
dently, and studied the basic properties of k-factor-critical graphs. Several of these
properties will be used in our proofs, so we summarize them below.

Theorem 2.3. [2, 10] Let G be a k-factor-critical graph with k ≥ 2 and |V (G)| > k,
then G is also (k − 2)-factor-critical. Moreover, G is k-factor-critical if and only if
co(G− S) ≤ |S| − k for any S ⊆ V (G) with |S| ≥ k, where co(G− S) is the number
of odd components in G− S.

Plummer [8] proved fundamental properties of k-extendable graphs and we sum-
marize them as follows.

Theorem 2.4. [8] Let G be a k-extendable graph with k ≥ 1 and |V (G)| > 2k. Then

(a) G is also (k − 1)-extendable;
(b) G is (k + 1)-connected;
(c) δ(G) ≥ k + 1.

Győri and Imrich [4] considered the strong product of an m-extendable graph and
an n-extendable graph, and they gave the following result.

Theorem 2.5. [4] Let G be a k-extendable graph. Then G�K2 is 2(k + 1)-factor-
critical.

In some special cases, applying properties of Hamilton cycles can lead to a shorter
proof, so we present a classical theorem of Dirac.

Theorem 2.6. [1] Every graph with n ≥ 3 vertices and minimum degree at least
n/2 has a Hamilton cycle.

Before giving the proofs of the main results, we need the following lemma which
is used in our proofs. Let Gu,v denote the subgraph of G ◦H induced by vertex set
{(x, u), (x, v) : x ∈ V (G)} for any uv ∈ E(H). Similarly, Hx,y is defined for any
xy ∈ E(G). It is not difficult to see that Gx,y ∼= G ◦K2 and Hx,y ∼= K2 ◦H.

Lemma 2.1. Let G be m-extendable and H be Hamiltonian with even order, and
X be an arbitrary even subset of V (G ◦H). If for any uv ∈ E(H), |X ∩ V (Gu,v)| ≤
2m+ 1, then (G ◦H)−X has a perfect matching.
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Proof. Let u1u2 . . . u2t be a Hamilton cycle ofH. By assumption, |X∩V (Gu2i−1,u2i)| ≤
2m+ 1 for 1 ≤ i ≤ t.

If |X∩V (Gu2i−1,u2i)| is even for 1 ≤ i ≤ t, then by Theorems 2.2 and 2.3, there is a
perfect matching of (G◦H)−X. If |X∩V (Gu2i−1,u2i)| is odd (we call such pair ‘odd’)
for some i, there must be another odd pair {u2j−1, u2j}. Choose such a j nearest to
i along the cycle in ‘clockwise’ order, then we get a path Pij on this cycle. Deal with
other odd pairs in the same way. Thus, the Hamilton cycle u1u2 . . . u2t−1u2t can
be viewed as an ordered components sequence, connected together in order. Each
component is either an even path (we say a path p is even if |V (P )| is even; otherwise,
it is odd) from one odd pair to another or an edge u2k−1u2k with |X∩V (Gu2k−1,u2k)|
even and no more than 2m + 1. If we can find a perfect matching of (G ◦ P ) −X
for each such even path P , we obtain a perfect matching of (G ◦ H) − X. Let
P = u2i0−1u2i0 . . . u2j0−1u2j0 . We will construct a set M of independent edges such
that |(X ∪ V (M)) ∩ V (Gu2i−1,u2i)| is even for all u2i−1u2i ∈ E(P ). Initially, let
M = ∅. For each edge e = xy (considering each edge once and only once) in P ,

(a) if e 6= u2i−1u2i for each i, 1 ≤ i ≤ t, then there exists an edge e′ between Gx

and Gy such that both end vertices of e′ are not covered by X and M . Set
M := M ∪ {e′}; (If no such e′ exists, Gx,y −X is disconnected. Note that
{(v, x), (v, y)} occurs in pair in a component ofGx,y−X unless either (v, x) or
(v, y) lies in X for any v ∈ V (G). However, as |X∪V (Gu,v)| ≤ 2m+1 for any
uv ∈ E(G), V (Gx,y)∩X contains at most m pairs of vertices {(v, x), (v, y)}.
It contradicts to fact that G is (m+ 1)-connected.)

(b) if e = u2i−1u2i for some i, 1 ≤ i ≤ t, then set M := M .

Thus, it is not too hard to verify that |(X ∪ V (M)) ∩ V (Gu2i−1u2i)| is even and no
more than 2m+ 2 for each u2i−1u2i ∈ E(P ). By Theorems 2.2 and 2.3, Gu2i−1u2i −
(X∪V (M)) has a perfect matching. Therefore, the union of these perfect matchings
together with M is a perfect matching of (G ◦ P )−X and thus we obtain a perfect
matching of (G ◦H)−X.

3. Proofs of the main results

Since Theorem 2.2 will be used in the proof of the main theorem several times, we
ought to prove it first.

Proof of Theorem 2.2. The first assertion follows from Theorem 2.5 and the fact
that G ◦K2

∼= G�K2. Next, we prove the second part. Let V (K2) = {v1, v2}.
To the contrary, suppose K2 ◦G is not 2p-factor-critical. Then by Theorem 2.3,

there exists a set S ⊆ V (K2 ◦G) with |S| ≥ 2p such that co((K2 ◦G)−S) > |S|−2p.
By parity, co((K2 ◦ G) − S) ≥ |S| − |V (G)| + 2 ≥ 2. Note that all components of
(K2 ◦G)−S must lie in the same ‘layer’ Gvi , i = 1 or 2, since it induces a complete
bipartite graph between Gv1 and Gv2 in K2 ◦ G, Gvi ⊆ S for some vi ∈ V (K2),
say Gv1 . Thus, there exists S′ ⊆ V (Gv2) such that S′ ⊆ S and co(Gv2 − S′) ≥
|S′| + 2 ≥ 2, therefore, G(∼= Gv2) has no perfect matching, a contradiction to that
G is m-extendable. This completes the proof.
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Proof of Theorem 2.1. First, assume |V (G1)| ≥ 2m+4. We use induction on n. For
the case n = 0, we show the following claim.

Claim 1. If G1 is m-extendable and G2 is connected with a perfect matching, then
G2 ◦G1 is 2(m+ 1)-factor-critical.

Proof. Fix a perfect matching {v1v2, . . . , v2t−1v2t} in G2. We show the claim by
induction on t. The case t = 1 follows from Theorems 2.2 and 2.3. Assume that
it holds for smaller t. Extend {v1v2, . . . , v2t−1v2t} to a spanning tree of G2 and
contract the edges v1v2, . . . , v2t−1v2t. Then a spanning tree in G2 is transformed
into a spanning tree of the contracted graph and the new tree contains a vertex of
degree one. Without loss of generality, assume that the vertex obtained from the
contraction of v1v2 has degree one. It implies that G2−{v1, v2} is connected and has
a perfect matching {v3v4, . . . , v2t−1v2t}. In other words, it is 0-extendable. Since G2

is connected, we may assume that v1 has a neighbor in {v3v4, . . . , v2t−1v2t}. Let X
be an arbitrary vertex set in G2 ◦G1 with |X| = 2(m+1). If |X ∩V (Gv1,v2

1 )| is even,
both ((G2−{v1, v2})◦G1)−X and Gv1,v2

1 −X have a perfect matching M1 and M2,
respectively. Then M1∪M2 is a perfect matching of (G2◦G1)−X. If |X∩V (Gv1,v2

1 )|
is odd, we can pick an arbitrary vertex (u, v1) in Gv1

1 −X. Since the vertex (u, v1) has
at least |V (G1)| neighbors in G2◦G1−V (Gv1,v2

1 ) by the choice of v1 and the definition
of the lexicographic graph, there exists a vertex (u′, w) ∈ V (G2◦G1)−V (Gv1,v2

1 ) such
that (u′, w) /∈ X and (u, v1)(u′, w) ∈ E(G2 ◦G1) as |X ∩ V ((G2 − {v1, v2}) ◦G1)| ≤
2m + 1 < |V (G1)|. Then, Gv1,v2

1 − (X ∪ {(u, v1)}) has a perfect matching M1 by
Theorems 2.2 and 2.3, and ((G2 − {v1, v2}) ◦ G1) − (X ∪ {(u′, w)}) has a perfect
matching M2 by the induction hypothesis. Then M1 ∪M2 ∪ {(u, v1)(u′, w)} is a
perfect matching in G2 ◦G1 −X.

Now, assume n ≥ 1. Let X be an arbitrary subset of V (G2 ◦ G1) with |X| =
2(m+ 1)(n+ 1). We consider two cases based on |X ∩ V (Gv,v′

1 )|.

Case 1. There exists an edge v1v2 ∈ E(G2) for which |X ∩ V (Gv1,v2
1 )| ≥ 2(m+ 1).

Take 2m+2 vertices, sayX1 = {x1, · · · , x2m+2}, inX∩V (Gv1,v2
1 ), thenGv1,v2

1 −X1

has a perfect matching M . Consider the edges y1z1, . . . , ypzp of M such that
zi ∈ X − X1 and yi /∈ X − X1. Note that every vertex yi has at least n|V (G1)|
(≥ (2m + 2)n) neighbors in (G2 ◦ G1) − V (Gv1,v2

1 ). Let C1, . . . , Ck (note that
k > 1 implies n = 1) denote the components of G2 − {v1, v2}. Clearly, each
Cj (1 ≤ j ≤ k) has a perfect matching. Note that when n = 1, as G2 is 1-
extendable, both v1 and v2 are adjacent to vertices in Cj for all 1 ≤ j ≤ k, and
hence each yi has at least 2m + 2 neighbors in Cj ◦ G1 for all 1 ≤ j ≤ k. Since
|Gv1,v2

1 ∩X| ≥ 2m + 2 + p, then |(V (G2 ◦ G1) − V (Gv1,v2
1 )) ∩X| ≤ (2m + 2)n − p.

Therefore, there exist vertices w1, . . . , wp ∈ V (G2 ◦G1) − V (Gv1,v2
1 ) −X such that

yiwi ∈ E(G2 ◦ G1) for i = 1, . . . , p, and |(X ∪ {w1, . . . , wp}) ∩ Cj | is even for all
1 ≤ j ≤ k. By the induction hypothesis, there exists a perfect matching M ′j in
(Cj ◦G1)−X ∪ {w1, . . . , wp}. If M0 denotes the set of edges of M with both end-
vertices in X, then

⋃k
j=1M

′
j ∪ (M −M0) ∪ {y1w1, . . . , ypwp} − {y1z1, . . . , ypzp} is a

perfect matching of (G2 ◦G1)−X.
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Case 2. For every edge vivj ∈ E(G2), we have |X ∩ V (Gvi,vj

1 )| ≤ 2m+ 1.
SinceG2 is n-extendable, it has a perfect matching denoted by {v1v2, . . . , v2t−1v2t}.

Contracting each edge v2i−1v2i of G2 to a vertex wi, we obtain a new graph G′2
with the vertex set {w1, . . . , wt}. Let I0 denote the set of indices i such that
|X ∩ V (Gv2i−1,v2i

1 )| is odd, T = {wi | i ∈ I0}. Without loss of generality, we as-
sume T 6= ∅ and thus |T | is even. Our proof relies on the existence of a T -join,
which can be stated as the following claim.

Claim 2. There exists a T -join F of G′2 satisfying:

(3.1) dF (wi) + dX(wi) ≤ |V (G1)| for all 1 ≤ i ≤ t
where dF (wi) denotes the degree of wi in F and dX(wi) = |X ∩ V (Gv2i−1,v2i

1 )| for
wi ∈ V (G′2).
Proof. Starting with the empty forest, we construct a T -join F step by step, such
that it always satisfies the property (3.1). Set I := I0 at first.

Suppose that a forest F has been chosen already. Let A denote the set of vertices
wi in G′2 satisfying dF (wi) + dX(wi) = |V (G1)| already and |A| = a. If I 6= ∅, let
i, j ∈ I. Suppose there exists a path P from wi to wj avoiding A. If there exists some
vertex wk ∈ T∩V (P ) different from wi, wj satisfying dF (wk)+dX(wk) = |V (G1)|−1,
let wk be the vertex nearest to wi in P . Clearly, wk ∈ I. Let P ′ be the subgraph of
P from wi to wk, and set F := E(F )4E(P ′), where4 denotes symmetric difference,
and I := I \ {i, k}. If there exists no such a vertex wk, then set F := E(F )4E(P )
and I := I \{i, j}. If F contains an Eulerian subgraph, then delete its edges from F .
Clearly, the new constructed subgraph F is a forest satisfying (3.1), and if wi is an
end vertex of P , dF (wi) + dX(wi) ≤ |V (G1)| − 1 + 1 = |V (G1)|; if wi is an interval
vertex of P , then dF (wi)+dX(wi) ≤ |V (G1)|−2+2 = |V (G1)|, and nothing changes
for the vertices in A. Repeating this process until I = ∅. By the construction of F ,
we know that (3.1) is satisfied and T -join is preserved.

The problem becomes to show the existence of P stated above. We consider two
subcases based on a = |A|.

Subcase 2.1. a ≤ n.
If a < n, then G2 − ∪wi∈A{v2i−1, v2i} is (n − a)-extendable and (n − a + 1)-

connected. In particular, G′2 −A is connected. Thus, there is a path Pij from wi to
wj avoiding A.

When a = n, if G2 − ∪wi∈A{v2i−1, v2i} is connected, we are done; otherwise, by
n-extendability of G2, it is not hard to see that every vertex in {v2i−1, v2i : wi ∈ A}
is adjacent to all components of G2 − ∪wi∈A{v2i−1, v2i}. Substituting the initial
matching of G2 at the beginning of Case 2 by a new matching so that it covers
{v2i−1, v2i : wi ∈ A} by at least n+ dn/2e edges (note: this is possible because G2 is
n-extendable). So we obtain a new graph G′2 and a corresponding vertex set I0 and
thus can reconstruct a new T -join F together with a new set A step by step. Note
that this time, G′2 −A is connected even if |A| = n.
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Subcase 2.2. a ≥ n+ 1.
Note that dF (wi) ≥ 3 for wi ∈ A by the definition of A and assumption that

dX(wi) ≤ 2m + 1 < 2m + 4 ≤ |V (G1)|. Moreover, |T | ≤ 2(m + 1)(n + 1) and the
number of leaves in F is at most |T |−2 by the construction of F . So, F has at most
2(m+ 1)(n+ 1)−

∑
wi∈A dX(wi)− 2 leaves.

On the other hand, we know that any nonempty forest F ⊆ V (G′) has leaves no
less than∑

wi∈V (F )(dF (wi)− 2) ≥
∑

wi∈A(dF (wi)− 2)
= a(|V (G1)| − 2)−

∑
wi∈A dX(wi)

≥ (n+ 1)(2m+ 2)−
∑

wi∈A dX(wi)
> 2(m+ 1)(n+ 1)− 2−

∑
wi∈A dX(wi),

a contradiction. This completes the proof of Claim 2.
Now we return to the proof of Case 2. Our aim is to construct a set M of |E(F )|

independent edges in (G2 ◦ G1) − X step by step. For any edge wiwj ∈ E(F ), we
take one and only one edge e between V (Gv2i−1,v2i

1 ) and V (Gv2j−1,v2j

1 ) such that e is
not covered by X and M constructed already, and put e into M . Suppose wiwj ∈
E(F ) ⊆ E(G′2) is the next edge to consider. The vertex set X ∩ V (Gv2i−1,v2i

1 ) (resp.
X ∩ V (Gv2j−1,v2j

1 ) ) together with the already chosen edges of M cover a set of no
more than |V (G1)|−1 (resp. |V (G1)|−1) vertices by (3.1). Since the edges between
G

v2i−1,v2i

1 and G
v2j−1,v2j

1 together with the vertices constitute a complete bipartite
graph, there always exists an edge e with one end vertex in Gv2i−1,v2i

1 − (X ∪V (M))
and the other in G

v2j−1,v2j

1 − (X ∪ V (M)). Then add the edge e to M .
Since F is a T -join of G′2, then |X∩V (Gv2i−1,v2i

1 )|+|V (M)∩V (Gv2i−1,v2i

1 )| is even.
By (3.1) and the construction of G′2, |X ∩ V (Gv2i−1,v2i

1 )|+ |V (M)∩ V (Gv2i−1,v2i

1 )| ≤
|V (G1)|. Then, Gv2i−1,v2i

1 −X−V (M) has a perfect matching Mi for each i. Hence,
M ∪

⋃t
i=1Mi is the desired perfect matching of (G2 ◦G1)−X.

Finally, we deal with the case of |V (G1)| = 2m + 2. We prove the assertion
by induction on m. When m = 0, it holds by Theorem 2.2. Suppose it holds for
smaller m. If there is an edge u1u2 ∈ E(G1) for which |X ∩ V (Gu1,u2

2 )| ≥ 2(n+ 1),
then it is similar to the discussion as in Case 1, we can obtain a perfect matching of
(G2◦G1)−X. Assume for every edge uiuj ∈ E(G1), we have |X∩V (Gui,uj

2 )| ≤ 2n+1.
Since G1 is m-extendable, by Theorem 2.4, δ(G1) ≥ m+1. Then G1 is Hamilton-

ian by Theorem 2.6. Hence, by Lemma 2.1, (G2 ◦G1)−X has a perfect matching.
This completes the proof.
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