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Abstract. Let λ =
√
D where D is a square free integer such that D = m2 +1

for m = 1, 3, 4, 5, · · · , or D = n2 − 1 for n = 2, 3, 4, 5, · · · . Also, let H(λ) be
the Hecke group associated to λ. In this paper, we show that the units in H(λ)

are infinite pure periodic λ-continued fraction for a certain set of integer D, and

hence can not be cusp points.
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1. Introduction

Hecke groups H(λ) are, in some sense, generalizations of the well-known modular
group

Γ =
{
az + b

cz + d

∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1
}
.

They are the discrete subgroups of PSL(2,R) (the group of orientation preserving
isometries of the upper half plane U) generated by two linear fractional transforma-
tions

R(z) = −1
z

and T (z) = z + λ,
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where λ is a fixed positive real number. Hecke groups H(λ) were introduced by Erich
Hecke in [2]. Hecke showed that H(λ) is Fuchsian if and only if λ = λq = 2 cos(π/q),
where q ≥ 3, q ∈ N, or λ ≥ 2. These groups are called Hecke groups.

Actually, the modular group H(λ3) has been worked intensively as an Hecke
group. In this q = 3 case, λ3 = 2 cos(π/3) = 1, that is, all coefficients of the
elements of H(λ3) are rational integers. Therefore H(λ3) = PSL(2,Z). The next
two most important Hecke groups are those for q = 4 and 6. As λ4 =

√
2 and

λ6 =
√

3, H(
√

2) and H(
√

3), denote the Hecke groups corresponding to λ4 and λ6,
respectively. For these groups, the underlying fields are the quadratic extensions of
Q by the algebraic numbers

√
2 and

√
3, that is, Q(

√
2) and Q(

√
3). It is known (see

[1]) that H(λq) is isomorphic to the free product of two finite cyclic groups of orders
2 and q, respectively, i.e.

H(λq) ∼= C2 ∗ Cq.
Also in case λ ≥ 2, the element S = RT is parabolic when λ = 2, or hyperbolic

(boundary) when λ > 2. It is known that when λ ≥ 2, H(λ) is a free product of
two cyclic groups of orders 2 and infinity, see [10], so all such H(λ) have the same
algebraic structure, i.e.

H(λ) ∼= C2 ∗ Z.

Here we deal with the cases λ =
√
D where D is a squarefree integer such that

D = m2 + 1 for m = 1, 3, 4, 5, · · · , or D = n2 − 1 for n = 2, 3, 4, 5, · · · and denote
the group by H(

√
D) (see, [8, 9, 11].

The entries of elements of H(
√
D) are in Z

[√
D
]
, which for each D is the ring

of algebraic integers for Q(
√
D). For m ≥ 1, Q(

√
D) has nontrivial units and may

have a nontrivial class group.
It is clear from the above that H(

√
D) ⊂ PSL(2,Z[

√
D]), (the inclusion is strict

when λ > 1) and hence the cusps are contained in Q(
√
D) ∪ {∞} [3].

Hecke groups and continued fractions play a crucial role in many different aspects
of number theory and have been extensively studied in [5], [6] and [7]. Rosen in-
troduced a class of continued fractions closely associated with the Hecke groups in
[5]. He expanded any λq, q = 4, 5, 6 and 7 into a continued fraction using a nearest
integral multiple of λ algorithm (in fact that he expanded any real number into a
continued fraction using a nearest integral multiple of λ algorithm).

It is well-known that a λ-continued fraction (λcf) has a form

[r0λ, ε1/r1λ, ε2/r2λ, · · · ] = r0λ+
ε1

r1λ+ ε2
r2λ

+ · · ·

where εi = ±1, ri are positive rational integer for i ≥ 1 and r0 is a rational integer.
We write a λcf as

[r0λ, ε1/r1λ, ε2/r2λ, · · · ].
Also every real number has a unique reduced λcf obtained by the nearest integer

algorithm. Here we are interested in finding λcf representations of the element of
Q(λ) = Q(

√
D).

Apart from H(1), H(
√

2) and H(
√

3), the elements of H(λ) are not completely
known. It is important to know the general structure of the elements of H(λ) to
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find the cusp set, the set of real numbers which are images of ∞ under the group
elements. The next best result is given by Rosen.

Rosen [6], gave the necessary and sufficient condition for an element V (z) =
(Az +B)/(Cz +D) of H(λ) to be A/C is a finite λcf. He showed that α ∈ Q(λ) if
α has a finite λcf. Also in [7], Rosen and Towse proved that when D = 2 or 3, the
units in Z[

√
D] are infinite pure periodic λcf’s, and hence cannot be cusp points.

Now we briefly mention the concept of the fundamental unit. The fundamen-
tal units for real quadratic fields Q(

√
D) may be computed from the fundamental

solution of the Pell equation
T 2 −DU2 = ±4

where the sign is taken such that the solution (T,U) has smallest possible positive
integer T . If the positive sign is taken, then one solution is simply given by (T,U) =
(2x, 2y), where (x, y) is the solution to the Pell equation

x2 −Dy2 = 1.

Given a minimal (T,U), the fundamental unit is given by

η =
1
2

(T + U
√
D) [4].

Let η = 1
2 (T + U

√
D) be the fundamental unit where T is chosen to be the

smallest positive integer and D is a square free integer such that D = m2 + 1 for
m = 1, 3, 4, 5, · · · , or D = n2 − 1 for n = 2, 3, 4, 5, · · · .

In this paper, we are interested especially in the cases U = 2 and T = 2m,
m = 1, 3, 4, 5, · · · or U = 2 and T = 2n, n = 2, 3, 4, 5, · · · . In these cases, the
fundamental unit is η = m +

√
m2 + 1 or η = n +

√
n2 − 1. The only problem is

when m = 2. If m = 2, then T = 1 and U = 1. But in this case the fundamental
unit is different from our fundamental unit form. Therefore, for all m 6= 2, we have
an even value of T , giving fundamental unit a+ b

√
D, where a, b ∈ Z+.

We generalize some results in the Hecke groups H(
√

2) and H(
√

3) to the Hecke
groups H(

√
D) where D is a squarefree integer such that D = m2 + 1 for m =

1, 3, 4, 5, · · · , or D = n2 − 1 for n = 2, 3, 4, 5, · · · . We consider units in the ring of
integers of the fields Q(

√
D). We show that for a certain set of integer D, the Hecke

group H(λ) of translation length
√
D is such that no unit of Z[λ] is a cusp value.

In order to do these we use one of the Rosen’s continued fraction expansions of the
units, in which we expand λ =

√
D into continued fractions using a nearest integral

multiple of λ algorithm.

2. Main results

Before giving the main theorem, we give the fundamental units of Q (
√
D) where D

is a squarefree integer such that D = m2 +1, for m = 1, 3, 4, 5, · · · or D = n2−1, for
n = 2, 3, 4, 5, · · · . We know that a fundamental unit for Q(

√
D) is η = m+

√
m2 + 1

or η = n+
√
n2 − 1 for m and n, respectively.

Theorem 2.1. Let D be a squarefree integer such that D = m2 + 1 for m =
1, 3, 4, 5, · · · . Then all units in Z(

√
D) have infinite repeating λcf representations.
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Proof. If D = m2 + 1 for m = 1, 3, 4, 5, · · · , then a fundamental unit in Q(
√
D) is

η = m+
√
D. Thus all units in Z[

√
D] can be expressed in the form ±(m+

√
D)k.

We will make use of the nearest integer algorithm to obtain the λcf representation
of (m+

√
D)k for k ≥ 2. Also, we will denote the nearest integer function with [| · |]

and the nearest integer multiple of λ to α with [|α/λ|].
Firstly let ηk = (ak + bk

√
D). To complete the proof, we need to calculate

[|(ak + bk
√
D)/
√
D|]. We now have

(2.1)
∣∣a2
k −D.b2k

∣∣ = 1

as ak + bk
√
D is a unit. After simple calculatings, we have ak+1 = m.ak +D.bk and

bk+1 = ak + m.bk. It is clearly seen that bk+1 > bk and bk ≥ 2 for k ≥ 2. Thus we
find b2k ≥ 2.

If we divide both sides of equality (2.1) by b2k, we obtain∣∣∣∣a2
k

b2k
−D

∣∣∣∣ =
1
b2k
≤ 1

4
.

Thus ak may be approximated by bk
√
D. The nearest (rational) integer multiple of√

D to ak + bk
√
D is given by[∣∣∣∣∣ak + bk

√
D√

D

∣∣∣∣∣
]
≈

[∣∣∣∣∣bk
√
D + bk

√
D√

D

∣∣∣∣∣
]

= 2bk.

Therefore we get

ak + bk
√
D = 2bk

√
D − (−ak + bk

√
D) = 2bk

√
D +

a2
k −D.b2k

ak + bk
√
D
.

Then
ηk = ak + bk

√
D = 2bk

√
D +

ε

ak + bk
√
D
,

where ε = a2
k −D. b2k = ±1. It can be easily seen that ε = (−1)k.

We then get ηk = [2bkλ, ε/2bkλ, ε/2bkλ, · · · ] as the λcf expansion, which is infinite
pure periodic.

If k = 0, we get a result from [5].
Now we find the λcf of η = (m+

√
D) for k = 1. Firstly we get, [|(m+

√
D)/
√
D|] ≈

2, and later

m+
√
D = 2

√
D − (−m+

√
D) = 2

√
D − 1

m+
√
D

= 2
√
D − 1/η.

Thus we obtain,
m+

√
D = [2λ,−1/2λ,−1/2λ, · · · ] .

Finally the algorithm works similarly for k < 0. We have

ηk = 1/η−k = [0; +1/2bkλ, ε/2bkλ, ε/2bkλ, · · · ].
Notice that for m = 1, this result coincides with the Theorem 1 given in [7] for

the Hecke group H(
√

2).

Theorem 2.2. Let D be a squarefree integer such that D = n2 − 1, for n =
2, 3, 4, 5, · · · . Then all units in Z(

√
D) have infinite repeating λcf representations.
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Proof. For D = n2 − 1, n = 2, 4, 5, · · · , the fundamental unit is n +
√
D. Then all

units in Z(
√
D) are of the form ±(n+

√
D)k. Using the method in the Theorem 2.1,

it follows that ak is well-approximated by bk
√
D, since bk ≥ 4 for k ≥ 2. Thus,[∣∣∣∣∣ak + bk

√
D√

D

∣∣∣∣∣
]
≈

[∣∣∣∣∣bk
√
D + bk

√
D√

D

∣∣∣∣∣
]

= 2bk.

Therefore we have

(n+
√
D)k = [2bkλ, ε/2bkλ, ε/2bkλ, · · · ] .

Here it is easy to check that ε is always +1.
The cases k ≤ 0 are dealt with as in Theorem 2.1. We find the fundamental unit

n+
√
D for k = 1. We obtain

n+
√
n2 − 1 = 2

√
n2 − 1 + (n−

√
n2 − 1)

= 2
√
n2 − 1 +

1
n+
√
n2 − 1 . . .

= [2λ,+1/2λ,+1/2λ, · · · ] .

Notice that for n = 2, this result coincides with the Theorem 2 given in [7] for
the Hecke group H(

√
3).

From the Theorems 2.1 and 2.2, we have the following corollary.

Corollary 2.1. Let u = a + b
√
D be a unit in Z(

√
D), with u > 1. Then u has a

purely periodic λcf expansion (λ =
√
D) :

u = [2bλ; ε/2bλ, ε/2bλ, · · · ].

Proof. Since the norm of u has absolute value 1, (a+ b
√
D)/
√
D has absolute value

less than 1/
√
D. From this, as in the proof of the Theorem 2.1, it follows that the

nearest (rational) integer multiple of
√
D to u is 2b. But u = 2b

√
D + ε/u, with ε

the sign of the norm of u. The result follows.
In fact that the proof of the Corollary 2.1 is a variation of the method we used,

but allowing to avoid our various cases and it covers setting that we exclude.
Therefore in the it is easily seen that the units in Q(

√
D) are not cusp points,

since they are not finite λcf’s.
The continued fractions can easily be checked to show that they represent the

unit. For example, the number represented by [24λ, +1/24λ, +1/24λ, · · · ] is a
solution to x = 24

√
35 + 1/x. This leads to x2−24

√
35x−1 = 0, which we can solve

to get x = 12
√

35± 71. We choose the + sign, since x > 1.
We note that the results of [5] concern all elements of the field Q(λ5), not just

the units in the ring of integers. However, even in Q(
√
D) there exist non-units with

infinite λcf’s. For example, if m = 1, 3, 4, 5, · · · then

2m2 + 1 = [2mλ,+1/4mλ,+1/4mλ, · · · ]

or if n = 2, 4, 5, 6, · · · then

2n2 − 1 = [2nλ,+1/4nλ,+1/4nλ, · · · ] .
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In the following, we list the fundamental units of Z(
√
D) where m and n are given

above.
m D = m2 + 1 Fundamental units n D = n2 − 1 Fundamental units
1 2 1 +

√
2 2 3 2 +

√
3

3 10 3 +
√

10 3 8 −
4 17 4 +

√
17 4 15 4 +

√
15

5 26 5 +
√

26 5 24 −
6 37 6 +

√
37 6 35 6 +

√
35

7 50 − 7 48 −
...

...
...

...
...

...
m m2 + 1 m+

√
m2 + 1 n n2 − 1 n+

√
n2 − 1

...
...

...
...

...
...
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