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Abstract. We prove directly that if E is a directed graph in which every
cycle has an entrance, then there exists a C∗-algebra which is co-universal for

Toeplitz-Cuntz-Krieger E-families. In particular, our proof does not invoke

ideal-structure theory for graph algebras, nor does it involve use of the gauge
action or its fixed point algebra.
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1. Introduction

In recent years there has been a great deal of interest in graph C∗-algebras and their
generalisations (see [3] for a survey). To associate C∗-algebras to a given generali-
sation of directed graphs, one assigns partial isometries to the edges of the graph in
a way which encodes connectivity in the graph. One then aims to identify relations
amongst the partial isometries so that the C∗-algebra universal for these relations
satisfies a version of the Cuntz-Krieger uniqueness theorem. For directed graphs,
this theorem states that if every cycle has an entrance, then any representation of
its Cuntz-Krieger algebra which is nonzero on generators is faithful. In trying to
identify appropriate relations, there is typically some analogue of a left-regular rep-
resentation which points to a natural notion of an abstract representation; in the
case of directed graphs, each graph can be represented on the Hilbert space with
orthonormal basis indexed by finite paths in the graph, and this gives rise to the
notion of a Toeplitz-Cuntz-Krieger family. However, the universal C∗-algebra for
such representations is typically too big to satisfy a version of the Cuntz-Krieger
uniqueness theorem, and one has to identify an additional relation to correct this.

In [2], in the much more general context of Cuntz-Pimsner algebras associated
to Hilbert bimodules, Katsura developed a very elegant solution to this problem.
For directed graphs, his results say that given any Toeplitz-Cuntz-Krieger E-family
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consisting of nonzero partial isometries, if the C∗-algebra B it generates carries a cir-
cle action compatible with the canonical gauge action on the Toeplitz algebra, then
there is a canonical homomorphism from B onto the Cuntz-Krieger algebra. We call
this a co-universal property: the Cuntz-Krieger algebra is co-universal for Toeplitz-
Cuntz-Krieger families consisting of nonzero partial isometries and compatible with
the gauge action. Katsura proved this theorem a posteriori : The Cuntz-Krieger al-
gebra had already been defined in terms of a universal property. However, he pointed
out that this theorem implies that the Cuntz-Krieger algebra could be defined to be
the algebra co-universal for nonzero Cuntz-Krieger families; one would then have to
work to prove that such a co-universal algebra exists.

When every cycle in the graph E has an entrance, it is a consequence of the
Toeplitz-Cuntz-Krieger uniqueness theorem that every Cuntz-Krieger E-family con-
sisting of nonzero partial isometries is automatically compatible with the gauge
action. In particular, in this case the use of the gauge action in Katsura’s analysis
should not be necessary. In this article we show that this is indeed the case: We
present a direct argument that for an arbitrary directed graph in which every cycle
has an entrance, there exists a C∗-algebra which is co-universal for Toeplitz-Cuntz-
Krieger families consisting of nonzero partial isometries. In particular, we do not
first identify the Cuntz-Krieger relation or the corresponding universal C∗-algebra.
We also do not proceed via the machinery of ideal structure of Toeplitz algebras
of directed graphs, and we do not deal with the gauge-action of the circle or with
an analysis of its fixed-point algebra. Instead we work directly with the abelian
subalgebra generated by range projections associated to paths in the graph.

2. Preliminaries

A directed graph E = (E0, E1, r, s) consists of a countable set E0 of vertices, a
countable set E1 of edges, and maps r, s : E1 → E0 indicating the direction of
the edges. We will follow the conventions of [3] so that a path is a sequence α =
α1α2 . . . αn of edges such that s(αi) = r(αi+1) for all i. We write |α| for n, and if we
want to indicate a segment of a path, we shall denote it α[p,q] = αp+1αp+2 . . . αq. If
n =∞ (so that α is actually a right-infinite string), then we call α an infinite path.
The range of an infinite path α = α1α2 . . . is r(α) := r(α1).

For n ∈ N, we write En for the collection of paths of length n. We write E∗ for
the category of finite paths in E (we regard vertices as paths of length zero), and
E∞ for the collection of all infinite paths. Given α ∈ E∗ and X ⊂ E∗ ∪ E∞, we
denote {αµ : µ ∈ X, r(µ) = s(α)} by αX. In particular, if v ∈ E0, then

vE∗ = {λ ∈ E∗ : r(λ) = v}, and

vE1 = {e ∈ E1 : r(e) = v}.

Definition 2.1. Given v ∈ E0, a set X ⊂ vE∗ is said to be exhaustive if, for every
λ ∈ vE∗ there exists α ∈ X such that either λ = αλ′ or α = λα′.

Given a directed graph E, a Toeplitz-Cuntz-Krieger E-family in a C∗-algebra B
is a pair (t, q) where t : e 7→ te assigns to each edge a partial isometry in B, and
q : v 7→ qv assigns to each vertex a projection in B such that

(TCK1) the qv are mutually orthogonal
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(TCK2) each t∗ete = qs(e), and
(TCK3) for each v ∈ E0 and each finite subset F ⊂ vE1, we have qv ≥

∑
e∈F tet

∗
e.

There is a C∗-algebra T C∗(E) generated by a Toeplitz-Cuntz-Krieger family (s, p)
which is universal in the sense that given any Toeplitz-Cuntz-Krieger family (t, q) in
a C∗-algebra B there is a homomorphism πt,q : T C∗(E)→ B such that πt,q(se) = te
and πt,q(pv) = qv for all e ∈ E1 and v ∈ E0.

Given a path α ∈ E∗ and a Toeplitz-Cuntz-Krieger E-family (t, q), we write tα
for tα1tα2 . . . tα|α| .

3. The co-universal algebra

Theorem 3.1. Let E be a directed graph, and suppose that every cycle in E has
an entrance. There exists a Toeplitz-Cuntz-Krieger E-family (Sap, P ap) consisting
of nonzero partial isometries such that C∗min(E) := C∗(Sap, P ap) is co-universal
in the sense that given any other Toeplitz-Cuntz-Krieger E family (t, q) in which
each qv is nonzero, there is a homomorphism ψt,q : C∗(t, q) → C∗min(E) such that
ψt,q(te) = Sap

e and ψt,q(qv) = P ap
v for all e ∈ E1 and v ∈ E0.

Moreover, the pair (C∗min(E), (Sap, P ap)) is unique up to canonical isomorphism
in the sense that if A is another C∗-algebra generated by another Toeplitz-Cuntz-
Krieger E-family (t, q) with the same co-universal property, then there is an isomor-
phism C∗min(E) ∼= A which carries each Sap

e to te and each P ap
v to qv.

Our proof relies on understanding the structure the C∗-algebra generated by the
projections {tλt∗λ : λ ∈ E∗} for a Toeplitz-Cuntz-Krieger E-family (t, q). We begin
with the following definition.

Definition 3.1. Let E be a directed graph. A Boolean representation of E in a
C∗-algebra B is a map p : λ 7→ pλ from E∗ to B such that each pλ is a projection,
and

pµpν =


pν if ν = µν′

pµ if µ = νµ′

0 otherwise.

If p is a Boolean representation of E, then the pλ commute, so span{pλ : λ ∈ E∗}
is a commutative C∗-algebra.

Lemma 3.1. Let E be a directed graph, let p be a Boolean representation of E, and
fix a finite subset F ⊂ E∗. For µ ∈ F , define

qFµ := pµ
∏

µµ′∈F\{µ}

(pµ − pµµ′).

Then the qFµ are mutually orthogonal projections and for each µ ∈ E∗,

(3.1) pµ =
∑
µµ′∈F

qFµµ′

Proof. We proceed by induction on |F |. If |F | = 1 then (3.1) is trivial. Suppose
(3.1) holds whenever |F | < n, and fix F with |F | = n. Let λ ∈ F be of maximal
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length, and let G = F \ {λ}. Then qFλ = pλ, and for µ ∈ G,

qFµ =

{
qGµ if λ 6= µµ′

qGµ − qGµ pλ if λ = µµ′.

Fix µ ∈ F . If λ 6= µµ′, then the inductive hypothesis implies that
∑
µµ′∈F q

F
µµ′ =∑

µµ′∈G q
G
µµ′ = pµ. If λ = µµ′, then∑

µµ′∈F
qFµµ′ =

∑
µµ′∈G

(qGµ − qGµ pλ) + qFλ

=
∑
µµ′∈G

qGµ −
∑
µµ′∈G

qGµ pλ + pλ

= pµ − pµpλ + pλ (by the inductive hypothesis)

= pµ − pλ + pλ (since λ = µµ′)
= pµ.

Recall that for λ ∈ E∗, we write s(λ)E1 for {e ∈ E1 : r(e) = s(λ)}. Given a
directed graph E, we define the set of aperiodic boundary paths in E by

∂Eap :=
{
λ ∈ E∗ : |s(λ)E1| ∈ {0,∞}

}
t E∞ \ {λµ∞ : s(λ) = r(µ) = s(µ)} .

So an aperiodic boundary path is either a finite path whose source receives either
infinitely many edges or no edges, or else is an infinite path which is aperiodic in
the sense that it does not eventually repeatedly traverse some fixed cycle.

If x ∈ ∂Eap and λ ∈ E∗ with s(λ) = r(x), then λx := λ1 . . . λ|λ|x1x2 . . . also
belongs to ∂Eap.

Let H := `2(∂Eap), with orthonormal basis {ξx : x ∈ ∂Eap}, and define {P ap
λ :

λ ∈ E∗} ⊂ B(H) by

P ap
λ ξx =

{
ξx if x ∈ λ∂Eap

0 otherwise.

Since each P ap
λ = projspan{ξx:x∈λ∂Eap}, it is straightforward to check that P ap is a

Boolean representation of E.
Suppose that every cycle in E has an entrance. We claim that each P ap

λ is nonzero.
Indeed, fix λ ∈ E∗. Since every cycle in E has an entrance, there exists an x ∈ ∂Eap

with r(x) = s(λ). Then λx ∈ ∂Eap so P ap
λ ξλx = ξλx 6= 0.

Lemma 3.2. Let E be a directed graph. Let λ ∈ E∗, and suppose that F ⊂ s(λ)E∗

is finite and exhaustive. Then ∏
µ∈F

(P ap
λ − P

ap
λµ) = 0.

Proof. Let x ∈ ∂Eap. We seek µ ∈ F such that (P ap
λ − P

ap
λµ)ξx = 0.

If P ap
λ ξx = 0, then any µ ∈ F will suffice, so suppose that P ap

λ ξx 6= 0. Then
x[0,|λ|] = λ. If there exists µ ∈ F such that x = λµx′, then (P ap

λ − P ap
λµ)ξx =

ξx − ξx = 0, so we suppose that x 6= λµx′ for all µ ∈ F and seek a contradiction.
Since F is exhaustive, there exists µ ∈ F such that λµ = xµ′ for some µ′ of nonzero
length. In particular, x is a finite path α ∈ E∗ and since µ′ has nonzero length,
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s(α)E1 6= ∅. Hence α ∈ ∂Eap forces |s(α)E1| = ∞. Since no initial segment of α
belongs to λF , that F is exhaustive implies that for each e ∈ s(α)E1, there exists
µe ∈ F such that λµe = αeα′e for some αe ∈ E∗, and this contradicts that F is a
finite set.

Lemma 3.3. Let E be a directed graph and p be a Boolean representation of E such
that pλ 6= 0 for each λ ∈ E∗. If {α′ : αα′ ∈ F} is not exhaustive, then qFα 6= 0.

Proof. Since {α′ : αα′ ∈ F} is not exhaustive, there exists τ ∈ E∗ such that τ 6= α′α′′

and α′ 6= ττ ′ for each α′ such that αα′ ∈ F . In particular, each pαα′pατ = 0, and
hence qFα pατ = pατ 6= 0, whence qFα 6= 0.

Proposition 3.1. Let E be a directed graph and let p be a Boolean representation of
E such that pλ 6= 0 for each λ ∈ E∗. Then there is a homomorphism ψp : span{pλ :
λ ∈ E∗} → span{P ap

λ : λ ∈ E∗} satisfying ψp(pλ) = P ap
λ for all λ ∈ E∗. Moreover,

ψp is injective if and only if
∏
µ∈F (pλ−pλµ) = 0 for all λ ∈ E∗ and finite exhaustive

F ⊂ s(λ)E∗.

Proof. For the first assertion it suffices to show that for every finite subset F of E∗

and every collection of scalars {aλ : λ ∈ F},

(3.2)
∥∥∥∑
λ∈F

aλP
ap
λ

∥∥∥ ≤ ∥∥∥∑
λ∈F

aλpλ

∥∥∥
Fix a finite subset F ⊂ E∗, and for α ∈ F , define

QFα := P ap
α

∏
αα′∈F\{α}

(P ap
α − P

ap
αα′).

Lemma 3.1 gives∑
λ∈F

aλP
ap
λ =

∑
α∈F

( ∑
µ∈F
α=µµ′

aµ

)
QFα , and

∑
λ∈F

aλpλ =
∑
α∈F

( ∑
µ∈F
α=µµ′

aµ

)
qFα .

By Lemmas 3.2 and 3.3, we have {α ∈ F : QFα 6= 0} ⊂ {α ∈ F : qFα 6= 0}. Hence∥∥∥∑
λ∈F

aλP
ap
λ

∥∥∥ = max
QFα 6=0

∣∣∣ ∑
µ∈F
α=µµ′

aµ

∣∣∣ ≤ max
qFα 6=0

∣∣∣ ∑
µ∈F
α=µµ′

aµ

∣∣∣ =
∥∥∥∑
λ∈F

aλpλ

∥∥∥,
and the first assertion follows.

For the second assertion, note that if
∏
µ∈F (pλ − pλµ) = 0 for all λ ∈ E∗ and

finite exhaustive F ⊂ s(λ)E∗, then for each finite exhaustive F , we have {α ∈ F :
QFα 6= 0} = {α ∈ F : qFα 6= 0} so the calculation above shows that ψp is isometric.

We now show that the C∗-algebra generated by any Toeplitz-Cuntz-Krieger E-
family in which all the partial isometries are nonzero admits a conditional expecta-
tion onto the subalgebra spanned by the range projections sλs∗λ. Recall that given
a Toeplitz-Cuntz-Krieger E-family (t, q), we write πt,q for the canonical homomor-
phism from T C∗(E) to C∗(t, q) induced by the universal property of the former. We
first need a technical lemma.
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Lemma 3.4. Suppose λ, µ, ν ∈ E satisfy |λ| ≥ |ν| > |µ| and

(3.3) tλt
∗
λtµt

∗
νtλt

∗
λ 6= 0.

Then λ = νν′ = µµ′ν′ for some µ′, ν′, and

tλt
∗
λtµt

∗
νtλt

∗
λ = tλt

∗
λρ

for some cycle ρ ∈ E.

Proof. Equation (3.3) forces tλt∗λtµt
∗
µ 6= 0 and tνt

∗
νtλt

∗
λ 6= 0. Hence λ = νν′ and

λ = µα for some ν′ and α, and since |µ| < |ν|, this forces ν = µµ′ and hence
λ = µµ′ν′ for some µ′.

We have

(3.4) 0 6= tλt
∗
λtµt

∗
νtλt

∗
λ = tλt

∗
λtµ(t∗µ′t

∗
µ)(tµtµ′tν′)t∗λ = tλt

∗
λtµtν′t

∗
λ,

forcing s(µ) = r(ν′). Since r(µ′) = s(µ) and s(µ′) = r(ν′), µ′ is a cycle, and has
nonzero length since |ν| > |µ|. Furthermore, continuing from (3.4)

0 6= tλt
∗
λtµtν′t

∗
λ = (tµtµ′ν′)(t∗µ′ν′t

∗
µ)tµtν′(t∗ν′t

∗
µµ′) = tµtµ′ν′t

∗
µ′ν′tν′t

∗
ν′t
∗
µµ′ ,

so t∗µ′ν′tν′ is nonzero, forcing

(3.5) µ′ν′ = ν′ρ for some ρ ∈ E.

We claim ρ is a cycle. We proceed by induction on |ν′|. As a base case, suppose
that |ν′| ≤ |µ′|. Then ν′ = µ′[0,|ν′|], so

µ′ν′ = ν′ρ =⇒ ρ = µ′[|ν′|,|µ′|]µ
′
[0,|ν′|],

whence r(ρ) = s(ρ) = s(ν′).
Now suppose as an inductive hypothesis that ρ is a cycle whenever (3.5) holds

with |ν′| < n for some n > |µ′|, and fix ν′ with |ν′| = n satisfying (3.5). In
particular, |ν′| > |µ′|, so µ′ = ν′[0,|µ′|] and µ′ν′[|µ′|,|ν′|] = ν′ = ν′[|µ′|,|ν′|]ρ. Since
|ν′[|µ′|,|ν′|]| = |ν

′| − |µ′| < n, the inductive hypothesis now implies that ρ is a cycle.
Finally, from (3.4),

0 6= tλt
∗
λtµt

∗
νtλt

∗
λ = tλt

∗
λtµtν′t

∗
λ

= tλ(t∗µ′ν′t
∗
µ)tµtν′t∗λ = tλt

∗
ν′ρtν′t

∗
λ = tλt

∗
ρt
∗
ν′tν′t

∗
λ = tλt

∗
ρt
∗
λ = tλt

∗
λρ

as required.
Given a directed graph E and e ∈ E1, define Sap

e ∈ B(`2(∂Eap)) by

Sap
e ξx =

{
ξex if s(e) = r(x)
0 otherwise.

Then with {P ap
v : v ∈ E0} as on page 214, (Sap, P ap) is a Toeplitz-Cuntz-Krieger

E-family, and Sap
λ (Sap

λ )∗ = P ap
λ for all λ ∈ E∗. We denote C∗(Sap, P ap) by C∗min(E).

Proposition 3.2. Let E be a directed graph, and suppose that every cycle in E has
an entrance. Let (t, q) be a Toeplitz-Cuntz-Krieger E-family. Then q : λ 7→ tλt

∗
λ

is a Boolean representation of E, and there exists a conditional expectation Φt,q :
C∗(t, q)→ span{qλ : λ ∈ E∗} satisfying Φt,q(tµt∗ν) = δµ,νqµ. In particular we have

(3.6) ψq ◦ Φt,q ◦ πt,q = ΦSap,P ap ◦ πSap,P ap .
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Proof. A standard argument shows that the qλ form a Boolean representation of E.

Claim 1. Given a finite subset F of E∗ and a collection {aµ,ν : µ, ν ∈ F} of scalars,∥∥∥∑
µ∈F

aµ,µqµ

∥∥∥ ≤ ∥∥∥ ∑
µ,ν∈F

aµ,νtµt
∗
ν

∥∥∥.
By enlarging F (and setting the extra scalars equal to zero), we may assume that F
is closed under initial segments in the sense that if µν ∈ F then µ ∈ F .

For each λ ∈ F , let TFλ := {λ′ ∈ s(λ)E∗ : λλ′ ∈ F, |λ′| > 0}. For each λ ∈ F
such that TFλ is not exhaustive, fix a path αλ such that αλ 6= µµ′ and µ 6= αλα′ for
all µ ∈ TFλ . Since every cycle in E has an entrance, [3, Lemma 3.7] implies that for
each v such that v = s(αλ) for some λ, there exists τv ∈ vE∗ such that either:

(1) s(τv)E1 = ∅; or
(2) |τv| > max{|λ| : λ ∈ F, TFλ is not exhaustive}, and τvk 6= τv|τv| for all k <
|τv|.

We write τλ for τs(α
λ).

For each λ ∈ F we define

φFλ :=

{
qλαλτλ if TFλ is not exhaustive
qFλ otherwise.

By definition we have each φFλ ≤ qFλ , and since the qFλ are mutually orthogonal, it
follows that the φFλ are also. Hence∥∥∥ ∑

µ,ν∈F
aµ,νtµt

∗
ν

∥∥∥ ≥ ∥∥∥∑
λ∈F

φFλ

( ∑
µ,ν∈F

aµ,νtµt
∗
ν

)
φFλ

∥∥∥.
Fix λ, µ, ν ∈ F . We claim that

(3.7) φFλ tµt
∗
νφ

F
λ =

{
φFλ if µ = ν and λ = µλ′ for some λ′

0 otherwise.

To see this, suppose first that µ = ν. If λ = µλ′ then φFλ ≤ tλt∗λ ≤ tµt∗µ by definition
of φFλ . If λ 6= µλ′, then either µ = λµ′ in which case φFλ ≤ (tλt∗λ − tλµ′t∗λµ′) ⊥ tµt

∗
µ,

or else µ 6= λµ′ in which case φFλ ≤ tλt∗λ ⊥ tµt∗µ.
Now suppose that µ 6= ν; by symmetry under adjoints, we may assume that

|µ| < |ν|. We must show that φFλ tµt
∗
νφ

F
λ = 0. Since φFλ ≤ tλt

∗
λ, if tλt∗λtµt

∗
νtλt

∗
λ = 0

then we are done, so we may assume that tλt∗λtµt
∗
νtλt

∗
λ 6= 0. Then Lemma 3.4 implies

that λ = νν′ = µµ′ν′ and that tλt∗λtµt
∗
νtλt

∗
λ = tλt

∗
λρ for some cycle ρ ∈ E. Hence

φFλ ≤ tλt∗λ forces
φFλ tµt

∗
νφ

F
λ = φFλ tλt

∗
λρφ

F
λ .

We consider two cases: TFλ is exhaustive, or it is not.
First suppose that TFλ is exhaustive. Fix n such that n|ρ| > max{|λ′| : λ′ ∈ TFλ }.

Then ρn = λ′β for some λ′ ∈ TFλ and β ∈ E∗. In particular, λ′ = ρn[0,|λ′|], forcing
ρ1 = λ′1. Since λρ1λ

′
[1,|λ′|] = λλ′ ∈ F and F is closed under initial segments, λρ1 ∈ F

and then
tλρt

∗
λρφ

F
λ ≤ t∗λρt∗λρ(tλt∗λ − tλρ1t∗λρ1) = 0,
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giving φFλ tµt
∗
νφ

F
λ = 0.

Now suppose that TFλ is not exhaustive. Then φFλ = qλαλτλ . We then have

φFλ tµt
∗
νφ

F
λ = tλαλτλt

∗
µ′ν′αλτλtν′αλτλt

∗
λαλτλ .

This is nonzero only if µ′ν′αλτλ = ν′αλτλζ for some ζ. This is impossible if
s(τλ)E1 = ∅, so suppose that s(τλ)E1 6= ∅. By choice of τλ, we have |τλ| > |µ′|.
Let m = |ν′αλτλ|. Then

(µ′ν′αλτλ)m = τλ|τλ|−|µ′| 6= τλ|τλ| = (ν′αλτλ)m,

so µ′ν′αλτλ 6= ν′αλτλζ for all ζ, and hence φFλ tµt
∗
νφ

F
λ = 0, establishing (3.7).

We now have∥∥∥∑
µ∈F

aµ,µqµ

∥∥∥ =
∥∥∥∑
µ∈F

( ∑
n≤|µ|

aµ[0,n],µ[0,n]

)
qFµ

∥∥∥
= max

µ∈F

∣∣∣ ∑
n≤|µ|

aµ[0,n],µ[0,n]

∣∣∣
=
∥∥∥∑
µ∈F

( ∑
n≤|µ|

aµ[0,n],µ[0,n]

)
φFµ

∥∥∥
=
∥∥∥∑
λ∈F

φFλ

( ∑
µ,ν∈F

aµ,νtµt
∗
ν

)
φFλ

∥∥∥ by (3.7)

≤
∥∥∥ ∑
µ,ν∈F

aµ,νtµt
∗
ν

∥∥∥
completing the proof of Claim 1.

Claim 1 implies that the formula tµt∗ν 7→ δµ,νtµt
∗
µ extends to a well-defined linear

map Φt,q from C∗(t, q) to span{qλ : λ ∈ E∗}. This Φt,q is a linear idempotent of
norm 1, and hence a conditional expectation (see for example [1, Definition II.6.10.2
and Theorem II.6.10.2]).

The final statement is straightforward to check since the two maps in question
agree on spanning elements.

Lemma 3.5. Let E be a directed graph in which every cycle has an entrance. Then
the expectation ΦSap,P ap : C∗min(E) → span{P ap

λ : λ ∈ E∗} obtained from Proposi-
tion 3.2 is faithful on positive elements.

Proof. It suffices to show that for a ∈ C∗min(E), ΦSap,P ap(a) is equal to the strong-
operator limit

∑
x∈∂Eap(aξx|ξx)θξx,ξx for all a ∈ C∗min(E), where the ξx are the

canonical orthonormal basis for `2(∂Eap) and θξx,ξx is the rank-one projection onto
Cξx. Fix µ, ν ∈ E∗ and x ∈ ∂Eap. We have

(
Sap
µ (Sap

ν )∗ξx
∣∣ξx) =

(
(Sap
ν )∗ξx

∣∣(Sap
µ )∗ξx

)
=

{
1 if x = νy = µy for some y
0 otherwise.

Since x ∈ ∂Eap, we have y 6= ρ∞ for any cycle ρ, so µy = νy forces |µ| = |ν|, and
hence µ = ν.
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Hence ∑
x∈∂Eap

(
Sap
µ (Sap

ν )∗ξx|ξx)θξx,ξx = δµ,ν projspan{ξx:x∈µ∂Eap} = δµ,νP
ap
µ

as required.
We now have the tools we need to prove the main theorem.

Proof of Theorem 3.1. We showed that the P ap
λ , and in particular the P ap

v are
nonzero immediately subsequent to their definition.

Fix a Toeplitz-Cuntz-Krieger E-family (t, q) with each qv nonzero. We will show
that ker(πt,q) ⊂ ker(πSap,P ap) in T C∗(E).

Since each t∗λtλ = qs(λ), each qλ is nonzero, so Proposition 3.1 implies that there
is a homomorphism ψq : span{qλ : λ ∈ E∗} → span{P ap

λ : λ ∈ E∗} taking each qλ
to P ap

λ .
We calculate

πt,q(a) = 0 ⇐⇒ πt,q(a∗a) = 0

=⇒ ψq ◦ Φt,q ◦ πt,q(a∗a) = 0(3.8)

⇐⇒ ΦSap,P ap(πSap,P ap(a∗a)) = 0 by (3.6)

⇐⇒ πSap,P ap(a∗a) = 0 by Lemma 3.5

⇐⇒ πSap,P ap(a) = 0.

Thus ker(πt,q) ⊂ ker(πSap,P ap) as claimed, and it follows that πSap,P ap descends to
the desired homomorphism ψt,q : C∗(t, q)→ C∗min(E).

For the final statement of the theorem, observe that if A is a C∗-algebra and
(t, q) a generating Toeplitz-Cuntz-Krieger E-family in A with the same co-universal
property, then the co-universal property of A yields an inverse for the homomorphism
ψt,q : A→ C∗min(E) obtained from the co-universal property of E.

It is, of course, interesting to know when the homomorphism ψt,q of Theorem 3.1
is injective.

Theorem 3.2. Let E be a directed graph in which every cycle has an entrance.
(1) If (t, q) is a Toeplitz-Cuntz-Krieger family with each qv nonzero, then the

homomorphism ψt,q of Theorem 3.1 is injective if and only if
(a)

∏
λ∈F (qv − qλ) = 0 whenever v ∈ E0 and F ⊂ vE∗ is finite exhaustive;

and
(b) the expectation Φt,q is faithful.

(2) If π is homomorphism from C∗min(E) to a C∗-algebra C such that each πP ap
v

is nonzero, then π is injective.

Proof. (1) Since conditions (a) and (b) hold in C∗min(E), the “only if” implication is
trivial. For the “if” implication, note that given a Toeplitz-Cuntz-Krieger E-family
(t, q), we have ker(πt,q) = ker(πSap,P ap) whenever the implication (3.8) is equivalence.
Condition (a) implies that ψq is faithful by the final statement of Proposition 3.1,
and this combined with (b) implies that ψq ◦ Φt,q is faithful on positive elements,
giving

πt,q(a∗a) = 0 ⇐⇒ ψq ◦ Φt,q ◦ πt,q(a∗a) = 0
as required.
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(2) Define a Toeplitz-Cuntz-Krieger E-family by te := π(Sap
e ) and qv := π(P ap

v ).
Theorem 3.1 supplies a homomorphism ψt,q : C∗(t, q) → C∗min(E) which is an in-
verse for π.
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