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Abstract. In this paper, a computational method is presented for solving a
class of nonlinear singularly perturbed two-point boundary value problems with
a boundary layer at the left of the underlying interval. First a zeroth order as-
ymptotic expansion for the solution of the given singularly perturbed boundary
value problem is constructed. Then the reduced terminal value problem is solved
analytically using reproducing kernel Hilbert space method. This method is ef-
fective and easy to implement. Two numerical examples are studied to demon-
strate the accuracy of the present method. Results obtained by the method are
compared with the exact solution of each example and are found to be in good
agreement with each other not only in the boundary layer, but also away from
the layer.
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1. Introduction

Singularly perturbed problems arise frequently in applications including geophysical
fluid dynamics, oceanic and atmospheric circulation, chemical reactions, optimal
control, etc. It is well known that the solution of singularly perturbed boundary
value problem has a multiscale character; that is, there are thin transition layers
where the solution varies rapidly, while away from the layers the solution behaves
regularly and varies slowly.

Such problems have been investigated by many researchers. The existence and
uniqueness of such problems are discussed in [13, 19]. The numerical treatment of
singularly perturbed problems present some major computational difficulties, and
in recent years a large number of special-purpose methods have been proposed to
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provide accurate numerical solutions. For the past two decades, many numerical
method have appeared in the literature. Most notable among these are colloca-
tion methods [2, 15], finite-difference methods [14, 18], finite-element methods [20],
boundary-value techniques [22], initial-value techniques [17, 21], Spline techniques
[3, 4], and so on. However, there are few effective analytical methods to find the
solutions of such problems. Mohamed El-Gamel and John R. Cannon gave the solu-
tion of a singularly perturbed boundary value problem via the Sinc-Galerkin method
[10].

In this paper, we consider the following nonlinear singularly perturbed two-point
boundary value problem in the reproducing kernel Hilbert space

(1.1)
{

εu′′(x) + a(x)u′(x)− b(x)u(x) + N(u) = f(x), 0 < x < 1,
u(0) = 0, u(1) = 0,

where 0 < ε ¿ 1, f(x) ∈ W 1
2 [0, 1], N(u) is a nonlinear function of u and N(u) is

continuous with respect to u, a(x), b(x) are continuous and a(x) ≥ α > 0, b(x) ≥ 0,
α is constant. For 0 < ε ¿ 1, the problem (1.1) is singularly perturbed and has
a solution with a boundary layer at x = 0, where the size of the layer is of order
O(ε|Lnε|) (see [6] for details).

Reproducing kernel Hilbert spaces (RKHS) are wonderful objects and can be
used in a wide variety of curve fitting, function estimation and model description,
differential equation, probability, statistics, and so on [1, 5]. Recently, using RKHS
method, we discussed singular linear two-point boundary value problem, singular
nonlinear two-point periodic boundary value problem, nonlinear system of boundary
value problems and nonlinear Burgers equation [7, 8, 11, 12]. Nowadays, kernel
method is one of the fastest growing and most exciting areas in machine learning.

2. The solution of the singularly perturbed problem (1.1)

In this section the asymptotic expansion approximation to the solution of singularly
perturbed boundary value problem (SPBVP) (1.1) is constructed.

Let u(x) and u0(x) be the solutions of SPBVP (1.1) and its reduced problem,
respectively

(2.1)
{

a(x)u′0(x)− b(x)u0(x) + N(u0) = f(x), 0 < x < 1,
u0(1) = 0.

Then, the zeroth order asymptotic expansion approximation

(2.2) uas = u0(x) + v0(x)

where
v0(x) = [u(0)− u0(0)]e−a(0)x/ε = −u0(0)e−a(0)x/ε.

Theorem 2.1. The zeroth order asymptotic expansion approximation uas satisfies
the inequality

|u(x)− uas(x)| ≤ cε, for 0 ≤ x ≤ 1,

where u(x) is the solution of SPBVP (1.1).

For the proof see [9].
In order to obtain the zeroth order asymptotic expansion approximation uas, it

remains only to obtain the solution u0(x) of terminal value problem (TVP) (2.1).
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In the following section, we will give the solution of TVP (2.1) analytically using
RKHS method.

3. The solution of TVP (2.1)

In this section, the solution to the TVP (2.1) will be obtained in the RKHS W 2
2 [0, 1].

The space W 2
2 [0, 1] will be defined in the following.

Put Lu0(x) ≡ a(x)u′0(x) − b(x)u0(x) and write F (x, u0(x)) = f(x) − N(u0(x))
simply. Then TVP (2.1) can be converted into the following form

(3.1)
{

Lu0(x) = F (x, u0(x)), 0 ≤ x ≤ 1,
u0(1) = 0,

where u0(x) ∈ W 2
2 [0, 1], F (x, u0(x)) ∈ W 1

2 [0, 1].

3.1. The RKHS W 2
2 [0, 1]

The inner product space W 2
2 [0, 1] is defined as W 2

2 [0, 1] = {u(x) | u, u′ are absolutely
continuous real valued functions, u, u′, u′′ ∈ L2[0, 1], u(1) = 0}. The inner product
in W 2

2 [0, 1] is given by

(3.2) (u(x), v(x))W 2
2

= u(0)v(0) +
∫ 1

0

u′′v′′dx,

and the norm ‖ u ‖W 2
2

is denoted by ‖ u ‖W 2
2
=

√
(u, u)W 2

2
, where u, v ∈ W 2

2 [0, 1].

Theorem 3.1. The space W 2
2 [0, 1] is a RKHS. That is, for any u(y) ∈ W 2

2 [0, 1]
and each fixed x ∈ [0, 1], there exists Rx(y) ∈ W 2

2 [0, 1], y ∈ [0, 1], such that
(u(y), Rx(y))W 2

2
= u(x). The reproducing kernel Rx(y) can be denoted by

(3.3) Rx(y) =





(−1+x)[−6+(6−2x+x2) y+y3]
6 , y ≤ x

(−1+y)[−6+x3+x(6−2 y+y2)]
6 , y > x.

The proof of Theorem 3.1 is given in Appendix A.

3.2. The RKHS W 1
2 [0, 1]

The inner product space W 1
2 [0, 1] is defined by W 1

2 [0, 1] = {u(x) | u is absolutely
continuous real valued function, u, u′ ∈ L2[0, 1]}. The inner product and norm in
W 1

2 [0, 1] are given respectively by

(u(x), v(x))W 1
2

=
∫ 1

0

(uv + u′v′)dx, ‖ u ‖W 1
2
=

√
(u, u)W 1

2
,

where u(x), v(x) ∈ W 1
2 [0, 1]. In [16], the authors proved that W 1

2 [0, 1] is a RKHS
and its reproducing kernel is

Rx(y) =
1

2 sinh(1)
[cosh(x + y − 1) + cosh(|x− y| − 1)] .
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3.3. The representation of the solution of TVP (3.1)

In this section, we will give the representation of analytical solution of TVP (3.1)
and the implementation method in the RKHS W 2

2 [0, 1].
In TVP (3.1), it is clear that L : W 2

2 [0, 1] → W 1
2 [0, 1] is a bounded linear operator.

Put ϕi(x) = Rxi
(x) and ψi(x) = L∗ϕi(x) where L∗ is the adjoint operator of L (L∗ is

defined as < L∗u, v >=< u,Lv >, < ·, · > denotes inner product). The orthonormal
system {ψi(x)}∞i=1 of W 2

2 [0, 1] can be derived from Gram-Schmidt orthogonalization
process of {ψi(x)}∞i=1,

(3.4) ψi(x) =
i∑

k=1

βikψk(x), (βii > 0, i = 1, 2, ...)

where {βik} are coefficients of orthogonalization.

Theorem 3.2. For TVP (3.1), if {xi}∞i=1 is dense on [0, 1], then {ψi(x)}∞i=1 is the
complete system of W 2

2 [0, 1] and ψi(x) = LyRx(y)|y=xi .

Proof. Notice that

ψi(x) = (L∗ϕi)(x) = ((L∗ϕi)(y), Rx(y))W 2
2

= (ϕi(y), LyRx(y))W 1
2

= LyRx(y)|y=xi
.

The subscript y by the operator L indicates that the operator L applies to the
function of y. Clearly, ψi(x) ∈ W 2

2 [0, 1]. For each fixed u(x) ∈ W 2
2 [0, 1], let

(u(x), ψi(x))W 2
2

= 0, (i = 1, 2, ...), which means that,

(3.5) (u(x), (L∗ϕi)(x))W 2
2

= (Lu(·), ϕi(·))W 1
2

= (Lu)(xi) = 0.

Note that {xi}∞i=1 is dense on [0, 1], hence, (Lu)(x) = 0. It follows that u ≡ 0 from
the existence of L−1 (L−1 exists since the problem we discuss has a unique solution
[1, 2]). So the proof of the Theorem 3.2 is complete.

Theorem 3.3. If {xi}∞i=1 is dense on [0, 1] and the solution of TVP (3.1) is unique,
then the solution of TVP (3.1) satisfies the form

(3.6) u0(x) =
∞∑

i=1

i∑

k=1

βikF (xk, u0(xk))ψi(x),

where F (x, u) = f(x)−N(u).

Proof. Applying Theorem 3.2, it is easy to see that {ψi(x)}∞i=1 is the complete
orthonormal basis of W 2

2 [0, 1]. Note that (v(x), ϕi(x)) = v(xi) for each v(x) ∈
W 1

2 [0, 1], hence we have

u0(x) =
∞∑

i=1

(u0(x), ψi(x))W 2
2
ψi(x)

=
∞∑

i=1

i∑

k=1

βik(u0(x), L∗ϕk(x))W 2
2
ψi(x)
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=
∞∑

i=1

i∑

k=1

βik(Lu0(x), ϕk(x))W 1
2
ψi(x)(3.7)

=
∞∑

i=1

i∑

k=1

βik(F (x, u0(x)), ϕk(x))ψi(x)

=
∞∑

i=1

i∑

k=1

βikF (xk, u0(xk))ψi(x)

and the proof of the theorem is complete.

Remark 3.1.
Case I: TVP (3.1) is linear, that is, N(u0(x)) = 0. Then the analytical solution to
TVP (3.1) can be obtained directly from (3.7).

Case II: TVP (3.1) is nonlinear. In this case, the analytical solution to TVP( 3.1)
can be obtained using the following method.

3.4. The implementation method

(3.6) can be denoted by

(3.8) u0(x) =
∞∑

i=1

Aiψi(x),

where Ai =
∑i

k=1 βikF (xk, u0(xk)). Let x1 = 1, it follows that F (x1, u0(x1)) is
known. Considering the numerical computation, we put u00(x1) = u0(x1) and define
the n-term approximation to u0(x) by

(3.9) u0n(x) =
n∑

i=1

Biψi(x),

where

(3.10)

B1 = β11F (x1, u00(x1)),
u01(x) = B1ψ1(x),

B2 =
2∑

k=1

β2kF (xk, u0(k−1)(xk)),

u02(x) =
2∑

i=1

Biψi(x),

· · · · ··
u0(n−1)(x) =

n−1∑
i=1

Biψi(x),

Bn =
n∑

k=1

βnkF (xk, u0(k−1)(xk)).

Next, the convergence of u0n(x) will be proved.
Now, two lemmas are given first.

Lemma 3.1. If u(x) ∈ W 2
2 [0, 1], then there exists a positive constant c such that

|u(x)| ≤ c ‖ u(x) ‖W 2
2

and |u′(x)| ≤ c ‖ u(x) ‖W 2
2
.
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By Lemma 3.1, it is easy to obtain the following Lemma 3.2.

Lemma 3.2. If un → u(n →∞) in the sense of ‖ · ‖W 2
2
, ‖ un ‖W 2

2
is bounded, xn →

y(n → ∞) and F (x, u(x)) is continuous, then F (xn, un−1(xn)) → F (y, u(y))(n →
∞).

Theorem 3.4. Suppose that ‖ u0n ‖W 2
2

is bounded in (3.9) and TVP (3.1) has a
unique solution. If {xi}∞i=1 is dense on [0, 1], then the n-term approximate solution
u0n(x) derived from the above method converges to the analytical solution u0(x) of
TVP (3.1) and

(3.11) u0(x) =
∞∑

i=1

Biψi(x),

where Bi is given by (3.10).

Proof. First of all, we will prove the convergence of u0n(x). From (3.9), we infer
that

(3.12) u0(n+1)(x) = u0n(x) + Bn+1ψn+1(x).

The orthonormality of {ψi}∞i=1 yields that

(3.13) ‖ u0(n+1) ‖2W 2
2
=‖ u0n ‖2W 2

2
+(Bn+1)2 = · · · =

n+1∑

i=1

(Bi)2.

In terms of (3.13), it holds that ‖ u0(n+1) ‖≥‖ u0n ‖W 2
2
. Due to the condition that

‖ u0n ‖W 2
2

is bounded, ‖ u0n ‖ is convergent and there exists a constant c such that
∞∑

i=1

(Bi)2 = c.

This implies that
{Bi}∞i=1 ∈ l2.

If m > n, then

‖ u0m − u0n ‖2W 2
2
=‖ u0m − u0(m−1) + u0(m−1) − u0(m−2) + · · ·+ u0(n+1) − u0n ‖2W 2

2
.

In view of (u0m − u0(m−1))⊥(u0(m−1) − u0(m−2))⊥ · · · ⊥(u0(n+1) − u0n), it follows
that

‖ u0m − u0n ‖2W 2
2
=‖ u0m − u0(m−1) ‖2W 2

2
+ · · ·+ ‖ u0(n+1) − u0n ‖2W 2

2
.

Furthermore
‖ u0m − u0(m−1) ‖2W 2

2
= (Bm)2.

Consequently,

‖ u0m − u0n ‖2W 2
2
=

m∑

l=n+1

(Bl)2 → 0 as n →∞.

The completeness of W 2
2 [0, 1] shows that u0n → u0 as n → ∞ in the sense of

‖ · ‖W 2
2
.
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Secondly, we will prove that u0 is the solution of TVP (3.1). Taking limits in (3.9),
we get

(3.14) u0(x) =
∞∑

i=1

Biψi(x).

Note here that

Lu0(x) =
∞∑

i=1

BiLψi(x)

and

(Lu0)(xn) =
∞∑

i=1

Bi(Lψi, ϕn)W 1
2

=
∞∑

i=1

Bi(ψi, L
∗ϕn)W 2

2

=
∞∑

i=1

Bi(ψi, ψn)W 2
2
.

Therefore,
n∑

j=1

βnj(Lu0)(xj) =
∞∑

i=1

Bi(ψi,

n∑

j=1

βnjψj)W 2
2

=
∞∑

i=1

Bi(ψi, ψn)W 2
2

(3.15)

= Bn.

If n = 1, then
(Lu0)(x1) = F (x1, u00(x1)).

If n = 2, then

β21(Lu0)(x1) + β22(Lu0)(x2) = β21F (x1, u00(x1)) + β22F (x2, u01(x2)).

It is clear that
(Lu0)(x2) = F (x2, u01(x2)).

Moreover, it is easy to see by induction that

(3.16) (Lu0)(xj) = F (xj , u0(j−1)(xj)), j = 1, 2, · · · .

Since {xi}∞i=1 is dense on [0, 1], for ∀ Y ∈ [0, 1], there exists a subsequence {xnj}∞j=1

such that
xnj → Y as j →∞.

From (3.16), it is easy to see that (Lu0)(xnj ) = F (xnj , u0(nj−1)(xnj )). Let j →∞,
by Lemma 3.2 and the continuity of F (x, u0(x)), we have

(3.17) (Lu0)(Y ) = F (Y, u0(Y )).

From (3.17), it follows that u0(x) satisfies TVP (3.1). Since ψi(x) ∈ W 2
2 [0, 1], clearly,

u(Y ) satisfies the boundary condition of TVP (3.1). That is, u0(x) is the solution of
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TVP (3.1). The application of the uniqueness of solution to TVP (3.1) then yields
that

(3.18) u0(x) =
∞∑

i=1

Biψi(x).

The proof is complete.
Now the zeroth order asymptotic expansion approximation uas can be obtained

(3.19) uas = u0(x) + v0(x) =
∞∑

i=1

Biψi(x)− u0(0)e
−a(0)x

/
ε

and the approximate solution of SPBVP (1.1) can be obtained by the n-term inter-
cept of uas and

un =
n∑

i=1

Biψi(x)− u0(0)e−a(0)x/ε.

4. Numerical examples

In this section, two numerical examples are studied to demonstrate the accuracy of
the present method. These examples are computed using Mathematica 5.0. Results
obtained by the method are compared with the exact solution of each example and
are found to be in good agreement with each other.

Example 4.1. Consider the nonlinear singularly perturbed two-point boundary
value problem{

εu′′(x) + cos(x)u′(x)− xu(x) + xu2 = f(x), 0 < x < 1,
u(0) = 0, u(1) = 0,

where

f(x) = x

(
1− e−x/ε

1− e−1/ε
− x

)2

− x

(
1− e−x/ε

1− e−1/ε
− x

)
+

(
e−x/ε

(
1− e−1/ε

)
ε
− 1

)
cos(x)

− e−x/ε

(
1− e−1/ε

)
ε
.

The true solution is
1− e−x/ε

1− e−1/ε
− x.

Using our method, we choose 51 points on [0, 1] and take ε = 10−4, ε = 10−6,
ε = 10−8 respectively. The numerical results are given in Tables 1, 2 and 3.

Example 4.2. Consider the linear singularly perturbed two-point boundary value
problem {

εu′′(x) + exu′(x) + x2u(x) = f(x), 0 < x < 1,
u(0) = 0, u(1) = 0

where

f(x) = x2

(
1− e−x/ε

1− e−1/ε
− x2

)
+ex

(
−2x +

e(1−x)/ε

(−1 + e1/ε)ε

)
+

(
−2− e(1−x)/ε

(−1 + e1/ε)ε2

)
ε.
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The true solution is
1− e−x/ε

1− e−1/ε
− x2.

Using our method, we choose 51 points (xj = 1 − 0.02(j − 1), j = 1, 2, · · ·, n,
n = 11, 51) on [0, 1] and take ε = 10−4, ε = 10−6 respectively. The numerical results
are given in Figures 1 and 2. From Figures 1 and 2, it is shown that the larger the
number of nodes we choose on [0, 1], the higher the accuracy of solution.

Table 1. Numerical results for example 1(ε = 10−4).

x True solution u(x) Approximate solution u51 Relative error

1.0E-08 9.998E-05 9.998E-05 1.7E-05

1.0E-05 0.0951526 0.0951499 2.7E-05

9.0E-05 0.5933400 0.5933240 2.7E-05

3.6E-04 0.9723160 0.9722890 2.7E-05

0.001 0.9989550 0.9989270 2.7E-05

0.08 0.9200000 0.9199750 2.7E-05

0.32 0.6800000 0.6799830 2.4E-05

0.48 0.5200000 0.5199880 2.2E-05

0.64 0.3600000 0.3599930 2.0E-05

0.80 0.2000000 0.1999960 1.8E-05

0.96 0.0400000 0.0399993 1.7E-05

0.99 0.0100000 0.0099986 1.3E-05

Table 2. Numerical results for example 1(ε = 10−6).

x True solution u(x) Approximate solution u51 Relative error

1.0E-08 0.0099501 0.0099498 2.7E-05

1.0E-07 0.0951625 0.0951598 2.7E-05

9.0E-07 0.5934290 0.5934130 2.7E-05

3.6E-06 0.9726730 0.9726460 2.7E-05

0.00001 0.9999450 0.9999170 2.7E-05

0.08 0.9200000 0.9199750 2.7E-05

0.32 0.6800000 0.6799830 2.4E-05

0.48 0.5200000 0.5199880 2.2E-05

0.64 0.3600000 0.3599930 2.0E-05

0.80 0.2000000 0.1999960 1.8E-05

0.96 0.0400000 0.0399993 1.7E-05

0.99 0.0100000 0.0099998 1.7E-05
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Table 3. Numerical results for example 1(ε = 10−8).

x True solution u(x) Approximate solution u51 Relative error

1.0E-10 0.0099501 0.0099498 2.7E-05

1.0E-09 0.0951626 0.0951599 2.7E-05

9.0E-09 0.5934300 0.5934140 2.7E-05

3.6E-08 0.9726760 0.9726490 2.7E-05

1.0E-07 0.9999550 0.9999270 2.7E-05

0.08 0.9200000 0.9199750 2.7E-05

0.32 0.6800000 0.6799830 2.4E-05

0.48 0.5200000 0.5199880 2.2E-05

0.64 0.3600000 0.3599930 2.0E-05

0.80 0.2000000 0.1999960 1.8E-05

0.96 0.0400000 0.0399993 1.7E-05

0.99 0.0100000 0.0099983 1.7E-05

0.2 0.4 0.6 0.8 1

0.0002

0.0004

0.0006

0.0008

0.2 0.4 0.6 0.8 1

0.0002

0.0004

0.0006

0.0008

Figure 1. The absolute error between the true solution and approximate solu-
tion of Example 2 on [0, 1] when n = 11, ε = 10−4, 10−6 respectively.

0.2 0.4 0.6 0.8 1

0.00002

0.00004

0.00006

0.00008

0.2 0.4 0.6 0.8 1

5·10-6

0.00001

0.000015

0.00002

0.000025

0.00003

0.000035

Figure 2. The absolute error between the true solution and approximate solu-
tion of Example 2 on [0, 1] when n = 51, ε = 10−4, 10−6 respectively.

Appendix A. The proof of Theorem 3.1

Through several integrations by parts for (3.2), then

(u(y), Rx(y))W 2
2

= u(0)Rx(0) + u(1)Rx(1) +
∫ 1

0

u(y)R(4)
x (y)dy − u(y)R(3)

x (y)|10
+ u′(y)R(2)

x (y)|10.(A.1)
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Since Rx(y) ∈ W 2
2 [0, 1], it follows that

(A.2) Rx(1) = 0.

Since u ∈ W 2
2 [0, 1], u(1) = 0. If

(A.3) R′x(0) + R(3)
x (0) = 0, R(2)

x (0) = 0, and R(2)
x (1) = 0,

then (A.1) implies that

(u(y), Rx(y))W 2
2

=
∫ 1

0

u(y)R(4)
x (y)dy.

For ∀x ∈ [0, 1], if Rx(y) also satisfies

(A.4) R(4)
x (y) = δ(y − x),

then
(u(y), Rx(y))W 2

2
= u(x).

Characteristic equation of (A.4) is given by

λ4 = 0,

then we can obtain characteristic values λ = 0. So, let

Rx(y) =
{

c1 + c2y + c3y
2 + c4y

3, y ≤ x,
d1 + d2y + d3y

2 + d4y
3, y > x.

On the other hand, for (A.4), let Rx(y) satisfy

(A.5) R(k)
x (x + 0) = R(k)

x (x− 0), k = 0, 1, 2.

Integrating (A.4) from x − ε to x + ε with respect to y and let ε → 0, we have the
jump degree of R

(3)
x (y) at y = x,

(A.6) R(3)
x (x + 0)−R(3)

x (x− 0) = 1.

From (A.2), (A.3), (A.5), (A.6), the unknown coefficients of (3.3) can be obtained.
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