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1. Introduction

In this note, we shall prove a characterization for the fundamental groups of graphs
of polycyclic-by-finite groups and free-by-finite groups with infinite cyclic edge sub-
groups to be again weakly potent. Let F be a graph and T be a maximal subtree of
F . The fundamental group G of the graph F of groups with infinite cyclic edge sub-
groups can be considered as an HNN extension of the form G = 〈A, t1, . . . , tn; t−1

i hiti
= ki, i = 1, . . . , n〉 where A is a tree product of the vertex groups according to the
maximal subtree T and the hi, ki are in the vertex groups. Since one of the sim-
plest type of HNN extensions, the Baumslag-Solitar group, 〈h, t; t−1h2t = h3〉 is
not even residually finite (see Baumslag and Solitar [3]), the residual properties of
fundamental groups of graphs are difficult to determine. Shirvani in [13] first gave
conditions for the residual finiteness of fundamental groups of graphs. Recently,
Raptis and Varsos [11], Varsos [16] proved the residual nilpotence and subgroup sep-
arability of fundamental groups of graphs where the edge group have finite index in
the containing vertex groups. More recently, Kim [8] obtained characterizations for
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the fundamental groups of graphs of certain cyclic subgroup separable groups with
infinite cyclic edge subgroups to be again cyclic subgroup separable.

Weak potency is a strong form of residual finiteness and was first introduced by
Evans [4] with the name regular quotients and he showed that free groups and finitely
generated torsion-free nilpotent groups are weakly potent. Later, Tang [15] indepen-
dently defined weak potency and he proved that finite extensions of free groups and
finitely generated torsion-free nilpotent groups are weakly potent. Evans [4] used
weak potency to show the cyclic subgroup separability of certain generalised free
products while more recently Kim and Tang [9] and Tang [15] used it to determine
the conjugacy separability of certain generalised free products of conjugacy separa-
ble groups. It is known that polycyclic-by-finite groups and free-by-finite groups are
weakly potent [4, 15].

A fundamental group of a graph F of groups can be described as follows: (See
Kim [8]) Let F = (V,E) be a graph where V is a set of vertices and E is a set of
edges. To each vertex v in V , we assign a group Gv. To each edge e in E, we assign
a group Ge together with monomorphisms αe and βe embedding Ge into the two
vertex groups at the end of e. Then for a maximal subtree T of F , the fundamental
group of the graph F of groups Gv amalgamating the edge subgroups Ge is defined
to be the group generated by all the generators of the vertex groups and additional
generators te for each edge e ∈ E. The defining relations are given by the defining
relations of all the vertex groups together with the relations te−1(geαe)te = geβe for
each ge of Ge where te = 1 if e is an edge of T . Each of the subgroups Geαe and
Geβe is called an edge subgroup in its containing vertex group. It is well known
that the fundamental group of a graph of groups is independent from the choice of
the maximal subtree (Serre [12]). In particular if the graph F is a tree, then the
fundamental group of graph of groups is called a tree product.

Our main result is a characterization for the fundamental group of a graph of
weakly potent groups with infinite cyclic edge subgroups to be weakly potent (The-
orem 5.1). We then apply this result to graphs of polycyclic-by-finite groups and
free-by-finite groups (Theorem 5.2). We prove Theorem 5.1 in two parts. First we
prove a characterization for certain HNN extensions of weakly potent groups with
infinite cyclic associated subgroups to be weakly potent (Theorem 3.3). Then we
show that the tree products of weakly potent groups with infinite cyclic edge sub-
groups are again weakly potent (Theorem 4.2). From these results we can also show
that all one-relator groups with non-trivial center are weakly potent (Theorem 6.1).

The notations used here are standard. In addition, the following will be used.
Let G be a group.

• N /f G means N is a normal subgroup of finite index in G.
• G = 〈t,K; t−1At = B,ϕ〉 denotes the HNN extension where K is the base

group, A,B are the associated subgroups and ϕ is the associated isomor-
phism ϕ : A −→ B.

• If x ∈ G = 〈t,K; t−1At = B,ϕ〉 is reduced, we shall express x in the form

x = x0t
e1x1 · · ·xn−1t

enxn

where x0, xi ∈ K and ei = ±1, 1 ≤ i ≤ n.
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• G = A ∗HB denotes the generalised product of the groups A and B amalga-
mating the subgroup H.

• If x ∈ A ∗HB is reduced, we shall express x in the form

x = a1b1 . . . anbn

where ai ∈ A\H and bi ∈ B\H for 1 ≤ i ≤ n.
• ‖x‖ will denote the usual reduced length of x in the HNN extension or

generalised free product G.

2. Preliminaries

We begin with two definitions.

Definition 2.1. [15] A group G is called weakly potent if for any element x of
infinite order in G, we can find a positive integer r with the property that for every
positive integer n, there exists a normal subgroup Mn of finite index in G such that
xMn has order exactly rn.

Similarly a group G is called potent if for any element x of infinite order in G
and every positive integer n, there exists a normal subgroup Mn of finite index in G
such that xMn has order exactly n.

From the definition above, potency is a much stronger property than weak po-
tency. Stebe [14] first proved that free groups are potent (before Evan introduced
weak potency) but he did not give it a name. Indeed Stebe proved that if n is a
power of a prime q then the factor group G/Nn can be chosen to be a q-group.
(Stebe acknowledged that the proof of this result was suggested by D. S. Passman.)
Later Allenby and Tang independently introduced potency in [2] and they used it
to prove proved finite extensions of certain generalised free products. In [1] Allenby
showed that cyclically pinched one-relator groups are potent.

Definition 2.2. A group G is called H-separable for the subgroup H if for each
x ∈ G\H, there exists N /f G such that x /∈ HN .

• G is termed πc if G is 〈h〉-separable for every cyclic subgroup 〈h〉.

Free-by-finite groups and polycyclic-by-finite groups are weakly potent and πc.
(See [4, 15]). Indeed certain HNN extensions of polycyclic-by-finite groups with
central associated subgroups are πc and even subgroup separable. (See [17, 18]).

3. HNN extensions of weakly potent groups

In this section we give conditions for an HNN extension of weakly potent group with
cyclic associated subgroups to be weakly potent.

Lemma 3.1. Let G = 〈t,K; t−1At = B,ϕ〉 where K is finite. Then G is free-by-
finite (see [5]) and hence weakly potent and πc (see [4, 15]).

Theorem 3.1. Let G = 〈t, A; t−1ht = k〉 where A is a weakly potent group and
〈h〉, 〈k〉 are infinite cyclic subgroups of A such that 〈h〉 ∩ 〈k〉 6= 1. Suppose that A is
〈h〉-separable and 〈k〉-separable. Then G is weakly potent if and only if hm = k±m

for some m > 0.



246 P. C. Wong, C. K. Tang and H. W. Gan

Proof. First we note that since A is weakly potent, we can find positive integers
r1, r2 such that for each positive integer n, there exist P /f A,Q /f A such that
P ∩ 〈h〉 = 〈hr1n〉, Q ∩ 〈k〉 = 〈hr2n〉.

Suppose that hm = k±m for some m > 0. Let x be an element of infinite order
in G.

Case 1. ‖x‖ = 0, that is, x ∈ A. From above, let N1 /f A,N2 /f A be such that
N1 ∩ 〈h〉 = 〈hr1r2m〉, N2 ∩ 〈k〉 = 〈kr1r2m〉. Let Q = N1 ∩ N2. Then Q /f A and
Q ∩ 〈h〉 = 〈hr1r2m〉 = 〈kr1r2m〉 = Q ∩ 〈k〉.

Suppose Q∩〈x〉 = 〈xα〉 for some integer α. Since A is weakly potent, we can find
a positive integer r such that for each positive integer n, there exists P /f A such
that P ∩ 〈x〉 = 〈xrαn〉. Let N = P ∩Q. Then N /f A is such that N ∩ 〈x〉 = 〈xrαn〉
and N ∩ 〈h〉 = N ∩ 〈k〉.

Now we form Ḡ = 〈t, Ā; t−1h̄t = k̄〉 where Ā = A/N, h̄ = hN, k̄ = kN . Clearly Ḡ
is a homomorphic image of G. Since Ā is finite, Ḡ is residually finite by Lemma 3.1
and hence there exists M̄ /f Ḡ such that x̄, x̄2, . . . , x̄rαn−1 /∈ M̄ . Thus x̄M̄ has order
exactly rαn in the finite group Ḡ/M̄ . Let M be the preimage of M̄ in G. Then xM
has order exactly rαn in G/M and we are done.

Case 2. ‖x‖ ≥ 1. Let x = x0t
e1x1t

e2 . . . tenxn where xi ∈ A and n ≥ 1. Since
A is 〈h〉-separable and 〈k〉-separable, there exists M /f A such that xi /∈ 〈h〉M if
xi /∈ 〈h〉 and xi /∈ 〈k〉M if xi /∈ 〈k〉. Suppose M ∩ 〈h〉 = 〈hα1〉 and M ∩ 〈k〉 = 〈kα2〉
for some integers α1, α2. Let α = α1α2. From above let N1 /f A,N2 /f A be such
that N1 ∩ 〈h〉 = 〈hαr1r2m〉 and N2 ∩ 〈k〉 = 〈kαr1r2m〉. Let N = M ∩N1 ∩N2. Then
N /f A and N ∩ 〈h〉 = 〈hαr1r2m〉 = 〈kαr1r2m〉 = N ∩ 〈k〉. As in Case 1, we form Ḡ.
Then x̄ is reduced in Ḡ and ‖x̄‖ = ‖x‖. It follows that x̄ has infinite order in Ḡ.
Since Ā is finite, Ḡ is weakly potent by Lemma 3.1 and our result follows.

Conversely, suppose that G is weakly potent. Since 〈h〉 ∩ 〈k〉 6= 1, it follows that
hm = kp where p > 0. Since G is weakly potent, the subgroup G1 = 〈t, h; t−1hpt =
hm〉 is weakly potent. Then there exists a positive integer r with the property that
for every positive integer n, we can find N /f G1 such that hN has order exactly
rn. We choose n =| p || m |. Then | hm |= r | p | and | hp |= r | m |. Since h̄p is
conjugate to h̄m in Ḡ1 = G1/N , r | m |= r | p | which implies that | m |=| p |.

By using Theorem 3.1, we can easily obtain a characterization for the Baumslag-
Solitar groups to be weakly potent.

Theorem 3.2. Let Gk,l = 〈t, a; t−1akt = al〉. Then Gk,l is weakly potent if and only
if | k |=| l |.

Next we extend Theorem 3.1 to HNN extensions of the form G = 〈A, t1, . . . , tn;
t−1
i hiti = ki, i = 1, . . . , n〉.

Lemma 3.2. Let G = 〈t, A; t−1ht = k〉 where A is a weakly potent group and 〈h〉, 〈k〉
are infinite cyclic subgroups of A such that hm = k±m for some m > 0. Suppose
that A is 〈h〉-separable and 〈k〉-separable. Let a ∈ A such that A is 〈a〉-separable.
Then G = 〈t, A; t−1ht = k〉 is 〈a〉-separable.

Proof. Let x ∈ G\〈a〉 be a reduced element in G.
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Case 1. | x |= 0, that is, x ∈ A. Since A is 〈a〉-separable, there exists M /f A
such that x /∈ 〈a〉M . As in the Case 2 of Theorem 3.1, there exists N /f A such
that N ⊆ M and N ∩ 〈h〉 = N ∩ 〈k〉. We form Ḡ = 〈t, Ā; t−1h̄t = k̄〉 where
Ā = A/N, h̄ = hN, k̄ = kN . Clearly Ḡ is a homomorphic image of G. Since x̄ /∈ 〈ā〉
and Ḡ is πc by Lemma 3.1, the result now follows.

Case 2. | x |≥ 1. Let x = x0t
e1
1 x1t

e2
1 . . . ten

1 xn where xi ∈ A and n ≥ 1. Since A is
〈h〉-separable and 〈k〉-separable, there exists M /f A such that xi /∈ 〈h〉M if xi /∈ 〈h〉
and xi /∈ 〈k〉M if xi /∈ 〈k〉. Again as in Case 2 of Theorem 3.1, there exists N /f A
such that N ⊆ M and N ∩ 〈h〉 = N ∩ 〈k〉. Again we form Ḡ. Then x̄ is reduced in
Ḡ and ‖x̄‖ = ‖x‖. Since x̄ /∈ 〈ā〉 and Ḡ is πc by Lemma 3.1, again we are done.

Theorem 3.3. Let A be weakly potent and hi, ki ∈ A be elements of infinite order
such that 〈hi〉 ∩ 〈ki〉 6= 1 for each i = 1, . . . , n. Suppose A is 〈hi〉-separable and
〈ki〉-separable. Then G = 〈A, t1, . . . , tn; t−1

i hiti = ki, i = 1, . . . , n〉 is weakly potent
if and only if for each i = 1, . . . , n, hmi

i = k±mi
i for some mi > 0.

Proof. Suppose that G is weakly potent. Since 〈A, ti; t−1
i hiti = ki〉 is a subgroup of

G, then it must be weakly potent. Hence by Theorem 3.1, hmi
i = k±mi

i for some
mi > 0.

Conversely, suppose that for each i = 1, . . . , n, hmi
i = k±mi

i for some mi > 0.
Let G1 = 〈A, t1; t−1

1 h1t1 = k1〉. Then G1 is weakly potent by Theorem 3.1 and
G1 is 〈hi〉-separable and 〈ki〉-separable for each i = 2, . . . , n by Lemma 3.2. Let
Gj = 〈A, t1, . . . , tj ; t−1

i hiti = ki, i = 1, . . . , j〉. Then Gj = 〈Gj−1, tj ; t−1
j hjtj = kj〉.

Inductively, we assume that Gn−1 = 〈A, t1, . . . , tn−1; t−1
i hiti = ki, i = 1, . . . , n −

1〉 is weakly potent and 〈hn〉-separable and 〈kn〉-separable. Then G = Gn =
〈Gn−1, tn; t−1

n hntn = kn〉 is weakly potent by Theorem 3.1.
Since polycyclic-by-finite groups and free-by-finite groups are weakly potent and

πc (Evans [4], Tang [15]), we have immediately the following:

Theorem 3.4. Let A be a free-by-finite or polycyclic-by-finite group and hi, ki ∈ A
be elements of infinite order such that 〈hi〉 ∩ 〈ki〉 6= 1 for each i = 1, . . . , n. Then
G = 〈A, t1, . . . , tn; t−1

i hiti = ki, i = 1, . . . , n〉 is weakly potent if and only if for each
i = 1, . . . , n, hmi

i = k±mi
i for some mi > 0.

Note that in Theorem 3.3, if A is a tree product where hi and ki may not be in
the same vertex group, then G can be considered as a fundamental group of a graph
of groups amalgamating cyclic edge subgroups. In order to do this, we next prove
the weak potency of tree products of weakly potent groups with infinite cyclic edge
subgroups in the next section.

4. Tree products of weakly potent groups

In this section we will show that tree products of finitely many weakly potent groups
amalgamating infinite cyclic subgroups are weakly potent.

Lemma 4.1. Let G = G1
∗
HG2 where G1, G2 are finite. Then G is free-by-finite (see

[6]) and hence weakly potent and πc (see [4, 15]).
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Theorem 4.1. Let G = G1
∗
HG2 where G1, G2 are weakly potent and H = 〈h〉 is

infinite cyclic. Suppose G1, G2 are 〈h〉-separable. Then G is weakly potent.

Proof. First we note that since G1, G2 are weakly potent, we can find positive inte-
gers r1, r2 such that for each positive integer n, there exist P /f G1, Q /f G2 such
that P ∩ 〈h〉 = 〈hr1n〉, Q ∩ 〈h〉 = 〈hr2n〉. Let g be an element of infinite order in G.

Case 1. ‖g‖ ≤ 1, that is, g ∈ G1 ∪ G2. Without loss of generality (WLOG), as-
sume g ∈ G1. From above let N1 /f G1 be such that N1 ∩ 〈h〉 = 〈hr1r2〉. Suppose
N1 ∩ 〈g〉 = 〈gs〉 for some positive integer s. By the weak potency of G1, we can
find a positive integer r such that for each positive integer n, there exists N2 /f G1

such that N2 ∩ 〈g〉 = 〈grsn〉. Let N = N1 ∩ N2. Then N /f G1, N ∩ 〈g〉 = 〈grsn〉
and N ∩ 〈h〉 = 〈hr1r2t〉 for some positive integer t. Let M /f G2 be such that
M ∩ 〈h〉 = 〈hr1r2t〉. Now we form Ḡ = Ḡ1

∗
H̄ Ḡ2 where Ḡ1 = G1/N , Ḡ2 = G2/M

and H̄ = 〈h〉N/N = 〈h〉M/M . Clearly Ḡ is a homomorphic image of G. Let ḡ
denote the image of g in Ḡ. Then ḡ has order exactly rsn in Ḡ. Since Ḡ is residually
finite by Lemma 4.1, there exists P̄ /f Ḡ such that ḡ, . . . , ḡrsn−1 /∈ P̄ . Let P be the
preimage of P̄ in G. Then P /f G and gP has order exactly rsn in G/P and we are
done.

Case 2. ‖g‖ > 1, that is, g /∈ G1 ∪ G2. WLOG, assume g = a1b1 . . . anbn where
ai ∈ G1\〈h〉 and bi ∈ G2\〈h〉 for all i. Since G1, G2 are 〈h〉-separable, there exist
N1 /f G1, M1 /f G2 such that ai /∈ 〈h〉N1 and bi /∈ 〈h〉M1 for all i. Suppose
N1 ∩ 〈h〉 = 〈hs1〉 and M1 ∩ 〈h〉 = 〈hs2〉 for some positive integers s1 and s2. Let
N2 /f G1, M2 /f G2 be such that N2∩〈h〉 = 〈hr1r2s1s2〉 = M2∩〈h〉. Let N = N1∩N2

and M = M1 ∩M2. Then N /f G1,M /f G2 and N ∩ 〈h〉 = M ∩ 〈h〉. As in Case 1,
we form Ḡ. Then ‖ḡ‖ = ‖g‖ and hence ḡ has infinite order in Ḡ. By Lemma 4.1, Ḡ
is weakly potent and the result follows.

To extend Theorem 4.1 to a tree product, we need the next few lemmas.

Lemma 4.2. [7] Let G = G1
∗
HG2. Suppose that

(a) G1, G2 are H-separable;
(b) for each R/fH, there exist N /fG1,M /fG2 such that N∩H = M∩H ⊆ R.
• Let K be a subgroup of G1 and G1 is K-separable. Then G is K-separable.

The next lemma can easily be derived from Lemma 4.2.

Lemma 4.3. Let G = G1
∗
HG2 where H = 〈h〉 is infinite cyclic. Suppose that

G1, G2 are weakly potent and 〈h〉-separable. Let K be a subgroup of G1 and G1 is
K-separable. Then G is K-separable.

Lemma 4.3 can be extended to a tree product with the additional condition that
the group G is weakly potent.

Lemma 4.4. Let G = 〈G1, G2, . . . , Gn; aij = aji〉 be a tree product of G1, G2,
. . . , Gn, amalgamating the infinite cyclic subgroups 〈aij〉 of Gi and 〈aji〉 of Gj.
Suppose G is weakly potent and each Gi is 〈aij〉-separable. Let K be a subgroup of
Gr and Gr is K-separable. Then G is K-separable.
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Proof. We use induction on n. The case n = 2 follows from Lemma 4.3. Now, let
n > 2. The tree product G has an extremal vertex, say Gn, which is joined to
a unique vertex, say Gn−1. The subgroup of G generated by G1, G2, . . . , Gn−1 is
just their tree product. Let G′ denote this subgroup. Then G = 〈G′, Gn; a(n−1)n =
an(n−1)〉. By the inductive hypothesis, G′ is 〈a(n−1)n〉-separable and by assumption,
Gn is 〈an(n−1)〉-separable. Furthermore, by assumption G is weakly potent. Hence
G′ is weakly potent and Gn is weakly potent.

Case 1. K ⊆ G′. By inductive hypothesis, G′ is K-separable and we are done by
Lemma 4.3.

Case 2. K ⊆ Gn. By assumption, Gn is K-separable and we are done by Lemma
4.3.

Now, Theorem 4.1 can be extended to a tree product as follows:

Theorem 4.2. Let G = 〈G1, G2, . . . , Gn; aij = aji〉 be a tree product of G1, G2,
. . . , Gn, amalgamating the infinite cyclic subgroups 〈aij〉 of Gi and 〈aji〉 of Gj.
Suppose each Gi is weakly potent and 〈aij〉-separable. Then G is weakly potent.

Proof. We use induction on n. The case n = 2 follows from Theorem 4.1. Now, let
n > 2. As in Lemma 4.4, we write G = 〈G′, Gn; a(n−1)n = an(n−1)〉 where G′ is the
tree product generated by G1, G2, . . . , Gn−1. By inductive hypothesis, G′ is weakly
potent. Hence G′ is 〈a(n−1)n〉-separable by Lemma 4.4. Furthermore by assumption,
Gn is weakly potent and Gn is 〈an(n−1)〉-separable. Therefore G is weakly potent
by Theorem 4.1.

Corollary 4.1. Let G1, G2, . . . , Gn be free-by-finite groups or polycyclic-by-finite
groups. Let G = 〈G1, G2, . . . , Gn; aij = aji〉 be a tree product of G1, G2, . . . , Gn,
amalgamating the infinite cyclic subgroups 〈aij〉 of Gi and 〈aji〉 Gj. Then G is
weakly potent.

5. Fundamental groups of graphs of weakly potent groups

From Theorem 3.3 and Theorem 4.2, we obtain our main results.

Theorem 5.1. Let Av be weakly potent groups. Let G be a fundamental group of
a graph of the groups Av amalgamating cyclic edge subgroups, presented by G =
〈A, t1, . . . , tn; t−1

i hiti = ki, i = 1, . . . , n〉 where A is a tree product of the groups
Av according to a maximal subtree of the graph and where 〈hi〉 ∩ 〈ki〉 6= 1 for each
i = 1, . . . , n. Then G is weakly potent if and only if for each i = 1, . . . , n, hmi

i = k±mi
i

for some mi > 0.

Theorem 5.2. Let Av be free-by-finite or polycyclic-by-finite groups. Let G be a
fundamental group of a graph of the groups Av amalgamating cyclic edge subgroups,
presented by G = 〈A, t1, . . . , tn; t−1

i hiti = ki, i = 1, . . . , n〉 where A is a tree product
of the groups Av according to a maximal subtree of the graph and where 〈hi〉∩〈ki〉 6= 1
for each i = 1, . . . , n. Then G is weakly potent if and only if for each i = 1, . . . , n,
hmi
i = k±mi

i for some mi > 0.
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6. One-relator groups with non-trivial center

Next, we apply Theorem 3.1 and Theorem 4.2 to show that all one-relator groups
with non-trivial center are weakly potent.

Theorem 6.1. Let G be a one-relator group with non-trivial centre. Then G is
weakly potent.

Proof. First suppose that the abelianisation of G is not free abelian of rank two.
Then by Pietrowski [10, Theorem 1], G has a presentation of the form

〈a1, a2, . . . , am; ap11 = aq12 , a
p2
2 = aq23 , . . . , a

pm−1
m−1 = aqm−1

m 〉

where m, pi, qi ≥ 2 and (pi, qj) = 1 for i > j. Clearly G is a tree product of infinite
cyclic groups and hence G is weakly potent by Theorem 4.2.

Now suppose that the abelianisation of G is free abelian of rank two. Again by
Pietrowski [10, Theorem 3], G has a presentation of the form

〈t, a1, a2, . . . , am; t−1a1t = am, a
p1
1 = aq12 , a

p2
2 = aq23 , . . . , a

pm−1
m−1 = aqm−1

m 〉

where m, pi, qi ≥ 2 and (pi, qj) = 1 for i > j such that p1p2 . . . pm−1 = q1q2 . . . qm−1.
Then G = 〈t, B; t−1a1t = am〉 is an HNN extension where B = 〈a1, a2, · · · , am; ap11 =
aq12 , a

p2
2 = aq23 , · · · , a

pm−1
m−1 = a

qm−1
m 〉 and aδ1 = aδm where δ = p1p2 . . . pm−1 =

q1q2 . . . qm−1. Now B is a tree product of infinite cyclic groups and hence is weakly
potent by Theorem 4.2. By Theorem 2.1 of Kim [6], B is πc and hence B is 〈a1〉-
separable and 〈am〉-separable. Therefore G is weakly potent by Theorem 3.1.
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