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Abstract. In this paper, we investigate the following functional inequality∥∥∥∥f(x) + f(y) + 2f

(
x + y

2
+ z

)∥∥∥∥ ≤ 2‖f(x + y + z)‖

in Banach modules over a C∗-algebra, and prove the generalized Hyers-Ulam

stability of additive mappings in Banach modules over a C∗-algebra to approx-
imate homomorphisms.
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1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam
[42] concerning the stability of group homomorphisms: Let (G1, ∗) be a group and
let (G2, �, d) be a metric group with the metric d(·, ·). Given ε > 0, does there exist
a δ(ε) > 0 such that if a mapping h : G1 → G2 satisfies the inequality

d(h(x ∗ y), h(x) � h(y)) < δ

for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with

d(h(x), H(x)) < ε

for all x ∈ G1?
In other words, we are looking for situations when the homomorphisms are stable,

i.e., if a mapping is almost a homomorphism, then there exists a true homomorphism
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near it. Hyers [17] gave a first affirmative answer to the question of Ulam for Banach
spaces. Let X and Y be Banach spaces. Assume that f : X → Y satisfies

‖f(x+ y)− f(x)− f(y)‖ ≤ ε
for all x, y ∈ X and some ε ≥ 0. Then there exists a unique additive mapping
T : X → Y such that

‖f(x)− T (x)‖ ≤ ε
for all x ∈ X. Aoki [2] and Rassias [38] provided a generalization of Hyers’ theorem
for additive mappings and linear mappings, respectively, which allows the Cauchy
difference to be unbounded (see also [5] and [12]).

Theorem 1.1. [38] Let f : E → E′ be a mapping from a normed vector space E
into a Banach space E′ subject to the inequality

(1.1) ‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)
for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the limit

L(x) = lim
n→∞

f(2nx)
2n

exists for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies

(1.2) ‖f(x)− L(x)‖ ≤ 2ε
2− 2p

‖x‖p

for all x ∈ E. If p < 0 then inequality (1.1) holds for x, y 6= 0 and (1.2) for x 6= 0.
Also, if for each x ∈ E the mapping t 7→ f(tx) is continuous in t ∈ R, then L is
linear.

For the case p = 1, a counter example has been given by Gajda [11] (see also
[40]). The generalized Hyers-Ulam stability mentioned in Theorem 1.1 is known as
Hyers-Ulam-Rassias stability (cf. the books of Czerwik [10], Hyers, Isac and Rassias
[18]).

Theorem 1.2. [35, 36, 37] Let X be a real normed linear space and Y a real Banach
space. Assume that f : X → Y is a mapping for which there exist constants θ ≥ 0
and p, q ∈ R such that r = p + q 6= 1 and f satisfies the functional inequality
(Cauchy-Gǎvruta-Rassias inequality)

‖f(x+ y)− f(x)− f(y)‖ ≤ θ‖x‖p‖y‖q

for all x, y ∈ X. Then there exists a unique additive mapping L : X → Y satisfying

‖f(x)− L(x)‖ ≤ θ

|2r − 2|
‖x‖r

for all x ∈ X. If, in addition, f : X → Y is a mapping such that the transformation
t 7→ f(tx) is continuous in t ∈ R for each fixed x ∈ X, then L is linear.

Gǎvruta [14] showed that Theorem 1.2 is not true when r = 1. The stability
in Theorem 1.2 involving a product of different powers of norms is called Ulam-
Gǎvruta-Rassias stability (see [4, 29, 30]). During the last two decades, a number of
papers and research monographs have been published on various generalizations and
applications of Hyers-Ulam-Rassias stability and Ulam-Gǎvruta-Rassias stability to
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a number of functional equations and mappings (see [3, 6–9, 13–16, 20–22, 24–34].
We also refer the readers to the books [1, 10, 18, 41, 39].

Park, Cho and Han [33] investigated the functional inequality

(1.3) ‖f(x) + f(y) + f(z)‖ ≤ ‖f(x+ y + z)‖
in Banach spaces, and proved the generalized Hyers-Ulam stability of the functional
inequality (1.3) in Banach spaces.

Throughout this paper, let A be a unital C∗-algebra with unit e, unitary group
U(A) and norm | · |. Assume that X is a normed A-module with norm ‖·‖X and that
Y is a Banach A-module with norm ‖ · ‖Y . For a ∈ A, let a† = a, a∗ or (a+ a∗)/2.
An additive mapping T : X → Y is called A-additive if T (ax) = a†T (x) for all a ∈ A
and all x ∈ X.

In this paper, we investigate an A-additive mapping associated with the functional
inequality

(1.4)
∥∥∥∥f(x) + f(y) + 2f

(
x+ y

2
+ z

)∥∥∥∥ ≤ 2‖f(x+ y + z)‖

and prove the generalized Hyers-Ulam stability of A-additive mappings in Banach
A-modules associated with the functional inequality (1.4).

For convenience, we use the following abbreviation for a given a ∈ A and a
mapping f : X → Y

Daf(x, y, z) := f(ax) + f(ay) + 2a†f
(
x+ y

2
+ z

)
for all x, y, z ∈ X.

2. Functional inequalities in Banach modules over a C∗-algebra

Lemma 2.1. Let f : X → Y be a mapping such that

(2.1) ‖Daf(x, y, z)‖Y ≤ 2‖f(ax+ ay + az)‖Y
for all x, y, z ∈ X and all a ∈ U(A). Then f : X → Y is A-additive.

Proof. Letting x = y = z = 0 and a = e ∈ U(A) in (2.1), we get that f(0) = 0.
Letting z = 0, y = −x and a = e ∈ U(A) in (2.1), we get

‖f(x) + f(−x)‖Y ≤ 2‖f(0)‖Y = 0

for all x ∈ X. Hence f(−x) = −f(x) for all x ∈ X.
Letting z = −x− y and a = e ∈ U(A) in (2.1) and using the oddness of f, we get∥∥∥∥2f

(
x+ y

2

)
− f(x)− f(y)

∥∥∥∥
Y

≤ 2‖f(0)‖Y = 0

for all x, y ∈ X. So

(2.2) 2f
(
x+ y

2

)
= f(x) + f(y)

for all x, y ∈ X. Letting y = 0 in (2.2), we get 2f(x/2) = f(x) for all x ∈ X. Thus
(2.2) implies that

f(x+ y) = f(x) + f(y)
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for all x, y ∈ X. Hence f(rx) = rf(x) for all x ∈ X and all r ∈ Q.
Letting z = −x and y = 0 in (2.1) and using the oddness of f, we get

‖f(ax)− a†f(x)‖Y ≤ 2‖f(0)‖Y = 0

for all x ∈ X and all a ∈ U(A). Thus

(2.3) f(ax) = a†f(x)

for all a ∈ U(A) and all x ∈ X. It is clear that (2.3) holds for a = 0.
Now let a ∈ A (a 6= 0) and m be an integer greater than 4|a|. Then |a/m| < 1/4 <

1 − 2/3 = 1
3 . By Theorem 1 of [23], there exist three elements u1, u2, u3 ∈ U(A)

such that (3/m)a = u1 + u2 + u3. So
3
m
a† = (

3
m
a)† = u†1 + u†2 + u†3.

Hence by (2.3) we have

f(ax) =
m

3
f

(
3
m
ax

)
=
m

3
f (u1x+ u2x+ u3x) =

m

3
[f(u1x) + f(u2x) + f(u3x)]

=
m

3
(u†1 + u†2 + u†3)f(x) =

m

3
· 3
m
a†f(x) = a†f(x)

for all x ∈ X. So f : X → Y is A-additive, as desired.
Now we prove the generalized Hyers-Ulam stability of A-additive mappings in

Banach A-modules.

Theorem 2.1. Let ri > 1 and θi be non-negative real numbers for all 1 ≤ i ≤ 3,
and let f : X → Y be a mapping such that

(2.4) ‖Daf(x, y, z)‖Y ≤ 2‖f(ax+ ay+ az)‖Y + θ1‖x‖r1X + θ2‖y‖r2X + θ3‖z‖r3X
for all x, y, z ∈ X and all a ∈ U(A). Then there exists a unique A-additive mapping
L : X → Y such that

(2.5) ‖f(x)− L(x)‖Y ≤
2r1 + 2
2r1 − 2

θ1‖x‖r1X +
2θ2

2r2 − 2
‖x‖r2X +

2r3θ3
2r3 − 2

‖x‖r3X
for all x ∈ X.

Proof. Letting x = y = z = 0 and a = e ∈ U(A) in (2.4), we get that f(0) = 0.
Letting a = e ∈ U(A), y = −x and z = 0 in (2.4), we get

(2.6) ‖f(x) + f(−x)‖Y ≤ θ1‖x‖r1X + θ2‖x‖r2X
for all x ∈ X. Letting a = e ∈ U(A), y = 0 and z = −x in (2.4), we get

(2.7)
∥∥∥∥f(x) + 2f

(
−x
2

)∥∥∥∥
Y

≤ θ1‖x‖r1X + θ3‖x‖r3X

for all x ∈ X. It follows from (2.6) and (2.7) that∥∥∥2f
(x

2

)
− f(x)

∥∥∥
Y
≤ 2 + 2r1

2r1
θ1‖x‖r1X +

2θ2
2r2
‖x‖r2X + θ3‖x‖r3X

for all x ∈ X. Hence∥∥∥2nf
( x

2n
)
− 2mf

( x

2m
)∥∥∥

Y
≤

n−1∑
j=m

∥∥∥2j+1f
( x

2j+1

)
− 2jf

( x
2j
)∥∥∥

Y
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≤ 2 + 2r1

2r1
θ1‖x‖r1X

n−1∑
j=m

(
2

2r1

)j
+ θ2‖x‖r2X

n−1∑
j=m

(
2

2r2

)j+1

+ θ3‖x‖r3X
n−1∑
j=m

(
2

2r3

)j
(2.8)

for all non-negative integers m and n with n > m and all x ∈ X. It follows from
(2.8) that the sequence {2nf(x/2n)} is Cauchy for all x ∈ X. Since Y is complete,
the sequence {2nf(x/2n)} converges. So one can define the mapping L : X → Y by

L(x) := lim
n→∞

2nf
( x

2n
)

for all x ∈ X. Moreover, letting m = 0 and passing the limit n → ∞ in (2.8), we
get (2.5). It follows from (2.4) that

‖DaL(x, y, z)‖Y = lim
n→∞

2n
∥∥∥Daf

( x
2n
,
y

2n
,
z

2n
)∥∥∥

Y

≤ lim
n→∞

2n+1
∥∥∥f (ax

2n
+
ay

2n
+
az

2n
)∥∥∥

Y

+ lim
n→∞

2n
[
θ1

2nr1
‖x‖r1X +

θ2
2nr2
‖y‖r2X +

θ3
2nr3
‖z‖r3X

]
= 2‖L(ax+ ay + az)‖Y

for all x, y, z ∈ X and all a ∈ U(A). So by Lemma 2.1, the mapping L : X → Y is
A-additive.

Now, let T : X → Y be another A-additive mapping satisfying (2.5). Then we
have

‖L(x)− T (x)‖Y = lim
n→∞

2n
∥∥∥f ( x

2n
)
− T

( x
2n
)∥∥∥

Y

≤ lim
n→∞

2n
[

(2r1 + 2)θ1
2nr1(2r1 − 2)

‖x‖r1X +
2θ2

2nr2(2r2 − 2)
‖x‖r2X

+
2r3θ3

2nr3(2r3 − 2)
‖x‖r3X

]
= 0

for all x ∈ X. So we can conclude that L(x) = T (x) for all x ∈ X. This proves
the uniqueness of L. Thus the mapping L : X → Y is a unique A-additive mapping
satisfying (2.5).

Theorem 2.2. Let 0 < ri < 1 and θi, δ be non-negative real numbers for all 1 ≤
i ≤ 3, and let f : X → Y be a mapping satisfying f(0) = 0 and the inequality

(2.9) ‖Daf(x, y, z)‖Y ≤ 2‖f(ax+ ay + az)‖Y + δ + θ1‖x‖r1X + θ2‖y‖r2X + θ3‖z‖r3X
for all x, y, z ∈ X and all a ∈ U(A). Then there exists a unique A-additive mapping
L : X → Y such that

‖f(x)− L(x)‖Y ≤ 3δ +
2 + 2r1

2− 2r1
θ1‖x‖r1X +

2θ2
2− 2r2

‖x‖r2X +
2r3θ3

2− 2r3
‖x‖r3X

for all x ∈ X.
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Proof. Similarly to the proof of Theorem 2.1, it follows from (2.9) that∥∥∥2f
(x

2

)
− f(x)

∥∥∥
Y
≤ 3δ +

2 + 2r1

2r1
θ1‖x‖r1X +

2θ2
2r2
‖x‖r2X + θ3‖x‖r3X

for all x ∈ X. Hence∥∥∥∥ 1
2n
f(2nx)− 1

2m
f(2mx)

∥∥∥∥
Y

≤
n−1∑
j=m

∥∥∥∥ 1
2j+1

f(2j+1x)− 1
2j
f(2jx)

∥∥∥∥
Y

≤ 3δ
n∑

j=m+1

(
1
2

)j
+

2 + 2r1

2r1
θ1‖x‖r1X

n∑
j=m+1

(
2r1

2

)j

+
2θ2
2r2
‖x‖r2X

n∑
j=m+1

(
2r2

2

)j
+ θ3‖x‖r3X

n∑
j=m+1

(
2r3

2

)j
for all non-negative integers m and n with n > m and all x ∈ X. The rest of the
proof is similar to the proof of Theorem 2.1 and we omit the details.

Theorem 2.3. Let {ri}3i=1 and θ be non-negative real numbers such that λ :=
r1 + r2 + r3 ∈ (0, 1)∪ (1,+∞), r1 + r2 > 0, r3 > 0, and let f : X → Y be a mapping
such that

(2.10) ‖Daf(x, y, z)‖Y ≤ 2‖f(ax+ ay + az)‖Y + θ · ‖x‖r1X · ‖y‖
r2
X · ‖z‖

r3
X

for all x, y, z ∈ X and all a ∈ U(A) (by letting ‖ · ‖0X = 1). Then f : X → Y is
A-additive.

Proof. Since r1 + r2 > 0, rj > 0 for some 1 ≤ j ≤ 2. Without loss of generality, we
may assume that r2 > 0. Letting x = y = z = 0 and a = e ∈ U(A) in (2.10), we get
that f(0) = 0. Letting a = e ∈ U(A), y = −x and z = 0 in (2.10), we get

‖f(x) + f(−x)‖Y ≤ 2‖f(0)‖Y = 0

for all x ∈ X. So the mapping f is odd. Letting a = e ∈ U(A), y = 0 and z = −x
in (2.10) and using the oddness of f, we get∥∥∥2f

(x
2

)
− f(x)

∥∥∥
Y
≤ 2‖f(0)‖Y = 0

for all x ∈ X. Hence 2f(x/2) = f(x) and so

(2.11) 2nf
( x

2n
)

= f(x)

for all n ∈ Z and all x ∈ X. Let λ > 1 (we have a similar proof when 0 < λ < 1). It
follows from (2.10) and (2.11) that

‖Daf(x, y, z)‖Y = lim
n→∞

2n
∥∥∥Daf

( x
2n
,
y

2n
,
z

2n
)∥∥∥

Y

≤ lim
n→∞

2n+1
∥∥∥f (ax

2n
+
ay

2n
+
az

2n
)∥∥∥

Y
+ lim
n→∞

2n
θ

2nλ
‖x‖r1X ‖y‖

r2
X ‖z‖

r3
X

= 2‖f(ax+ ay + az)‖Y
for all x, y, z ∈ X. By Lemma 2.1, the mapping f : X → Y is A-additive.
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Theorem 2.4. Let {ri}3i=1 and θ, δ be non-negative real numbers such that λ :=
r1 + r2 + r3 ∈ (0, 1), r1 + r2 > 0, r3 > 0, and let f : X → Y be a mapping satisfying
f(0) = 0 and the inequality

(2.12) ‖Daf(x, y, z)‖Y ≤ 2‖f(ax+ ay + az)‖Y + δ + θ · ‖x‖r1X · ‖y‖
r2
X · ‖z‖

r3
X

for all x, y, z ∈ X and all a ∈ U(A) (by letting ‖ · ‖0X = 1). Then there exists a
unique A-additive mapping L : X → Y such that

‖f(x)− L(x)‖Y ≤ 2δ

for all x ∈ X.

Proof. Without loss of generality, we may assume that r2 > 0. Similarly to the proof
of Theorem 2.1, letting a = e ∈ U(A), y = −x and z = 0 in (2.12), we get

(2.13) ‖f(x) + f(−x)‖Y ≤ δ

for all x ∈ X. Letting a = e ∈ U(A), y = 0 and z = −x in (2.12), we get

(2.14)
∥∥∥∥f(x) + 2f

(
−x
2

)∥∥∥∥
Y

≤ δ

for all x ∈ X. It follows from (2.13) and (2.14) that∥∥∥2f
(x

2

)
− f(x)

∥∥∥
Y
≤ 2δ

for all x ∈ X. Hence∥∥∥∥ 1
2n
f(2nx)− 1

2m
f(2mx)

∥∥∥∥
Y

≤
n−1∑
j=m

∥∥∥∥ 1
2j+1

f(2j+1x)− 1
2j
f(2jx)

∥∥∥∥
Y

≤ 2δ
n∑

j=m+1

(
1
2

)j
for all non-negative integers m and n with n > m and all x ∈ X. The rest of the
proof is similar to the proof of Theorem 2.1 and we omit the details.

Theorem 2.5. Let {ri}2i=1 and θ, δ be non-negative real numbers and let f : X → Y
be a mapping satisfying f(0) = 0 and the inequality

(2.15) ‖Daf(x, y, z)‖Y ≤


2‖f(ax+ ay + az)‖Y + δ

+ θ · ‖x‖r1X · ‖y‖
r2
X if 0 < λ < 1,

2‖f(ax+ ay + az)‖Y
+ θ · ‖x‖r1X · ‖y‖

r2
X if λ > 1

for all x, y, z ∈ X and all a ∈ U(A) (by letting ‖ · ‖0X = 1), where λ := r1 + r2. Then
there exists a unique A-additive mapping L : X → Y such that

(2.16) ‖f(x)− L(x)‖Y ≤


3δ + 2θ

2−2λ
‖x‖λX if 0 < λ < 1,

2θ
2λ−2

‖x‖λX if λ > 1

for all x ∈ X.
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Proof. Since r1 + r2 > 0, without loss of generality, we may assume that r2 > 0.
Letting a = e ∈ U(A), y = −x and z = 0 in (2.15), we get

(2.17) ‖f(x) + f(−x)‖Y ≤
{
δ + θ‖x‖λX if 0 < λ < 1,
θ‖x‖λX if λ > 1

for all x ∈ X. Letting a = e ∈ U(A), y = 0 and z = −x in (2.15), we get

(2.18)
∥∥∥∥f(x) + 2f

(
−x
2

)∥∥∥∥
Y

≤
{
δ if 0 < λ < 1,
0 if λ > 1

for all x ∈ X. It follows from (2.17) and (2.18) that

∥∥∥2f
(x

2

)
− f(x)

∥∥∥
Y
≤

 3δ + 2θ
2λ
‖x‖λX if 0 < λ < 1,

2θ
2λ
‖x‖λX if λ > 1

for all x ∈ X. Hence we have the following cases:

Case I. Let 0 < λ < 1. In this case, we get∥∥∥∥ 1
2n
f(2nx)− 1

2m
f(2mx)

∥∥∥∥
Y

≤
n−1∑
j=m

∥∥∥∥ 1
2j+1

f(2j+1x)− 1
2j
f(2jx)

∥∥∥∥
Y

≤ 3δ
n∑

j=m+1

(
1
2

)j
+ θ‖x‖λX

n−1∑
j=m

(
2λ

2

)j
(2.19)

for all non-negative integers m and n with n > m and all x ∈ X.

Case II. Let λ > 1. In this case, we get∥∥∥2nf
( x

2n
)
− 2mf

( x

2m
)∥∥∥

Y
≤

n−1∑
j=m

∥∥∥2j+1f
( x

2j+1

)
− 2jf

( x
2j
)∥∥∥

Y

≤ θ‖x‖λX
n−1∑
j=m

(
2
2λ

)j+1

(2.20)

for all non-negative integers m and n with n > m and all x ∈ X. It follows from
(2.19) (respectively, (2.20)) that the sequence {1/2nf(2nx)} (respectively, {2nf(x/2n)})
is Cauchy for all x ∈ X. Since Y is complete, the sequence {1/2nf(2nx)} (respec-
tively, {2nf(x/2n)}) converges. So one can define the mapping L : X → Y by

L(x) :=

 limn→∞
1
2n f(2nx) if 0 < λ < 1,

limn→∞ 2nf( x2n ) if λ > 1

for all x ∈ X. Moreover, letting m = 0 and passing the limit n → ∞ in (2.19) and
(2.20), we get (2.16). The rest of the proof is similar to the proof of Theorem 2.1.
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Theorem 2.6. Let r, δ and θ be non-negative real numbers and let f : X → Y be a
mapping satisfying f(0) = 0 and the inequality

(2.21) ‖Daf(x, y, z)‖Y ≤

 2‖f(ax+ ay + az)‖Y + δ + θ · ‖z‖rX if 0 < r < 1,

2‖f(ax+ ay + az)‖Y + θ · ‖z‖rX if r > 1

for all x, y, z ∈ X and all a ∈ U(A). Then there exists a unique A-additive mapping
L : X → Y such that

‖f(x)− L(x)‖Y ≤


2δ + 2rθ

2−2r ‖x‖
r
X if 0 < r < 1,

2rθ
2r−2‖x‖

r
X if r > 1

for all x ∈ X.

Proof. Letting a = e ∈ U(A), y = −x and z = 0 in (2.21), we get

(2.22) ‖f(x) + f(−x)‖Y ≤
{
δ if 0 < r < 1,
0 if r > 1

for all x ∈ X. Letting a = e ∈ U(A), y = 0 and z = −x in (2.21), we get

(2.23)
∥∥∥∥f(x) + 2f

(
−x
2

)∥∥∥∥
Y

≤
{
δ + θ‖x‖rX if 0 < r < 1,
θ‖x‖rX if r > 1

for all x ∈ X. It follows from (2.22) and (2.23) that

∥∥∥2f
(x

2

)
− f(x)

∥∥∥
Y
≤

 2δ + θ‖x‖rX if 0 < r < 1,

θ‖x‖rX if r > 1

for all x ∈ X. Hence we have the following cases:

Case I. Let 0 < r < 1. In this case, we get∥∥∥∥ 1
2n
f(2nx)− 1

2m
f(2mx)

∥∥∥∥
Y

≤
n−1∑
j=m

∥∥∥∥ 1
2j+1

f(2j+1x)− 1
2j
f(2jx)

∥∥∥∥
Y

≤ 2δ
n∑

j=m+1

(
1
2

)j
+ θ‖x‖rX

n∑
j=m+1

(
2r

2

)j
for all non-negative integers m and n with n > m and all x ∈ X.

Case II. Let r > 1. In this case, we get∥∥∥2nf
( x

2n
)
− 2mf

( x

2m
)∥∥∥

Y
≤

n−1∑
j=m

∥∥∥2j+1f
( x

2j+1

)
− 2jf

( x
2j
)∥∥∥

Y

≤ θ‖x‖rX
n−1∑
j=m

(
2
2r

)j
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for all non-negative integers m and n with n > m and all x ∈ X. The rest of the
proof is similar to the proof of Theorem 2.1 and Theorem 2.5 and we omit the de-
tails.
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Birkhäuser Boston, Boston, MA, 1998.
[19] K.-W. Jun and H.-M. Kim, Ulam stability problem for a mixed type of cubic and additive

functional equation, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), no. 2, 271–285.

[20] K.-W. Jun, H.-M. Kim and J. M. Rassias, Extended Hyers-Ulam stability for Cauchy-Jensen
mappings, J. Difference Equ. Appl. 13 (2007), no. 12, 1139–1153.

[21] K.-W. Jun and Y.-H. Lee, A generalization of the Hyers-Ulam-Rassias stability of the Pex-

iderized quadratic equations, J. Math. Anal. Appl. 297 (2004), no. 1, 70–86.



On a Cauchy-Jensen Functional Inequality 263

[22] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis,

Hadronic Press, Palm Harbor, FL, 2001.

[23] R. V. Kadison and G. K. Pedersen, Means and convex combinations of unitary operators,
Math. Scand. 57 (1985), no. 2, 249–266.

[24] M. S. Moslehian, Almost derivations on C∗-ternary rings, Bull. Belg. Math. Soc. Simon Stevin
14 (2007), no. 1, 135–142.

[25] A. Najati, Hyers-Ulam stability of an n-Apollonius type quadratic mapping, Bull. Belg. Math.

Soc. Simon Stevin 14 (2007), no. 4, 755–774.
[26] A. Najati, On the stability of a quartic functional equation, J. Math. Anal. Appl. 340 (2008),

no. 1, 569–574.

[27] A. Najati and M. B. Moghimi, Stability of a functional equation deriving from quadratic and
additive functions in quasi-Banach spaces, J. Math. Anal. Appl. 337 (2008), no. 1, 399–415.

[28] A. Najati and C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach al-

gebras associated to the Pexiderized Cauchy functional equation, J. Math. Anal. Appl. 335
(2007), no. 2, 763–778.

[29] P. Nakmahachalasint, On the generalized Ulam-Gavruta-Rassias stability of mixed-type linear

and Euler-Lagrange-Rassias functional equations, Int. J. Math. Math. Sci. 2007, Art. ID
63239, 10 pp.

[30] P. Nakmahachalasint, Hyers-Ulam-Rassias and Ulam-Gavruta-Rassias stabilities of an additive
functional equation in several variables, Int. J. Math. Math. Sci. 2007, Art. ID 13437, 6 pp.

[31] C.-G. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl.

275 (2002), no. 2, 711–720.
[32] C.-G. Park, On the stability of the orthogonally quartic functional equation, Bull. Iranian

Math. Soc. 31 (2005), no. 1, 63–70.

[33] C.-G Park, Y. S. Cho and M.-H. Han, Functional inequalities associated with Jordan-von
Neumann-type additive functional equations, J. Inequal. Appl. 2007, Art. ID 41820, 13 pp.

[34] C.-G. Park, J. C. Hou and S. Q. Oh, Homomorphisms between JC∗-algebras and Lie C∗-

algebras, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 6, 1391–1398.
[35] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J.

Funct. Anal. 46 (1982), no. 1, 126–130.

[36] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull.
Sci. Math. (2) 108 (1984), no. 4, 445–446.

[37] J. M. Rassias, Solution of a problem of Ulam, J. Approx. Theory 57 (1989), no. 3, 268–273.

[38] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math.
Soc. 72 (1978), no. 2, 297–300.

[39] T. M. Rassias (edited), Functional Equations and Inequalities, Kluwer Acad. Publ., Dordrecht,
2000.
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