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Abstract. We say that a simple graph G is fractional independent-set-deletable
k-factor-critical, shortly, fractional ID-k-factor-critical, if G− I has a fractional

k-factor for every independent set I of G. Some sufficient conditions for a graph
to be fractional ID-k-factor-critical are studied in this paper. Furthermore, we

show that the result is best possible in some sense.
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1. Introduction

The graphs considered in this paper will be finite and undirected simple graphs. Let
G be a graph with vertex set V (G) and edge set E(G). The minimum degree of G
is denoted by δ(G). For any vertex x of G, the neighborhood of x is denoted by
NG(x), the degree of x is denoted by dG(x), and we write NG[x] for NG(x)

⋃
{x}.

We use G[S] and G − S to denote the subgraph of G induced by S and V (G) − S,
respectively, for S ⊆ V (G). The join G∨H of disjoint graphs G and H is the graph
obtained from G + H by joining each vertex of G to each vertex of H. Notations
and definitions not given in this paper can be found in [1].

A subset I of V (G) is said to be independent if no two distinct vertices in I are
adjacent. A matching in a graph is a set of edges, no two of which meet a common
vertex. A matching is perfect if it covers all vertices of the graph. A graph G is
factor-critical [5] if G− υ has a perfect matching for every vertex υ ∈ V (G). In [7],
the concept of factor-critical graph was generalized to the ID-factor-critical graph.
We say that G is independent-set-deletable factor-critical (shortly, ID-factor-critical)
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if for every independent set I of G which has the same parity with |V (G)|, G − I
has a perfect matching.

Let h : E(G) −→ [0, 1] be a function, and let k ≥ 1 be an integer. If
∑

e3x h(e) = k
holds for each vertex x ∈ V (G), we call G[Fh] a factional k-factor of G with indicator
function h where Fh = {e ∈ E(G)| h(e) > 0}. A fractional 1-factor is also called
a fractional perfect matching [6]. We say that G is fractional ID-k-factor-critical if
for every independent set I of G, G − I has a fractional k-factor. When k = 1, we
say that G is fractional ID-factor-critical if for every independent set I of G, G− I
has a fractional perfect matching.

Liu and Zhang gave a necessary and sufficient condition for a graph to have
fractional (g, f)-factor and a k-factor in [4] and [8], respectively.

Lemma 1.1. Let G be a graph. Then G has a fractional k-factor if and only if for
every subset S of V (G), ΦG(S; k) = k|S| − k|T |+ dG−S(T ) ≥ 0, where T = {x : x ∈
V (G)− S, dG−S(x) ≤ k − 1}.

Lemma 1.2. Let G be a graph. Then G has a fractional k-factor if and only if for
every subset S of V (G), k|S| −

∑k−1
i=0 (k − i)pi(G− S) ≥ 0, where pi(G− S) = |{x :

x ∈ V (G)− S, dG−S(x) = i}|.

The degree condition of ID-factor-critical graphs was studied in [3].

Lemma 1.3. Let G be a graph with n vertices. Then G is ID-factor-critical if
δ(G) ≥ (2n− 1)/3.

In this paper, we discuss the degree conditions of fractional ID-k-factor-critical
graphs. The main results will be given in the next section.

2. Main results

We begin our discussion with a well-known theorem of Dirac [2].

Lemma 2.1. Let G be a graph on n ≥ 3 vertices with δ(G) ≥ n/2. Then G is
hamiltonian.

The next result follows easily from Lemma 2.1.

Lemma 2.2. If G is a graph of order n and δ(G) ≥ 2n/3, then G is fractional
ID-k-factor-critical when k = 1, 2.

Proof. Let I be an independent set of G. It is easy to see that n−|I| ≥ δ(G). Hence

2δ(G)− |I| − n = 2δ(G) + n− |I| − 2n

≥ 3δ(G)− 2n ≥ 0.

It follows that δ(G)− |I| ≥ (n− |I|)/2.
Let H = G− I. Then |V (H)| = n− |I|, and δ(H) ≥ δ(G)− |I| ≥ |V (H)|/2. By

Lemma 2.1, H has a hamiltonian cycle C. C is also a fractional 2-factor and C also
contains a fractional perfect matching. Thus Lemma 2.2 holds.

Theorem 2.1. Let k be a positive integer and G be a graph of order n with n ≥
6k − 8. If δ(G) ≥ 2n/3, then G is fractional ID-k-factor-critical.
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Proof. Let X be an independent set of G and H = G−X. We have that |V (H)| =
n−|X| and δ(H) ≥ |V (H)|/2 by the same argument of Lemma 2.2. Clearly, Theorem
2.1 holds when k = 1 or k = 2. Therefore, we may assume k ≥ 3.

We prove the theorem by contradiction. Suppose H has no fractional k-factor.
Then by Lemma 1.1, there exists some subset S ⊆ V (H) such that ΦH(S; k) =
k|S| − k|T |+ dH−S(T ) ≤ −1, where T = {x| x ∈ V (H)− S, dH−S(x) ≤ k − 1}. Set
ΨH(S; k) = ΦH(S; k) + 1. It follows that ΨH(S; k) ≤ 0.

Let h1 = min{dH−S(x)| x ∈ T}. Choose x1 ∈ T such that dH−S(x1) = h1. If
T−NT [x1] 6= ∅, let h2 = min{dH−S(x)| x ∈ T−NT [x1]} and choose x2 ∈ T−NT [x1]
such that dH−S(x2) = h2.

Set |S| = s, |T | = t, and | NT [x1] |= p. We have p ≤ h1 + 1, dH−S(T ) ≥
h1p+ h2(t− p), and

0 ≥ ΨH(S; k) = ks− kt+ dH−S(T ) + 1

≥ ks− kt+ h1p+ h2(t− p) + 1.

Set |V (H)| = m. Then m = n− |X| ≥ δ(G) ≥ 2n/3 ≥ (12k− 16)/3 = 4k− 16/3.
Since m is an integer, we have that m ≥ 4k − 5.

We consider the following cases.

Case 1. T = NT [x1].
In this case, we have t = p ≤ h1 + 1, 0 ≤ h1 ≤ k − 1, h2 = 0. By δ(H) ≥

(n − |X|)/2 ≥ n/3 ≥ (6k − 8)/3 ≥ k (k ≥ 3) and dH(x1) ≤ s + h1, we have
s ≥ k − h1 and

ΨH(S; k) ≥ ks− kt+ h1p+ h2(t− p) + 1

= ks+ (h1 − k)t+ 1

≥ k(k − h1) + (h1 − k)t+ 1

= (k − h1)(k − t) + 1 ≥ 1.

Then we get a contradiction.

Case 2. T −NT [x1] 6= ∅.

Subcase 2.1. 0 ≤ h1 ≤ 2.
In this case, we have t > p, 0 ≤ h1 ≤ h2, m/2 ≤ dH(x1) ≤ s + h1. Then

s ≥ m/2 − h1 ≥ (4k − 5)/2 − h1 = 2k − 5/2 − h1. Since s is an integer and
m− s− t ≥ 0, we have s ≥ 2k − 2− h1, t ≤ m− s ≤ s+ 2h1. Then we obtain that

0 ≥ ΨH(S; k) ≥ ks− kt+ h1p+ h2(t− p) + 1
≥ ks− kt+ h1t+ 1

= ks+ (h1 − k)t+ 1

≥ ks+ (h1 − k)(s+ 2h1) + 1

= h1s+ 2h2
1 − 2h1k + 1

≥ h1(2k − 2− h1) + 2h2
1 − 2h1k + 1

= h2
1 − 2h1 + 1 = (h1 − 1)2.
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When h1 = 0 or h1 = 2 (since 0 ≤ h1 ≤ 2 and h1 is an integer), we have

0 ≥ ΨH(S; k) ≥ 1,

a contradiction.
When h1 = 1, we have ΨH(S; k) ≥ 0 and we notice that ΨH(S; k) = 0 holds if and

only if s = 2k−2−h1 = 2k−3 and t = s+2h1 = 2k−1. Then m ≤ 2s+2h1 = 4k−4
and m ≥ s + t = 4k − 4, so m = 4k − 4 = s + t. Therefore H = G[S ∪ T ] and
| NT [x1] |= p = h1 + 1 = 2, | NT (x1) | = 1.

So for every vertex υ ∈ T , | NT (υ) |≥| NT (x1) |≥ 1, and t = 2k − 1 is odd, it
follows that there exists a vertex u ∈ T such that | NT (u) |≥ 2.

0 ≥ ΨH(S; k) = ks− kt+ dH−S(T ) + 1

≥ ks− kt+ (t− 1) + 2 + 1

= k(2k − 3)− k(2k − 1) + (2k − 1− 1) + 3
= 1,

a contradiction, too.

Subcase 2.2. h1 ≥ 3.
In this case, 3 ≤ h1 ≤ h2 ≤ k − 1. Then k − h2 ≥ 1 and m − s − t ≥ 0. Thus

(k − h2)(m− s− t) ≥ 0. So

(k − h2)(m− s− t) ≥ ΨH(S; k)

≥ ks− kt+ h1p+ h2(t− p) + 1

= ks+ (h1 − k)p+ (h2 − k)(t− p) + 1.

It follows that

(2.1) (k − h2)(m− s)− ks ≥ (h1 − h2)(h1 + 1) + 1.

Since m ≥ 4k − 5, we have

(2.2) h2m ≥ h2(4k − 5).

Furthermore, since m/2 ≤ dH(x1) ≤ s + h1 and m/2 ≤ dH(x2) ≤ s + h2, we have
2s−m ≥ −(h1 + h2). Then we can obtain that

(2.3) (2s−m)(2k − h2) ≥ −(h1 + h2)(2k − h2).

By (2.2) + (2.3) + 2× (2.1), we get

0 ≥ h2(4k − 5)− (h1 + h2)(2k − h2) + 2(h1 − h2)(h1 + 1) + 2

= 2(h2 − h1)k + h2(h2 + h1 − 5) + 2(h1 − h2)(h1 + 1) + 2.

Set Ω(k) = 2(h2 − h1)k+ h2(h2 + h1 − 5) + 2(h1 − h2)(h1 + 1) + 2. Then we obtain

(2.4) 0 ≥ Ω(k).

Since k ≥ h2 + 1 and Ω(k) is a nondecreasing function for k (h2 ≥ h1), then we
obtain that Ω(k) ≥ Ω(h2 + 1) = 3h2

2 − (3h1 + 5)h2 + 2h2
1 + 2. Set ∆ = (3h1 +

5)2 − 12(2h2
1 + 2) = −15(h1 − 1)2 + 16. And ∆ < 0 when h1 ≥ 3. It follows that

Ω(h2 + 1) > 0 and Ω(k) ≥ Ω(h2 + 1) > 0, which contradicts (2.4).
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The above arguments yield that H has a fractional k-factor and G is fractional
ID-k-factor-critical. The proof is completed.

In [8] we have the following result about fractional k-factors.

Theorem 2.2. If G has fractional k-factors, then G has fractional m-factor for
1 ≤ m ≤ k.

Theorem 2.2 implies immediately the following result.

Theorem 2.3. If a graph G is fractional ID-k-factor-critical, then G is fractional
ID-m-factor-critical for 1 ≤ m ≤ k.

3. The sharpness of the bounds in Theorem 2.1

In this section we show that the conditions in Theorem 2.1 are best possible.
Let G = (2k−4)K1 ∨ (2k−3)K1 ∨ (k−1)K2. Then we have n = |V (G)| = 6k−9

and δ(G) = 4k − 6 ≥ 2n/3. Clearly, A = (2k − 3)K1 is an independent set of G.
Let H = G − A = (2k − 4)K1 ∨ (k − 1)K2. Choose S = (2k − 4)K1. Then∑k−1

i=0 (k − i)pi(H − S) = (k − 1)(2k − 2) = k(2k − 4) + 2 > k(2k − 4) = k|S|.
Therefore, by Lemma 1.2, H has no fractional k-factor. Hence G is not fractional
ID-k-factor-critical. In this sense, the bound of n is best possible.

This bound of δ(G) is sharp indeed. To see this, we construct a graph G with
δ(G) = d2n/3e − 1 which is not fractional ID-k-factor-critical as follows.

Case 1. n = 3m.
In this case, let G = (m − 1)K1 ∨ mK1 ∨ (m + 1)K1, n = |V (G)| = 3m and

δ(G) = 2m− 1 = d2n/3e − 1.
Clearly, A = (m − 1)K1 is an independent set of G. Let H = G − A = mK1 ∨

(m+1)K1. Choose S = mK1. Then
∑k−1

i=0 (k−i)pi(H−S) = k(m+1) > km = k|S|.
By Lemma 1.2, H has no fractional k-factor. So G is not fractional ID-k-factor-
critical.

Case 2. n = 3m+ 1.
In this case, let G = mK1 ∨ mK1 ∨ (m + 1)K1, n = |V (G)| = 3m + 1 and

δ(G) = 2m = d2n/3e − 1. Clearly, A = mK1 is an independent set of G. Let
H = G − A = mk1 ∨ (m + 1)K1. By the same argument as above, H has no
fractional k-factor. Thus G is not fractional ID-k-factor-critical.

Case 3. n = 3m+ 2.
In this case, let G = (m + 1)K1 ∨ mK1 ∨ (m + 1)K1, n = |V (G)| = 3m + 2

and δ(G) = 2m+ 1 = d2n/3e − 1. Clearly, A = (m+ 1)K1 is an independent set of
G. We obtain that G is not fractional ID-k-factor-critical by the same argument as
above.

When k = 1, let G be a graph and let I be an arbitrary independent set of G. If
I has the same parity with |V (G)|, we have known that if δ(G) ≥ (2n− 1)/3, then
G is ID-factor-critical, that is, G − I has a perfect matching [3]. Obviously, G − I
has a fractional perfect matching. If I does not have the same parity with |V (G)|,
we have known that if δ(G) ≥ 2n/3, G is fractional ID-factor-critical, that is, G− I
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has a fractional perfect matching. Hence the bound of δ(G) is sharp by the above
argument.
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