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Abstract. Let A be a right R-module having the finite exchange property, and

let A =
⊕

i∈I Ai. Suppose that each Ai is fully invariant, equal to a direct sum

of isomorphic indecomposable submodules. Then EndR(A) satisfies related

comparability. As an application, we prove that the regular endomorphism ring
of every reduced torsion abelian group satisfies related comparability.
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1. Introduction

A ring R is said to be weakly stable provided that aR + bR = R implies that there
exists a y ∈ R such that a + by ∈ R is right or left invertible. Many authors
investigated weakly stable rings (cf. [4–5, 8, 10]). Following Goodearl, a regular
ring R satisfies general comparability, provided that, for any x, y ∈ R, there exists
a u ∈ B(R) such that uxR . uyR and (1 − u)yR . (1 − u)xR. This concept
evolved from operator algebras and Baer rings, where it is one of the objectives of
the axiomatic development (see [9]). As a generalization of weakly stable ring and
general comparability, the author introduced related comparability over exchange
rings (cf. [6]). We say that a ring R satisfies related comparability provided that for
any idempotents e, f ∈ R with e = 1 + ab and f = 1 + ba for some a, b ∈ R, there
exists a u ∈ B(R) such that ueR .⊕ ufR and (1− u)fR .⊕ (1− u)eR. The class
of rings satisfying related comparability includes exchange rings satisfying general
comparability, weakly stable rings, partially unit-regular rings (cf. [6]).

Recall that a right R-module has the finite exchange property if for every right R-
module A and two decompositions K = M ⊕N =

⊕
i∈I Ai, where MR

∼= A and the
index set I is finite, there exist submodules A′i ⊆ Ai such that K = M ⊕

(⊕
i∈I A

′
i

)
.

A ring R is an exchange ring provided that R has the finite exchange property as
a right R-module. A ring R is an exchange ring if and only if for any a ∈ R,
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there exists an idempotent e ∈ Ra such that 1 − e ∈ R(1 − a) (cf. [13, Theorem
29.2]). The class of exchange rings includes regular rings, π-regular rings, strongly
π-regular rings, semiperfect rings, left or right continuous rings, clean rings, and unit
C∗-algebras of real rank zero. It is well known that a right R-module has the finite
exchange property if and only if EndR(A) is an exchange ring. Such rings have been
extensively studied by many authors (cf. [1, 13]).

A submodule B of a right R-module A is fully invariant in case for any f ∈
EndR(A), f(B) ⊆ B. Let A be a rightR-module having the finite exchange property,
and let A =

⊕
i∈I Ai. Suppose that each Ai is fully invariant, equal to a direct sum of

isomorphic indecomposable submodules. It is shown that EndR(A) satisfies related
comparability. As an application, we prove that if G is a reduced torsion abelian
group such that End(G) is regular, then End(G) satisfies related comparability.

Throughout, all rings are associative with identity and all right R-modules are
unital. B(R) denotes the Boolean algebra of all central idempotents in R. A .⊕ B
means that A is isomorphic to a direct summand of B and A ⊆⊕ B means that A
is a direct summand of B. FP (R) stands for the category of all finitely generated
projective right R-modules.

2. Comparability of modules

Many elementary element-wise characterizations of weakly stable rings have been
studied by Wei (cf. [10]). The main purpose of this section is to investigate com-
parability of modules over a weakly stable ring. We begin with an extension of [5,
Theorem 5].

Lemma 2.1. Let A be a right R-module such that EndR(A) is weakly stable. Then
EndR(nA) is weakly stable for all n ∈ N.

Proof. Given M = A1 ⊕ B = A2 ⊕ C with A1
∼= nA ∼= A2, we have M = A11 ⊕

· · · ⊕ A1n ⊕ B = A21 ⊕ · · · ⊕ A2n ⊕ C with A1i
∼= A ∼= A2i for all i. By virtue of

[5, Proposition 2], we can find some D1, E1 ⊆M such that M = D1 ⊕ E1 ⊕
(
A12 ⊕

· · ·⊕A1n⊕B
)

= D1⊕
(
A22⊕ · · ·⊕A2n⊕C

)
or M = D1⊕

(
A12⊕ · · ·⊕A1n⊕B

)
=

D1⊕E1⊕
(
A22⊕· · ·⊕A2n⊕C

)
. Thus we get M =

(
E1⊕A12

)
⊕
(
A13⊕· · ·⊕A1n⊕B⊕

D1

)
= A22⊕

(
A23⊕· · ·⊕A2n⊕C⊕D1

)
or M = A12⊕

(
A13⊕· · ·⊕A1n⊕B⊕D1

)
=(

E1⊕A22

)
⊕
(
A23⊕· · ·⊕A2n⊕C⊕D1

)
. As a result, M = A′12⊕

(
A13⊕· · ·⊕A1n⊕

B ⊕D1

)
= A′22 ⊕

(
A23 ⊕ · · · ⊕A2n ⊕C ⊕D1

)
, where A′12 = E1 ⊕A12, A

′
22 = A22 or

A′12 = A12, A
′
22 = E1 ⊕ A22. Clearly, A′12 ∼= A ∼= A′22. By [5, Proposition 2] again,

we can find D2 ⊆ M such that M = A′13 ⊕
(
A14 ⊕ · · · ⊕ A1n ⊕ B ⊕ D1 ⊕ D2

)
=

A′23 ⊕
(
A24 ⊕ · · · ⊕ A2n ⊕ C ⊕D1 ⊕D2

)
with A′13

∼= A ∼= A′23. By iteration of this
process, we getD3, · · · , Dn−1 ⊆M such thatM = A′1n⊕

(
D1⊕D2⊕· · ·⊕Dn−1⊕B

)
=

A′2n⊕
(
D1⊕D2⊕· · ·⊕Dn−1⊕C

)
with A′1n ∼= A ∼= A′2n. Thus we can find Dn, E ⊆M

such that M =
(
D1 ⊕ D2 ⊕ · · · ⊕ Dn

)
⊕ E ⊕ B =

(
D1 ⊕ D2 ⊕ · · · ⊕ Dn

)
⊕ C or

M =
(
D1⊕D2⊕· · ·⊕Dn

)
⊕B =

(
D1⊕D2⊕· · ·⊕Dn

)
⊕E⊕C. By [5, Proposition

2] again, EndR(nA) is weakly stable.

Theorem 2.1. Weakly stable property is Morita invariant.

Proof. Let R be weakly stable and S is Morita equivalent to R. Then there is a
positive integer n and an idempotent matrix e ∈ Mn(R) such that S ∼= eMn(R)e.
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Clearly, Mn(R) ∼= EndR(nR) is weakly stable by Lemma 2.1. According to [5,
Proposition 3], S is weakly stable, as desired.

Corollary 2.1. Let A be a finitely generated projective right R-module over a weakly
stable ring R. If B and C are any right R-modules such that A⊕B ∼= A⊕ C, then
B .⊕ C or C .⊕ B.

Proof. Since ψ : A⊕B ∼= A⊕C , we have A⊕C = ψ(A)⊕ψ(B) with A ∼= ψ(A). By
virtue of Theorem 2.1, EndR(A) is weakly stable. According to [5, Proposition 2],
there are some right R-modules D and E such that A⊕C = D⊕E⊕C = D⊕ψ(B) or
A⊕C = D⊕C = D⊕E⊕ψ(B). Thus, E⊕C ∼= ψ(B) ∼= B or C ∼= E⊕ψ(B) ∼= E⊕B.
Consequently, C .⊕ B or B .⊕ C.

Corollary 2.2. Let A be a right R-module having the finite exchange property, and
let E = EndR(A). Then the following are equivalent:

(1) E is weakly stable.
(2) For any right R-modules B and C, A⊕B ∼= A⊕C implies that B .⊕ C or

C .⊕ B.
(3) A = A1 ⊕B = A2 ⊕ C with A1

∼= A2 implies that B .⊕ C or C .⊕ B.
(4) For any idempotents e, f ∈ E, eA ∼= fA implies that (1− e)A .⊕ (1− f)A

or (1− f)A .⊕ (1− e)A.

Proof.
(1) =⇒ (2) is clear by [5, Proposition 2].
(2) =⇒ (3) Given A = A1 ⊕ B = A2 ⊕ C with A1

∼= A2, then A ⊕ B ∼= A ⊕ C. By
hypothesis, B .⊕ C or C .⊕ B.
(3) =⇒ (4) For any idempotents e, f ∈ E, we see that A = eA⊕(1−e)A = fA⊕(1−
f)A. Thus, eA ∼= fA implies that (1− e)A .⊕ (1− f)A or (1− f)A .⊕ (1− e)A.
(4) =⇒ (1) Given any regular x ∈ E, there exists a y ∈ E such that x = xyx and
y = yxy. Clearly, ϕ : xyA ∼= yxA given by ϕ(xya) = yxya for any a ∈ A. By
hypothesis, we get (1 − xy)A .⊕ (1 − yx)A or (1 − yx)A .⊕ (1 − xy)A. Thus, we
have a split R-monomorphism ψ : (1− xy)A→ (1− yx)A or a split R-epimorphism
ψ : (1 − xy)A → (1− yx)A. Construct a R-morphism φ : A = xyA⊕ (1− xy)A →
yxA ⊕ (1 − yx)A = A given by φ(a) = ϕ(xya) + ψ

(
(1 − xy)a

)
for any a ∈ A. One

easily checks that φ ∈ E is left or right invertible. Furthermore, x = xφx. In view
of [13, Theorem 28.7], E is an exchange ring. By [10, Theorem 3.4], we complete
the proof.

Let A be a right R-module having the finite exchange property. It follows by
Corollary 2.2 and [5, Proposition 2] that EndR(A) is weakly stable if and only if
A = A1 ⊕ B = A2 ⊕ C with A1

∼= A2 implies that there exist D,E ⊆ A such that
A = D ⊕ E ⊕B = D ⊕ C or A = D ⊕B = D ⊕ E ⊕ C.

Many classes of exchange rings belong to weakly stable rings. But there exist
exchange rings which are not weakly stable as the following shows.

Example 2.1. Let V be an infinite-dimensional vector space over a division ring D
and set

R =
(
EndD(V ) EndD(V )

0 EndD(V )

)
.

Then R is an exchange ring, while it is not weakly stable.
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Proof. Obviously, R is an exchange ring. Let {x1, x2, · · · , xn, · · · } be a basis of V .
Define σ : V → V given by σ(xi) = xi+1(i = 1, 2, · · · ) and τ : V → V given by
τ(x1) = 0 and τ(xi) = xi−1(i = 2, 3, · · · ). Then τσ = 1V and στ 6= 1V . Assume
that R is weakly stable. Since(

τ 0
0 σ

)(
σ 0
0 τ

)
+
(

0 0
0 1V − στ

)
= diag(1V , 1V ),

we have some
(
α γ
0 β

)
∈ R such that(

τ 0
0 σ

)
+
(

0 0
0 1V − στ

)(
α γ
0 β

)
∈ R

is right or left invertible. This implies that τ ∈ EndD(V ) is left invertible or σ +
(1V − στ)β ∈ EndD(V ) is right invertible. Clearly, τ

(
σ+ (1V − στ)β

)
= 1V . Thus,

τ ∈ AutD(V ) or σ + (1V − στ)β ∈ AutD(V ). If σ + (1V − στ)β ∈ AutD(V ), then
τ ∈ AutD(V ). In any case, τ ∈ AutD(V ), a contradiction. Therefore R is not weakly
stable.

In the proceeding example, we choose e = diag(1V , 0). Then eRe ∼= EndD(V )
∼= (1R − e)R(1R − e). Thus, it is possible to have a ring R, with an idempotent e,
such that both eRe and (1− e)R(1− e)R are weakly stable, but R is not.

Recall that a right R-module A is directly finite if A is not isomorphic to any
proper direct summand of itself. Equivalently, A is directly finite if and only if B = 0
is the only module for which A ⊕ B ∼= A. A module which is not directly finite is
said to be directly infinite.

Lemma 2.2. Let A be a right R-module having the finite exchange property, and
let E = EndR(A). Suppose that A is expressible as a direct sum of isomorphic
indecomposable submodules. Then:

(1) E is weakly stable.
(2) E has stable range one if and only if A is a direct sum of finite many iso-

morphic indecomposable submodules.

Proof.
(1) Assume that A = A1 ⊕ B = A2 ⊕ C with A1

∼= A2, then A = A1 ⊕ B =⊕
i∈I Yi, where each Yi is isomorphic to an indecomposable submodule Y

of A. In view of [13, Lemma 28.1], A1 has the finite exchange property.
Thus, we have some Y ′i ⊆ Yi such that A = A1 ⊕

(⊕
i∈I Y

′
i

)
. It is easy to

verify that Y ′i ⊆⊕ Yi for all i ∈ I. As each Yi is indecomposable, we see
that either Y ′i = 0 or Y ′i = Yi. Thus, there is a subset H1 of I such that
B ∼=

⊕
i∈H1

Yi. Likewise, there is a subset H2 of I such that C ∼=
⊕

i∈H2
Yi.

Clearly, |H1| ≤ |H2| or |H2| ≤ |H1|, whence either B .⊕ C or C .⊕ B.
According to Corollary 2.2, E is weakly stable.

(2) If E has stable range one, then A is directly finite. Hence, A is not isomorphic
to a proper submodule of itself. But then the index set I is finite. Conversely,
assume that A =

⊕n
i=1 Yi where each Yi is isomorphic to a indecomposable

module Y . Since A has the finite exchange property, so has each Yi by [13,
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Lemma 28.1]. In view of [13, Theorem 29.5], EndR(Yi) is local; hence, it
has stable range one. Therefore, E has stable range one, as asserted.

Theorem 2.2. Let A be a right R-module having the finite exchange property, let
E = EndR(A), and let A =

⊕
i∈I Ai. Suppose that each Ai is fully invariant, equal

to a direct sum of isomorphic indecomposable submodules. Then:

(1) E is weakly stable if and only if Ai is directly finite for all but (possibly) a
single i ∈ I.

(2) E has stable range one if and only if A is a directly finite.

Proof.
(1) Suppose that E is weakly stable. If i1, i2 ∈ I are two distinct indices such

that Ai1 and Ai2 both fail to be directly finite. In view of [9, Lemma
5.1], EndR(Ai1) and EndR(Ai2) are both directly infinite. Thus, we can
find some s1, t1 ∈ EndR(Ai1) and s2, t2 ∈ EndR(Ai2) such that s1t1 =
1, t1s1 6= 1, s2t2 6= 1 and t2s2 = 1. It is easy to check that (s1, s2) =
(s1, s2)(t1, t2)(s1, s2), i.e., (s1, s2) ∈ EndR(Ai1) ⊕ EndR(Ai2) is regular. If
(s1, s2) is one-sided unit-regular, there exists a right or left invertible (u1, u2)
such that (s1, s2) = (s1, s2)(u1, u2)(s1, s2); hence, s1 = s1u1s1 and s2 =
s2u2s2. As a result, s1u1 = 1 and u2s2 = 1. If (u1, u2) is right invertible,
u1 ∈ EndR(Ai1) is invertible. If (u1, u2) is left invertible, u2 ∈ EndR(Ai2)
is invertible. Thus, either s1 or s2 is invertible. This gives a contradiction.
By [10, Theorem 3.4], EndR(Ai1) ⊕ EndR(Ai2) is not weakly stable. Since
each Ai is a fully invariant submodule, we see that HomR(Ai, Aj) = 0 for
i 6= j. Thus, E ∼=

∏
i∈I EndR(Ai)(cf. [3]). According to [5, Proposition

3], EndR(Ai1)⊕EndR(Ai2) is weakly stable, a contradiction. Therefore we
conclude that Ai is directly finite for all but (possibly) a single i ∈ I.

Conversely, assume that all but possibly a single one of the Ai is directly
infinite. If all of the Ai are directly finite, then EndR(Ai) has stable range
one by Lemma 2.2. As E ∼=

∏
i∈I EndR(Ai), we see that E has stable range

one. If there exists a j ∈ I such that Aj is directly infinite while for all
i 6= j(i ∈ I), Ai is directly finite. It follows by Lemma 2.2 that EndR(Aj)
is weakly stable, while for all i 6= j(i ∈ I), EndR(Ai) has stable range one.
From this, E is weakly stable, as required.

(2) If E has stable range one, it easily follows that E is directly finite. Con-
versely, suppose that E is directly finite. Then EndR(Ai) is directly finite.
That is, Ai is not isomorphic to a proper submodule of itself. In view of
Lemma 2.2, EndR(Ai) has stable range one. As E ∼=

∏
i∈I EndR(Ai), we

see that E has stable range one.

Corollary 2.3. Let G be an abelian group such that End(G) is regular. If G is a
reduced torsion group, then End(G) has stable range one if and only if it is directly
finite.

Proof. As is known, a reduced abelian torsion group has a regular endomorphism
ring if and only if it is a direct sum of cyclic groups of prime order. Thus, the result
follows by Theorem 2.2.
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3. Related comparability

An element w ∈ R is called a related unit if there exists an e ∈ B(R) such that
ew ∈ eRe is right invertible and (1 − e)w ∈ (1 − e)R(1 − e) is left invertible. We
use Ur(R) to denote the set of all related units in R. Now we investigate some
elementary properties of related comparability which generalize the corresponding
results for exchange rings.

Lemma 3.1. Let A be a right R-module, let E = EndR(A), and let e, f ∈ E be
idempotents. Then the following hold:

(1) eA .⊕ fA if and only if there exist some a ∈ eEf and b ∈ fEe such that
e = ab.

(2) eA ∼= fA if and only if there exist some a, b ∈ E such that e = ab and
f = ba.

Proof.
(1) Suppose that eA .⊕ fA. Then there exist R-morphisms α : eA → fA and

β : fA→ eA such that βα = 1eA. Let

a : A = fA⊕ (1− f)A
f
� fA

β→ eA ↪→ A

and
b : A = eA⊕ (1− e)A

e
� eA

α→ fA ↪→ A.

Then e = ab with a = eaf ∈ eEf and b = fbe ∈ fEe.
Suppose that there exist some a ∈ eEf and b ∈ fEe such that e = ab.

Construct two R-morphisms ϕ : eA → fA given by ϕ(er) = ber for any
r ∈ A and φ : fA → eA given by φ(fr) = afr for any r ∈ A. It is easy to
verify that φϕ = 1eA, i.e., ϕ is a split R-monomorphism. Thus, we have a
right R-module D such that eA⊕D ∼= fA. Therefore eA .⊕ fA.

(2) Suppose that eA ∼= fA. Then there exist R-morphisms α : eA → fA and
β : fA→ eA such that βα = 1eA and αβ = 1fA. Let

a : A = fA⊕ (1− f)A
f
� fA

β→ eA ↪→ A

and
b : A = eA⊕ (1− e)A

e
� eA

α→ fA ↪→ A.

Then e = ab and f = ba with a = eaf ∈ eEf and b = fbe ∈ fEe.
Suppose that there exist some a, b ∈ E such that e = ab and f = ba. Let

c = eaf and d = fbe. Then e = cd and f = dc with c ∈ eEf and d ∈ fEe.
Construct two R-morphisms ϕ : eA → fA given by ϕ(er) = der for any
r ∈ A and φ : fA → eA given by φ(fr) = cfr for any r ∈ A. It is easy to
verify that φϕ = 1eA and ϕφ = 1fA, i.e., ϕ is an isomorphism. Therefore
eA ∼= fA, as asserted.

As is well known, an exchange ring satisfies related comparability if and only if
R = A1 ⊕B = A2 ⊕ C with A1

∼= A2 implies there exists some e ∈ B(R) such that
Be .⊕ Ce and C(1− e) .⊕ B(1− e). We extend this result to a general case.

Theorem 3.1. Let A be a right R-module, and let E = EndR(A). Then the follow-
ing are equivalent:
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(1) E satisfies related comparability.
(2) Every regular element in E is related unit-regular.
(3) A = A1 ⊕ B = A2 ⊕ C with A1

∼= A2 implies that there exists a u ∈ B(E)
such that uB .⊕ uC and (1− u)C .⊕ (1− u)B.

Proof.
(1) =⇒ (3) Given A = A1 ⊕ B = A2 ⊕ C with A1

∼= A2, then we have idempotents
e, f ∈ E such that A1 = (1 − e)A,B = eA,A2 = (1 − f)A and C = fA. As
(1−e)A ∼= (1−f)A, it follows by Lemma 3.1 that there exist a, b such that e = 1+ab
and f = 1 + ba. By hypothesis, there exists a u ∈ B(E) such that ueE .⊕ ufE
and (1− u)fE .⊕ (1− u)eE. By Lemma 3.1 again, we have some s ∈ ueEuf and
t ∈ ufEue such that ue = ab. According to Lemma 3.1, we get ueA .⊕ ufA. That
is, uB .⊕ uC. Likewise, (1− u)C .⊕ (1− u)B, as required.
(3) =⇒ (2) For any regular x ∈ E, there exists a y ∈ E such that x = xyx.
Since xy and yx are both idempotents, A = yxA⊕ (1− yx)A = xyA⊕ (1− xy)A =
xA⊕(1−xy)A. Obviously, ϕ : xA→ yxA, given by xr 7→ yxr, is an isomorphism. So,
there exists f ∈ B(E) such that f(1−xy)A .⊕ f(1−yx)A and (1−f)(1−yx)A .⊕

(1 − f)(1 − xy)A. Thus, there exists a split R-monomorphism φ : f(1 − xy)A →
f(1 − yx)A. Let α : fA → fA with α(b + c) = ϕ(b) + φ(c) for any b ∈ fxA, c ∈
f(1− xy)A. It is easy to verify that α ∈ EndR(fA) is left invertible. Furthermore,
we see that fx = xαfx. Furthermore, there exists a split R-epimorphism ψ :
(1− f)(1− xy)A→ (1− f)(1− yx)A. Let β : (1− f)A→ (1− f)A with β(b+ c) =
ϕ(b) + ψ(c) for any b ∈ (1 − f)xA, c ∈ (1 − f)(1 − xy)A. One easily checks that
β ∈ EndR

(
(1− f)A

)
is right invertible. In addition, we get (1− f)x = xβ(1− f)x.

Define w : A = fA⊕ (1− f)A→ fA⊕ (1− f)A given by w(s+ t) = α(s) + β(t) for
any s ∈ eA, t ∈ (1− e)A. Then w ∈ Ur(E). Furthermore, x = fx+ (1− f)x = xwx,
as desired.
(2) =⇒ (1) For any idempotents e, f ∈ E with e = 1 + ab and f = 1 + ba for
some a, b ∈ E, we see that 1 − e = (−a)(1 − f)b and 1 − f = b(1 − e)(−a). Let
c = (1 − e)(−a)(1 − f) and d = (1 − f)b(1 − e). Then 1 − e = cd and 1 − f = dc.
In addition, dcd = (1 − f)d = d. By hypothesis, there exists a w ∈ Ur(E) such
that d = dwd. Set u = (e − wd)w(f − dw). Then (e − wd)2 = 1 = (f − dw)2,
whence, u ∈ Ur(E). Furthermore, we see that eu = w − wdw = uf . As u ∈ Ur(E),
there is a g ∈ B(E) such that gus = g and t(1 − g)u = 1 − g. Thus, eg = ufsg =
eufg · fseg. In view of Lemma 3.1, we get geE .⊕ gfE. Analogously, we deduce
that (1− g)fE .⊕ (1− g)eE. Therefore E satisfies related comparability.

Theorem 3.1 shows that related comparability is right and left symmetric. That
is, a ring R satisfies related comparability if and only if so does its opposite ring
Rop. Also we note that every commutative ring satisfies related comparability from
Theorem 3.1.

Corollary 3.1. Let R be a ring. Then the following are equivalent:
(1) R satisfies related comparability.
(2) For any regular a ∈ R, aR + bR = R implies that there exists a y ∈ R such

that a+ by ∈ Ur(R).
(3) Whenever ax + b = 1 with ba = 0, then there exists a y ∈ R such that

a+ by ∈ Ur(R).
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Proof.
(1) =⇒ (2) For any regular a ∈ R, aR + bR = R implies that there exist x, y ∈ R
such that ax+ by = 1. In view of Theorem 3.1, a = awa for some w ∈ Ur(R). Thus,
we have an e ∈ B(R) such that ews = e and t(1− e)w = 1− e for some s, t ∈ R. Let
f = wa. Then, fx+wc = w, where c = by. So f(x+wc) + (1− f)wc = w. Clearly,
(1−f)wc = (1−f)w. It is easy to verify that (1−f)w = (1−f)w

(
es+(1−e)t

)
(1−f)w.

Let g = (1 − f)w
(
es + (1 − e)t

)
(1 − f). Then g = g2, fg = gf = 0. This implies

that f(x+wc) = fw and (1− f)wc = gw. As a result, we deduce that w
(
a+ c(es+

(1− e)t)(1− f)(1 + fwc(es+ (1− e)t)(1− f))
)(

1− fwc(es+ (1− e)t)(1− f)
)
w =(

f + wc(es + (1 − e)t)(1 − f)(1 + fwc(es + (1 − e)t)(1 − f))
)(

1 − fwc(es + (1 −
e)t)(1 − f)

)
w =

(
f(1 − fwc(es + (1 − e)t)(1 − f)) + wc(es + (1 − e)t)(1 − f)

)
w =(

f + (1 − f)w(es + (1 − e)t)(1 − f)
)
w = (f + g)w = w. As w ∈ Ur(R), we deduce

that a+byz ∈ Ur(R), where z =
(
es+(1−e)t

)
(1−f)

(
1+fwc(es+(1−e)t)(1−f)

)
.

(2) =⇒ (3) Whenever ax + b = 1 with ba = 0, then axa = a, i.e., a ∈ R is regular.
Thus, there exists a y ∈ R such that a+ by ∈ Ur(R).
(3) =⇒ (1) Given any regular a ∈ R, there exists some x ∈ R such that a = axa
and x = xax. Hence, xa+ (1− xa) = 1 with (1− xa)x = 0. By hypothesis, we have
a y ∈ R such that u := x+ (1− xa)y ∈ Ur(R). Thus, a = axa = aua. According to
Theorem 3.1, R satisfies related comparability.

Corollary 3.2. Let e ∈ R be an idempotent. If R satisfies related comparability,
then so does eRe.

Proof. Assume that ax + b = e and ba = 0, where a, x, b ∈ eRe. Then (a + 1 −
e)(x+ 1− e) + b = 1 with b(a+ 1− e) = 0. Since R satisfies related comparability,
by virtue of Corollary 3.1, there exists a y ∈ R such that a + 1 − e + by ∈ Ur(R).
Thus, we have an f ∈ B(R) such that f(a + 1 − e + by) is right invertible in
fRf and (1− f)(a + 1− e + by) is left invertible in (1− f)R(1− f). Assume that
f(a+1−e+by)s = f for some s ∈ R. Then f(1−e)se = 0; hence, fse = fese. Thus,
f
(
a+b(eye)

)
(ese) = fe. Assume that (1−f)t(a+1−e+by) = 1−f for some t ∈ R.

Then (1 − f)(ete)
(
a + b(eye)

)
= (1 − f)e. This implies that a + b(eye) ∈ Ur(eRe).

By Corollary 3.1 again, eRe satisfies related comparability.
If Mn(R)(n ∈ N) satisfies related comparability, then so does R from Corollary

3.2.

Theorem 3.2. Let A be a right R-module having the finite exchange property, let
E = EndR(A), and let A =

⊕
i∈I Ai. Suppose that each Ai is fully invariant, equal

to a direct sum of isomorphic indecomposable submodules. Then E satisfies related
comparability.

Proof. As each Ai is fully invariant, E ∼=
∏
i∈I EndR(Ai) (see [3]). According to

Lemma 2.2, each EndR(Ai) is weakly stable. Given (ai)(xi) + (bi) = (1R1 , 1R2 , · · · ,
1Ri , · · · ) in

∏∞
i=1Ri, where Ri = EndR(Ai), then aixi + bi = 1Ri for all i ∈ N.

For each i, since Ri is weakly stable, there exists some yi ∈ R such that ui :=
ai + biyi ∈ Ri is right or left invertible. If ui ∈ Ri is right invertible, choose
ei = 1Ri

. If ui ∈ Ri is left invertible, choose ei = 0. Then eiui ∈ eiRiei is right
invertible and (1Ri−ei)ui ∈ (1Ri−ei)Ri(1Ri−ei) is left invertible. Let e = (ei) and
y = (yi). Then e ∈ B

(∏∞
i=1Ri

)
, and that e

(
(ai) + (bi)y

)
∈ e
(∏∞

i=1Ri
)
e is right
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invertible and
(
(1R1 , 1R2 , · · · , 1Ri

, · · · )−e
)(

(ai)+(bi)y
)
∈
(
(1R1 , 1R2 , · · · , 1Ri

, · · · )−
e
)(∏∞

i=1Ri
)(

(1R1 , 1R2 , · · · , 1Ri , · · · ) − e
)

is left invertible. Hence, we get (ai) +
(bi)y ∈ Ur

(∏∞
i=1Ri

)
, and so

∏∞
i=1Ri satisfies related comparability by Corollary

3.1. Therefore E satisfies related comparability.

Corollary 3.3. Let G be an abelian group such that End(G) is regular. If G is a
reduced torsion group, then End(G) satisfies related comparability.

Proof. As is well known, a reduced abelian torsion group has a regular endomorphism
ring if and only if it is a direct sum of cyclic groups of prime order. So we may assume
that G ∼=

⊕
p

⊕
iG(p,i), where each G(p,i) is a cyclic group of prime order p. Clearly,

each
⊕

iG(p,i) is fully invariant. In addition, G(p,i)
∼= G(p,j) for any i, j. Thus, the

result follows by Theorem 3.2.
Take G = H ⊕K, with H the direct sum of infinitely many isomorphic copies of

Zp, K the direct sum of infinitely many isomorphic copies of Zq(p, q distinct primes).
In view of Corollary 3.3, End(G) is a regular ring satisfying related comparability.
But End(G) is not one-sided unit-regular. Let Ri be purely infinite, simple ring.
As in the proof of Theorem 3.2, we see that

∏∞
i=1Ri is an exchange ring satisfies

related comparability. As in the proof of Theorem 2.2, we claim that
∏∞
i=1Ri is not

weakly stable.
Following Ara et al., a ring R is separative provided that for all finitely generated

projective right R-modules A,B, 2A ∼= A⊕B ∼= 2B =⇒ A ∼= B. Separativity plays
a key role in the direct sum decomposition theory of exchange rings (cf. [1]).

Lemma 3.2. Let R be an exchange ring. Then the following are equivalent:
(1) R is separative.
(2) For any A,B,C ∈ FP (R), A⊕ C ∼= B ⊕ C with C .⊕ A,B =⇒ Ae .⊕ Be

and B(1− e) .⊕ A(1− e) for some e ∈ B(R).
(3) For any A,B ∈ FP (R), A ⊕ A ∼= A ⊕ B ∼= B ⊕ B =⇒ Ae .⊕ Be and

B(1− e) .⊕ A(1− e) for some e ∈ B(R).
(4) For any A,B ∈ FP (R), 2A ∼= 2B and 3A ∼= 3B =⇒ Ae .⊕ Be and

B(1− e) .⊕ A(1− e) for some e ∈ B(R).

Proof. Clearly, R can be seen as an ideal of itself. Therefore the proof is an imme-
diate consequence of [7, Lemma 4.1].

Lemma 3.3. Every exchange ring satisfying related comparability is separative.

Proof. Let R be an exchange ring satisfying related comparability. Suppose that
A,B ∈ FP (R) such that A ⊕ A ∼= A ⊕ B ∼= B ⊕ B. Since R satisfies related
comparability, by [6, Theorem 6], we have Ae .⊕ Be and B(1− e) .⊕ A(1− e) for
some e ∈ B(R). Therefore we get the result by Lemma 3.2.

Recall that a ring R has stable rank m if there exists the least number m such that
a1R+· · ·+am+1R = R with a1, · · · , am+1 ∈ R implies that there exist b1, · · · , bm ∈ R
such that (a1 + am+1b1)R + · · · + (am + am+1bm)R = R. If this m does not exist,
we say that R has stable rank ∞.

Theorem 3.3. Let G be an abelian group such that End(G) is regular. If G is a
reduced torsion group, then End(G) is separative, so has stable rank 1, 2 or ∞.
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Proof. In view of Corollary 3.3, End(G) satisfies related comparability. Therefore
End(G) is separative from Lemma 3.3. Therefore we complete the proof by [1,
Theorem 3.3].

Proposition 3.1. Let R be a simple exchange ring. Then the following are equiva-
lent:

(1) R satisfies related comparability.
(2) R is weakly stable.
(3) R is separative.

Proof.
(1) =⇒ (3) is obvious by Lemma 3.3.
(3) =⇒ (2) If R is directly finite, R has stable range one from [1, Theorem 3.4]. If
R is directly infinite, then R ⊕ D ∼= R for some nonzero right R-module D. Let
e, f ∈ R be idempotents. If e = 0 or f = 0, then eR .⊕ fR or fR .⊕ eR.
Now we assume that e 6= 0, f 6= 0. Clearly, there exists a nonzero idempotent
g ∈ R such that D ∼= gR. Since R is simple, we see that RgR = R. Thus,
there are some si, ti ∈ R(1 ≤ i ≤ n) such that

∑n
i=1 sigti = 1. Construct a

R-morphism ϕ : n(gR) → R given by ϕ(gr1, · · · , grn) =
∑n
i=1 sigri. It is easy

to verify that ϕ is a R-epimorphism. As R is projective, there exists a right R-
module N such that R ⊕ N ∼= n(gR). Hence, R .⊕ nD; whence, eR .⊕ nD.
Thus eR ⊕ R .⊕ nD ⊕ R ∼= R, and so eR ⊕ R .⊕ R .⊕ fR ⊕ R. Hence,
R⊕

(
eR⊕E

) ∼= R⊕fR for a right R-module E. As eR and fR are both nonzero, we
also have R .⊕ s(eR) .⊕ s

(
eR ⊕ E

)
and R .⊕ t(fR) for some s, t ∈ N. Applying

[1, Lemma 2.1], eR .⊕ eR⊕ E ∼= fR. In view of Corollary 2.2, R is weakly stable.
(2) =⇒ (1) is trivial.

References

[1] P. Ara, K. R. Goodearl, K. C. O’Meara and E. Pardo, Separative cancellation for projective

modules over exchange rings, Israel J. Math. 105 (1998), 105–137.
[2] D. M. Arnold, Finite Rank Torsion Free Abelian Groups and Rings, Lecture Notes in Math.,

931, Springer, Berlin, 1982.

[3] A. J. Berrick and M. E. Keating, An Introduction to Rings and Modules with K-Theory in
View, Cambridge Univ. Press, Cambridge, 2000.

[4] H. Chen, Elements in one-sided unit regular rings, Comm. Algebra 25 (1997), no. 8, 2517–2529.

[5] H. Chen, Comparability of modules over regular rings, Comm. Algebra 25 (1997), no. 11,
3531–3543.

[6] H. Chen, Related comparability over exchange rings, Comm. Algebra 27 (1999), no. 9, 4209–

4216.
[7] H. Chen, Separative ideals of exchange rings, Bull. Iranian Math. Soc., to appear.

[8] G. Ehrlich, Units and one-sided units in regular rings, Trans. Amer. Math. Soc. 216 (1976),
81–90.

[9] K. R. Goodearl, Von Neumann Regular Rings, Pitman, Boston, Mass., 1979.

[10] W. Jiaqun, Unit-regularity and stable range conditions, Comm. Algebra 33 (2005), no. 6,
1937–1946.

[11] T. Y. Lam, A crash course on stable range, cancellation, substitution and exchange, J. Algebra

Appl. 3 (2004), no. 3, 301–343.
[12] K. C. O’Meara and C. Vinsonhaler, Separative cancellation and multiple isomorphism in

torsion-free abelian groups, J. Algebra 221 (1999), no. 2, 536–550.

[13] A. Tuganbaev, Rings Close to Regular, Kluwer Acad. Publ., Dordrecht, 2002.


