Weakly Stable Rings and Related Comparability

HUANYIN CHEN

Department of Mathematics, Hangzhou Normal University Hangzhou 310036, China huanyinchen@yahoo.cn

Abstract. Let A be a right R-module having the finite exchange property, and let $A = \bigoplus_{i \in I} A_i$. Suppose that each A_i is fully invariant, equal to a direct sum of isomorphic indecomposable submodules. Then $End_R(A)$ satisfies related comparability. As an application, we prove that the regular endomorphism ring of every reduced torsion abelian group satisfies related comparability.

2010 Mathematics Subject Classification: 16E50, 19U99

Key words and phrases: Finite exchange property, weakly stable ring, related comparability.

1. Introduction

A ring R is said to be weakly stable provided that aR + bR = R implies that there exists a $y \in R$ such that $a + by \in R$ is right or left invertible. Many authors investigated weakly stable rings (cf. [4–5, 8, 10]). Following Goodearl, a regular ring R satisfies general comparability, provided that, for any $x, y \in R$, there exists a $u \in B(R)$ such that $uxR \leq uyR$ and $(1 - u)yR \leq (1 - u)xR$. This concept evolved from operator algebras and Baer rings, where it is one of the objectives of the axiomatic development (see [9]). As a generalization of weakly stable ring and general comparability, the author introduced related comparability over exchange rings (cf. [6]). We say that a ring R satisfies related comparability provided that for any idempotents $e, f \in R$ with e = 1 + ab and f = 1 + ba for some $a, b \in R$, there exists a $u \in B(R)$ such that $ueR \leq^{\oplus} ufR$ and $(1 - u)fR \leq^{\oplus} (1 - u)eR$. The class of rings satisfying related comparability includes exchange rings satisfying general comparability, weakly stable rings, partially unit-regular rings (cf. [6]).

Recall that a right *R*-module has the finite exchange property if for every right *R*-module *A* and two decompositions $K = M \oplus N = \bigoplus_{i \in I} A_i$, where $M_R \cong A$ and the index set *I* is finite, there exist submodules $A'_i \subseteq A_i$ such that $K = M \oplus (\bigoplus_{i \in I} A'_i)$. A ring *R* is an exchange ring provided that *R* has the finite exchange property as a right *R*-module. A ring *R* is an exchange ring if and only if for any $a \in R$,

Communicated by Lee See Keong.

Received: March 3, 2009; Revised: July 14, 2009.

H. Chen

there exists an idempotent $e \in Ra$ such that $1 - e \in R(1 - a)$ (cf. [13, Theorem 29.2]). The class of exchange rings includes regular rings, π -regular rings, strongly π -regular rings, semiperfect rings, left or right continuous rings, clean rings, and unit C^* -algebras of real rank zero. It is well known that a right *R*-module has the finite exchange property if and only if $End_R(A)$ is an exchange ring. Such rings have been extensively studied by many authors (cf. [1, 13]).

A submodule B of a right R-module A is fully invariant in case for any $f \in End_R(A)$, $f(B) \subseteq B$. Let A be a right R-module having the finite exchange property, and let $A = \bigoplus_{i \in I} A_i$. Suppose that each A_i is fully invariant, equal to a direct sum of isomorphic indecomposable submodules. It is shown that $End_R(A)$ satisfies related comparability. As an application, we prove that if G is a reduced torsion abelian group such that End(G) is regular, then End(G) satisfies related comparability.

Throughout, all rings are associative with identity and all right *R*-modules are unital. B(R) denotes the Boolean algebra of all central idempotents in R. $A \leq^{\oplus} B$ means that A is isomorphic to a direct summand of B and $A \subseteq^{\oplus} B$ means that A is a direct summand of B. FP(R) stands for the category of all finitely generated projective right *R*-modules.

2. Comparability of modules

Many elementary element-wise characterizations of weakly stable rings have been studied by Wei (cf. [10]). The main purpose of this section is to investigate comparability of modules over a weakly stable ring. We begin with an extension of [5, Theorem 5].

Lemma 2.1. Let A be a right R-module such that $End_R(A)$ is weakly stable. Then $End_R(nA)$ is weakly stable for all $n \in \mathbb{N}$.

Proof. Given $M = A_1 \oplus B = A_2 \oplus C$ with $A_1 \cong nA \cong A_2$, we have $M = A_{11} \oplus A_{12}$ $\dots \oplus A_{1n} \oplus B = A_{21} \oplus \dots \oplus A_{2n} \oplus C$ with $A_{1i} \cong A \cong A_{2i}$ for all *i*. By virtue of [5, Proposition 2], we can find some $D_1, E_1 \subseteq M$ such that $M = D_1 \oplus E_1 \oplus (A_{12} \oplus A_{12})$ $\cdots \oplus A_{1n} \oplus B$ = $D_1 \oplus (A_{22} \oplus \cdots \oplus A_{2n} \oplus C)$ or $M = D_1 \oplus (A_{12} \oplus \cdots \oplus A_{1n} \oplus B)$ = $D_1 \oplus E_1 \oplus (A_{22} \oplus \cdots \oplus A_{2n} \oplus C)$. Thus we get $M = (E_1 \oplus A_{12}) \oplus (A_{13} \oplus \cdots \oplus A_{1n} \oplus B \oplus C)$. D_1 = $A_{22} \oplus (A_{23} \oplus \cdots \oplus A_{2n} \oplus C \oplus D_1)$ or $M = A_{12} \oplus (A_{13} \oplus \cdots \oplus A_{1n} \oplus B \oplus D_1) =$ $(E_1 \oplus A_{22}) \oplus (A_{23} \oplus \cdots \oplus A_{2n} \oplus C \oplus D_1)$. As a result, $M = A'_{12} \oplus (A_{13} \oplus \cdots \oplus A_{1n} \oplus A_{1n})$ $B \oplus D_1$ = $A'_{22} \oplus (A_{23} \oplus \cdots \oplus A_{2n} \oplus C \oplus D_1)$, where $A'_{12} = E_1 \oplus A_{12}, A'_{22} = A_{22}$ or $A'_{12} = A_{12}, A'_{22} = E_1 \oplus A_{22}$. Clearly, $A'_{12} \cong A \cong A'_{22}$. By [5, Proposition 2] again, we can find $D_2 \subseteq M$ such that $M = A'_{13} \oplus (A_{14} \oplus \cdots \oplus A_{1n} \oplus B \oplus D_1 \oplus D_2) =$ $A'_{23} \oplus (A_{24} \oplus \cdots \oplus A_{2n} \oplus C \oplus D_1 \oplus D_2)$ with $A'_{13} \cong A \cong A'_{23}$. By iteration of this process, we get $D_3, \dots, D_{n-1} \subseteq M$ such that $M = A'_{1n} \oplus (D_1 \oplus D_2 \oplus \dots \oplus D_{n-1} \oplus B) =$ $A'_{2n} \oplus (D_1 \oplus D_2 \oplus \cdots \oplus D_{n-1} \oplus C)$ with $A'_{1n} \cong A \cong A'_{2n}$. Thus we can find $D_n, E \subseteq M$ such that $M = (D_1 \oplus D_2 \oplus \cdots \oplus D_n) \oplus E \oplus B = (D_1 \oplus D_2 \oplus \cdots \oplus D_n) \oplus C$ or $M = (D_1 \oplus D_2 \oplus \cdots \oplus D_n) \oplus B = (D_1 \oplus D_2 \oplus \cdots \oplus D_n) \oplus E \oplus C.$ By [5, Proposition 2] again, $End_R(nA)$ is weakly stable.

Theorem 2.1. Weakly stable property is Morita invariant.

Proof. Let R be weakly stable and S is Morita equivalent to R. Then there is a positive integer n and an idempotent matrix $e \in M_n(R)$ such that $S \cong eM_n(R)e$.

Clearly, $M_n(R) \cong End_R(nR)$ is weakly stable by Lemma 2.1. According to [5, Proposition 3], S is weakly stable, as desired.

Corollary 2.1. Let A be a finitely generated projective right R-module over a weakly stable ring R. If B and C are any right R-modules such that $A \oplus B \cong A \oplus C$, then $B \leq^{\oplus} C$ or $C \leq^{\oplus} B$.

Proof. Since $\psi : A \oplus B \cong A \oplus C$, we have $A \oplus C = \psi(A) \oplus \psi(B)$ with $A \cong \psi(A)$. By virtue of Theorem 2.1, $End_R(A)$ is weakly stable. According to [5, Proposition 2], there are some right *R*-modules *D* and *E* such that $A \oplus C = D \oplus E \oplus C = D \oplus \psi(B)$ or $A \oplus C = D \oplus C = D \oplus E \oplus \psi(B)$. Thus, $E \oplus C \cong \psi(B) \cong B$ or $C \cong E \oplus \psi(B) \cong E \oplus B$. Consequently, $C \lesssim^{\oplus} B$ or $B \lesssim^{\oplus} C$.

Corollary 2.2. Let A be a right R-module having the finite exchange property, and let $E = End_R(A)$. Then the following are equivalent:

- (1) E is weakly stable.
- (2) For any right R-modules B and C, $A \oplus B \cong A \oplus C$ implies that $B \leq^{\oplus} C$ or $C \leq^{\oplus} B$.
- (3) $A = A_1 \oplus B = A_2 \oplus C$ with $A_1 \cong A_2$ implies that $B \leq^{\oplus} C$ or $C \leq^{\oplus} B$.
- (4) For any idempotents $e, f \in E$, $eA \cong fA$ implies that $(1-e)A \leq^{\oplus} (1-f)A$ or $(1-f)A \leq^{\oplus} (1-e)A$.

Proof.

 $(1) \Longrightarrow (2)$ is clear by [5, Proposition 2].

(2) \Longrightarrow (3) Given $A = A_1 \oplus B = A_2 \oplus C$ with $A_1 \cong A_2$, then $A \oplus B \cong A \oplus C$. By hypothesis, $B \leq^{\oplus} C$ or $C \leq^{\oplus} B$.

(3) \Longrightarrow (4) For any idempotents $e, f \in E$, we see that $A = eA \oplus (1-e)A = fA \oplus (1-f)A$. Thus, $eA \cong fA$ implies that $(1-e)A \lesssim^{\oplus} (1-f)A$ or $(1-f)A \lesssim^{\oplus} (1-e)A$. (4) \Longrightarrow (1) Given any regular $x \in E$, there exists a $y \in E$ such that x = xyx and y = yxy. Clearly, $\varphi : xyA \cong yxA$ given by $\varphi(xya) = yxya$ for any $a \in A$. By hypothesis, we get $(1-xy)A \lesssim^{\oplus} (1-yx)A$ or $(1-yx)A \lesssim^{\oplus} (1-xy)A$. Thus, we have a split *R*-monomorphism $\psi : (1-xy)A \to (1-yx)A$ or a split *R*-epimorphism $\psi : (1-xy)A \to (1-yx)A$ or a split *R*-epimorphism $\psi : (1-xy)A \to (1-yx)A$ or a split *R*-epimorphism $\psi : (1-xy)A \to (1-yx)A$ or a split *R*-epimorphism $\psi : (1-xy)A \to (1-yx)A$. Construct a *R*-morphism $\phi : A = xyA \oplus (1-xy)A \to yxA \oplus (1-yx)A = A$ given by $\phi(a) = \varphi(xya) + \psi((1-xy)a)$ for any $a \in A$. One easily checks that $\phi \in E$ is left or right invertible. Furthermore, $x = x\phi x$. In view of [13, Theorem 28.7], *E* is an exchange ring. By [10, Theorem 3.4], we complete the proof.

Let A be a right R-module having the finite exchange property. It follows by Corollary 2.2 and [5, Proposition 2] that $End_R(A)$ is weakly stable if and only if $A = A_1 \oplus B = A_2 \oplus C$ with $A_1 \cong A_2$ implies that there exist $D, E \subseteq A$ such that $A = D \oplus E \oplus B = D \oplus C$ or $A = D \oplus B = D \oplus E \oplus C$.

Many classes of exchange rings belong to weakly stable rings. But there exist exchange rings which are not weakly stable as the following shows.

Example 2.1. Let V be an infinite-dimensional vector space over a division ring D and set

$$R = \begin{pmatrix} End_D(V) & End_D(V) \\ 0 & End_D(V) \end{pmatrix}.$$

Then R is an exchange ring, while it is not weakly stable.

H. Chen

Proof. Obviously, R is an exchange ring. Let $\{x_1, x_2, \dots, x_n, \dots\}$ be a basis of V. Define $\sigma : V \to V$ given by $\sigma(x_i) = x_{i+1} (i = 1, 2, \dots)$ and $\tau : V \to V$ given by $\tau(x_1) = 0$ and $\tau(x_i) = x_{i-1} (i = 2, 3, \dots)$. Then $\tau \sigma = 1_V$ and $\sigma \tau \neq 1_V$. Assume that R is weakly stable. Since

$$\begin{pmatrix} \tau & 0 \\ 0 & \sigma \end{pmatrix} \begin{pmatrix} \sigma & 0 \\ 0 & \tau \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1_V - \sigma\tau \end{pmatrix} = \operatorname{diag}(1_V, 1_V),$$

we have some $\begin{pmatrix} \alpha & \gamma \\ 0 & \beta \end{pmatrix} \in R$ such that

$$\left(\begin{array}{cc} \tau & 0\\ 0 & \sigma \end{array}\right) + \left(\begin{array}{cc} 0 & 0\\ 0 & 1_V - \sigma\tau \end{array}\right) \left(\begin{array}{cc} \alpha & \gamma\\ 0 & \beta \end{array}\right) \in R$$

is right or left invertible. This implies that $\tau \in End_D(V)$ is left invertible or $\sigma + (1_V - \sigma\tau)\beta \in End_D(V)$ is right invertible. Clearly, $\tau(\sigma + (1_V - \sigma\tau)\beta) = 1_V$. Thus, $\tau \in Aut_D(V)$ or $\sigma + (1_V - \sigma\tau)\beta \in Aut_D(V)$. If $\sigma + (1_V - \sigma\tau)\beta \in Aut_D(V)$, then $\tau \in Aut_D(V)$. In any case, $\tau \in Aut_D(V)$, a contradiction. Therefore R is not weakly stable.

In the proceeding example, we choose $e = \text{diag}(1_V, 0)$. Then $eRe \cong End_D(V)$ $\cong (1_R - e)R(1_R - e)$. Thus, it is possible to have a ring R, with an idempotent e, such that both eRe and (1 - e)R(1 - e)R are weakly stable, but R is not.

Recall that a right *R*-module *A* is directly finite if *A* is not isomorphic to any proper direct summand of itself. Equivalently, *A* is directly finite if and only if B = 0 is the only module for which $A \oplus B \cong A$. A module which is not directly finite is said to be directly infinite.

Lemma 2.2. Let A be a right R-module having the finite exchange property, and let $E = End_R(A)$. Suppose that A is expressible as a direct sum of isomorphic indecomposable submodules. Then:

- (1) E is weakly stable.
- (2) E has stable range one if and only if A is a direct sum of finite many isomorphic indecomposable submodules.

Proof.

- (1) Assume that $A = A_1 \oplus B = A_2 \oplus C$ with $A_1 \cong A_2$, then $A = A_1 \oplus B = \bigoplus_{i \in I} Y_i$, where each Y_i is isomorphic to an indecomposable submodule Y of A. In view of [13, Lemma 28.1], A_1 has the finite exchange property. Thus, we have some $Y'_i \subseteq Y_i$ such that $A = A_1 \oplus (\bigoplus_{i \in I} Y'_i)$. It is easy to verify that $Y'_i \subseteq \oplus Y_i$ for all $i \in I$. As each Y_i is indecomposable, we see that either $Y'_i = 0$ or $Y'_i = Y_i$. Thus, there is a subset H_1 of I such that $B \cong \bigoplus_{i \in H_1} Y_i$. Likewise, there is a subset H_2 of I such that $C \cong \bigoplus_{i \in H_2} Y_i$. Clearly, $|H_1| \leq |H_2|$ or $|H_2| \leq |H_1|$, whence either $B \lesssim^{\oplus} C$ or $C \lesssim^{\oplus} B$. According to Corollary 2.2, E is weakly stable.
- (2) If *E* has stable range one, then *A* is directly finite. Hence, *A* is not isomorphic to a proper submodule of itself. But then the index set *I* is finite. Conversely, assume that $A = \bigoplus_{i=1}^{n} Y_i$ where each Y_i is isomorphic to a indecomposable module *Y*. Since *A* has the finite exchange property, so has each Y_i by [13,

Lemma 28.1]. In view of [13, Theorem 29.5], $End_R(Y_i)$ is local; hence, it has stable range one. Therefore, E has stable range one, as asserted.

Theorem 2.2. Let A be a right R-module having the finite exchange property, let $E = End_R(A)$, and let $A = \bigoplus_{i \in I} A_i$. Suppose that each A_i is fully invariant, equal to a direct sum of isomorphic indecomposable submodules. Then:

- (1) E is weakly stable if and only if A_i is directly finite for all but (possibly) a single $i \in I$.
- (2) E has stable range one if and only if A is a directly finite.

Proof.

(1) Suppose that E is weakly stable. If $i_1, i_2 \in I$ are two distinct indices such that A_{i_1} and A_{i_2} both fail to be directly finite. In view of [9, Lemma 5.1], $End_R(A_{i_1})$ and $End_R(A_{i_2})$ are both directly infinite. Thus, we can find some $s_1, t_1 \in End_R(A_{i_1})$ and $s_2, t_2 \in End_R(A_{i_2})$ such that $s_1t_1 =$ $1, t_1 s_1 \neq 1, s_2 t_2 \neq 1$ and $t_2 s_2 = 1$. It is easy to check that $(s_1, s_2) =$ $(s_1, s_2)(t_1, t_2)(s_1, s_2)$, i.e., $(s_1, s_2) \in End_R(A_{i_1}) \oplus End_R(A_{i_2})$ is regular. If (s_1, s_2) is one-sided unit-regular, there exists a right or left invertible (u_1, u_2) such that $(s_1, s_2) = (s_1, s_2)(u_1, u_2)(s_1, s_2)$; hence, $s_1 = s_1 u_1 s_1$ and $s_2 = s_1 u_1 s_1$ $s_2u_2s_2$. As a result, $s_1u_1 = 1$ and $u_2s_2 = 1$. If (u_1, u_2) is right invertible, $u_1 \in End_R(A_{i_1})$ is invertible. If (u_1, u_2) is left invertible, $u_2 \in End_R(A_{i_2})$ is invertible. Thus, either s_1 or s_2 is invertible. This gives a contradiction. By [10, Theorem 3.4], $End_R(A_{i_1}) \oplus End_R(A_{i_2})$ is not weakly stable. Since each A_i is a fully invariant submodule, we see that $Hom_R(A_i, A_j) = 0$ for $i \neq j$. Thus, $E \cong \prod_{i \in I} End_R(A_i)$ (cf. [3]). According to [5, Proposition 3], $End_R(A_{i_1}) \oplus End_R(A_{i_2})$ is weakly stable, a contradiction. Therefore we conclude that A_i is directly finite for all but (possibly) a single $i \in I$.

Conversely, assume that all but possibly a single one of the A_i is directly infinite. If all of the A_i are directly finite, then $End_R(A_i)$ has stable range one by Lemma 2.2. As $E \cong \prod_{i \in I} End_R(A_i)$, we see that E has stable range one. If there exists a $j \in I$ such that A_j is directly infinite while for all $i \neq j(i \in I), A_i$ is directly finite. It follows by Lemma 2.2 that $End_R(A_j)$ is weakly stable, while for all $i \neq j(i \in I), End_R(A_i)$ has stable range one. From this, E is weakly stable, as required.

(2) If *E* has stable range one, it easily follows that *E* is directly finite. Conversely, suppose that *E* is directly finite. Then $End_R(A_i)$ is directly finite. That is, A_i is not isomorphic to a proper submodule of itself. In view of Lemma 2.2, $End_R(A_i)$ has stable range one. As $E \cong \prod_{i \in I} End_R(A_i)$, we see that *E* has stable range one.

Corollary 2.3. Let G be an abelian group such that End(G) is regular. If G is a reduced torsion group, then End(G) has stable range one if and only if it is directly finite.

Proof. As is known, a reduced abelian torsion group has a regular endomorphism ring if and only if it is a direct sum of cyclic groups of prime order. Thus, the result follows by Theorem 2.2.

3. Related comparability

An element $w \in R$ is called a related unit if there exists an $e \in B(R)$ such that $ew \in eRe$ is right invertible and $(1-e)w \in (1-e)R(1-e)$ is left invertible. We use $U_r(R)$ to denote the set of all related units in R. Now we investigate some elementary properties of related comparability which generalize the corresponding results for exchange rings.

Lemma 3.1. Let A be a right R-module, let $E = End_R(A)$, and let $e, f \in E$ be idempotents. Then the following hold:

- (1) $eA \leq^{\oplus} fA$ if and only if there exist some $a \in eEf$ and $b \in fEe$ such that e = ab.
- (2) $eA \cong fA$ if and only if there exist some $a, b \in E$ such that e = ab and f = ba.

Proof.

(1) Suppose that $eA \leq^{\oplus} fA$. Then there exist *R*-morphisms $\alpha : eA \to fA$ and $\beta : fA \to eA$ such that $\beta \alpha = 1_{eA}$. Let

$$a: A = fA \oplus (1-f)A \xrightarrow{f} fA \xrightarrow{\beta} eA \hookrightarrow A$$

and

$$b: A = eA \oplus (1 - e)A \xrightarrow{\sim} eA \xrightarrow{\alpha} fA \hookrightarrow A.$$

Then e = ab with $a = eaf \in eEf$ and $b = fbe \in fEe$.

Suppose that there exist some $a \in eEf$ and $b \in fEe$ such that e = ab. Construct two *R*-morphisms $\varphi : eA \to fA$ given by $\varphi(er) = ber$ for any $r \in A$ and $\phi : fA \to eA$ given by $\phi(fr) = afr$ for any $r \in A$. It is easy to verify that $\phi\varphi = 1_{eA}$, i.e., φ is a split *R*-monomorphism. Thus, we have a right *R*-module *D* such that $eA \oplus D \cong fA$. Therefore $eA \leq \Phi fA$.

(2) Suppose that $eA \cong fA$. Then there exist *R*-morphisms $\alpha : eA \to fA$ and $\beta : fA \to eA$ such that $\beta \alpha = 1_{eA}$ and $\alpha \beta = 1_{fA}$. Let

$$a: A = fA \oplus (1-f)A \xrightarrow{f} fA \xrightarrow{\beta} eA \hookrightarrow A$$

and

$$b: A = eA \oplus (1-e)A \xrightarrow{e} eA \xrightarrow{\alpha} fA \hookrightarrow A.$$

Then e = ab and f = ba with $a = eaf \in eEf$ and $b = fbe \in fEe$.

Suppose that there exist some $a, b \in E$ such that e = ab and f = ba. Let c = eaf and d = fbe. Then e = cd and f = dc with $c \in eEf$ and $d \in fEe$. Construct two *R*-morphisms $\varphi : eA \to fA$ given by $\varphi(er) = der$ for any $r \in A$ and $\phi : fA \to eA$ given by $\phi(fr) = cfr$ for any $r \in A$. It is easy to verify that $\phi \varphi = 1_{eA}$ and $\varphi \phi = 1_{fA}$, i.e., φ is an isomorphism. Therefore $eA \cong fA$, as asserted.

As is well known, an exchange ring satisfies related comparability if and only if $R = A_1 \oplus B = A_2 \oplus C$ with $A_1 \cong A_2$ implies there exists some $e \in B(R)$ such that $Be \leq^{\oplus} Ce$ and $C(1-e) \leq^{\oplus} B(1-e)$. We extend this result to a general case.

Theorem 3.1. Let A be a right R-module, and let $E = End_R(A)$. Then the following are equivalent:

- (1) E satisfies related comparability.
- (2) Every regular element in E is related unit-regular.
- (3) $A = A_1 \oplus B = A_2 \oplus C$ with $A_1 \cong A_2$ implies that there exists a $u \in B(E)$ such that $uB \leq^{\oplus} uC$ and $(1-u)C \leq^{\oplus} (1-u)B$.

Proof.

(1) \Longrightarrow (3) Given $A = A_1 \oplus B = A_2 \oplus C$ with $A_1 \cong A_2$, then we have idempotents $e, f \in E$ such that $A_1 = (1 - e)A, B = eA, A_2 = (1 - f)A$ and C = fA. As $(1-e)A \cong (1-f)A$, it follows by Lemma 3.1 that there exist a, b such that e = 1 + ab and f = 1 + ba. By hypothesis, there exists a $u \in B(E)$ such that $ueE \lesssim^{\oplus} ufE$ and $(1-u)fE \lesssim^{\oplus} (1-u)eE$. By Lemma 3.1 again, we have some $s \in ueEuf$ and $t \in ufEue$ such that ue = ab. According to Lemma 3.1, we get $ueA \lesssim^{\oplus} ufA$. That is, $uB \lesssim^{\oplus} uC$. Likewise, $(1-u)C \lesssim^{\oplus} (1-u)B$, as required.

(3) \implies (2) For any regular $x \in E$, there exists a $y \in E$ such that x = xyx. Since xy and yx are both idempotents, $A = yxA \oplus (1 - yx)A = xyA \oplus (1 - xy)A = xA \oplus (1 - xy)A$. Obviously, $\varphi : xA \to yxA$, given by $xr \mapsto yxr$, is an isomorphism. So, there exists $f \in B(E)$ such that $f(1 - xy)A \leq^{\oplus} f(1 - yx)A$ and $(1 - f)(1 - yx)A \leq^{\oplus} (1 - f)(1 - xy)A$. Thus, there exists a split R-monomorphism $\phi : f(1 - xy)A \to f(1 - yx)A$. Let $\alpha : fA \to fA$ with $\alpha(b + c) = \varphi(b) + \phi(c)$ for any $b \in fxA$, $c \in f(1 - xy)A$. It is easy to verify that $\alpha \in End_R(fA)$ is left invertible. Furthermore, we see that $fx = x\alpha fx$. Furthermore, there exists a split R-epimorphism $\psi : (1 - f)(1 - xy)A \to (1 - f)(1 - yx)A$. Let $\beta : (1 - f)A \to (1 - f)A$ with $\beta(b + c) = \varphi(b) + \psi(c)$ for any $b \in (1 - f)xA$, $c \in (1 - f)(1 - xy)A$. One easily checks that $\beta \in End_R((1 - f)A)$ is right invertible. In addition, we get $(1 - f)x = x\beta(1 - f)x$. Define $w : A = fA \oplus (1 - f)A \to fA \oplus (1 - f)A$ given by $w(s + t) = \alpha(s) + \beta(t)$ for any $s \in eA, t \in (1 - e)A$. Then $w \in U_r(E)$. Furthermore, x = fx + (1 - f)x = xwx, as desired.

(2) \implies (1) For any idempotents $e, f \in E$ with e = 1 + ab and f = 1 + ba for some $a, b \in E$, we see that 1 - e = (-a)(1 - f)b and 1 - f = b(1 - e)(-a). Let c = (1 - e)(-a)(1 - f) and d = (1 - f)b(1 - e). Then 1 - e = cd and 1 - f = dc. In addition, dcd = (1 - f)d = d. By hypothesis, there exists a $w \in U_r(E)$ such that d = dwd. Set u = (e - wd)w(f - dw). Then $(e - wd)^2 = 1 = (f - dw)^2$, whence, $u \in U_r(E)$. Furthermore, we see that eu = w - wdw = uf. As $u \in U_r(E)$, there is a $g \in B(E)$ such that gus = g and t(1 - g)u = 1 - g. Thus, $eg = ufsg = eufg \cdot fseg$. In view of Lemma 3.1, we get $geE \lesssim^{\oplus} gfE$. Analogously, we deduce that $(1 - g)fE \lesssim^{\oplus} (1 - g)eE$. Therefore E satisfies related comparability.

Theorem 3.1 shows that related comparability is right and left symmetric. That is, a ring R satisfies related comparability if and only if so does its opposite ring R^{op} . Also we note that every commutative ring satisfies related comparability from Theorem 3.1.

Corollary 3.1. Let R be a ring. Then the following are equivalent:

- (1) R satisfies related comparability.
- (2) For any regular $a \in R$, aR + bR = R implies that there exists $a y \in R$ such that $a + by \in U_r(R)$.
- (3) Whenever ax + b = 1 with ba = 0, then there exists $a y \in R$ such that $a + by \in U_r(R)$.

Proof.

 $\begin{array}{l} (1) \Longrightarrow (2) \text{ For any regular } a \in R, \ aR+bR=R \text{ implies that there exist } x,y \in R \\ \text{such that } ax+by=1. \text{ In view of Theorem 3.1, } a=awa \text{ for some } w \in U_r(R). \text{ Thus,} \\ \text{we have an } e \in B(R) \text{ such that } ews=e \text{ and } t(1-e)w=1-e \text{ for some } s,t \in R. \text{ Let } \\ f=wa. \text{ Then, } fx+wc=w, \text{ where } c=by. \text{ So } f(x+wc)+(1-f)wc=w. \text{ Clearly,} \\ (1-f)wc=(1-f)w. \text{ It is easy to verify that } (1-f)w=(1-f)w\big(es+(1-e)t\big)(1-f)w. \\ \text{Let } g=(1-f)w\big(es+(1-e)t\big)(1-f). \text{ Then } g=g^2, fg=gf=0. \text{ This implies } \\ \text{that } f(x+wc)=fw \text{ and } (1-f)wc=gw. \text{ As a result, we deduce that } w\big(a+c(es+(1-e)t)(1-f)\big)(1-fwc(es+(1-e)t)(1-f)\big)w=\\ (f+wc(es+(1-e)t)(1-f)(1+fwc(es+(1-e)t)(1-f))\big)\big(1-fwc(es+(1-e)t)(1-f)\big)w=\\ (f+wc(es+(1-e)t)(1-f)(1+fwc(es+(1-e)t)(1-f)))+wc(es+(1-e)t)(1-f)\big)w=\\ (f+(1-f)w(es+(1-e)t)(1-f)\big)w=(f+g)w=w. \text{ As } w \in U_r(R), \text{ we deduce } \\ \text{that } a+byz \in U_r(R), \text{ where } z=(es+(1-e)t)(1-f)\big(1+fwc(es+(1-e)t)(1-f)\big). \\ (2)\Longrightarrow (3) \text{ Whenever } ax+b=1 \text{ with } ba=0, \text{ then } axa=a, \text{ i.e., } a \in R \text{ is regular.} \\ \text{Thus, there exists a } y \in R \text{ such that } a+by \in U_r(R). \end{aligned}$

(3) \implies (1) Given any regular $a \in R$, there exists some $x \in R$ such that a = axaand x = xax. Hence, xa + (1 - xa) = 1 with (1 - xa)x = 0. By hypothesis, we have a $y \in R$ such that $u := x + (1 - xa)y \in U_r(R)$. Thus, a = axa = aua. According to Theorem 3.1, R satisfies related comparability.

Corollary 3.2. Let $e \in R$ be an idempotent. If R satisfies related comparability, then so does eRe.

Proof. Assume that ax + b = e and ba = 0, where $a, x, b \in eRe$. Then (a + 1 - e)(x + 1 - e) + b = 1 with b(a + 1 - e) = 0. Since R satisfies related comparability, by virtue of Corollary 3.1, there exists a $y \in R$ such that $a + 1 - e + by \in U_r(R)$. Thus, we have an $f \in B(R)$ such that f(a + 1 - e + by) is right invertible in fRf and (1 - f)(a + 1 - e + by) is left invertible in (1 - f)R(1 - f). Assume that f(a + 1 - e + by)s = f for some $s \in R$. Then f(1 - e)se = 0; hence, fse = fese. Thus, f(a + b(eye))(ese) = fe. Assume that (1 - f)t(a + 1 - e + by) = 1 - f for some $t \in R$. Then (1 - f)(ete)(a + b(eye)) = (1 - f)e. This implies that $a + b(eye) \in U_r(eRe)$. By Corollary 3.1 again, eRe satisfies related comparability.

If $M_n(R)(n \in \mathbb{N})$ satisfies related comparability, then so does R from Corollary 3.2.

Theorem 3.2. Let A be a right R-module having the finite exchange property, let $E = End_R(A)$, and let $A = \bigoplus_{i \in I} A_i$. Suppose that each A_i is fully invariant, equal to a direct sum of isomorphic indecomposable submodules. Then E satisfies related comparability.

Proof. As each A_i is fully invariant, $E \cong \prod_{i \in I} End_R(A_i)$ (see [3]). According to Lemma 2.2, each $End_R(A_i)$ is weakly stable. Given $(a_i)(x_i) + (b_i) = (1_{R_1}, 1_{R_2}, \cdots, 1_{R_i}, \cdots)$ in $\prod_{i=1}^{\infty} R_i$, where $R_i = End_R(A_i)$, then $a_ix_i + b_i = 1_{R_i}$ for all $i \in \mathbb{N}$. For each i, since R_i is weakly stable, there exists some $y_i \in R$ such that $u_i := a_i + b_iy_i \in R_i$ is right or left invertible. If $u_i \in R_i$ is right invertible, choose $e_i = 1_{R_i}$. If $u_i \in R_i$ is left invertible, choose $e_i = 0$. Then $e_iu_i \in e_iR_ie_i$ is right invertible and $(1_{R_i} - e_i)u_i \in (1_{R_i} - e_i)R_i(1_{R_i} - e_i)$ is left invertible. Let $e = (e_i)$ and $y = (y_i)$. Then $e \in B(\prod_{i=1}^{\infty} R_i)$, and that $e((a_i) + (b_i)y) \in e(\prod_{i=1}^{\infty} R_i)e$ is right

invertible and $((1_{R_1}, 1_{R_2}, \dots, 1_{R_i}, \dots) - e)((a_i) + (b_i)y) \in ((1_{R_1}, 1_{R_2}, \dots, 1_{R_i}, \dots) - e)(\prod_{i=1}^{\infty} R_i)((1_{R_1}, 1_{R_2}, \dots, 1_{R_i}, \dots) - e)$ is left invertible. Hence, we get $(a_i) + (b_i)y \in U_r(\prod_{i=1}^{\infty} R_i)$, and so $\prod_{i=1}^{\infty} R_i$ satisfies related comparability by Corollary 3.1. Therefore E satisfies related comparability.

Corollary 3.3. Let G be an abelian group such that End(G) is regular. If G is a reduced torsion group, then End(G) satisfies related comparability.

Proof. As is well known, a reduced abelian torsion group has a regular endomorphism ring if and only if it is a direct sum of cyclic groups of prime order. So we may assume that $G \cong \bigoplus_p \bigoplus_i G_{(p,i)}$, where each $G_{(p,i)}$ is a cyclic group of prime order p. Clearly, each $\bigoplus_i G_{(p,i)}$ is fully invariant. In addition, $G_{(p,i)} \cong G_{(p,j)}$ for any i, j. Thus, the result follows by Theorem 3.2.

Take $G = H \oplus K$, with H the direct sum of infinitely many isomorphic copies of \mathbb{Z}_p , K the direct sum of infinitely many isomorphic copies of $\mathbb{Z}_q(p, q \text{ distinct primes})$. In view of Corollary 3.3, End(G) is a regular ring satisfying related comparability. But End(G) is not one-sided unit-regular. Let R_i be purely infinite, simple ring. As in the proof of Theorem 3.2, we see that $\prod_{i=1}^{\infty} R_i$ is an exchange ring satisfies related comparability. As in the proof of Theorem 2.2, we claim that $\prod_{i=1}^{\infty} R_i$ is not weakly stable.

Following Ara *et al.*, a ring R is separative provided that for all finitely generated projective right R-modules $A, B, 2A \cong A \oplus B \cong 2B \Longrightarrow A \cong B$. Separativity plays a key role in the direct sum decomposition theory of exchange rings (cf. [1]).

Lemma 3.2. Let R be an exchange ring. Then the following are equivalent:

- (1) R is separative.
- (2) For any $A, B, C \in FP(R)$, $A \oplus C \cong B \oplus C$ with $C \leq^{\oplus} A, B \Longrightarrow Ae \leq^{\oplus} Be$ and $B(1-e) \leq^{\oplus} A(1-e)$ for some $e \in B(R)$.
- (3) For any $A, B \in FP(R)$, $A \oplus A \cong A \oplus B \cong B \oplus B \Longrightarrow Ae \lesssim^{\oplus} Be$ and $B(1-e) \lesssim^{\oplus} A(1-e)$ for some $e \in B(R)$.
- (4) For any $A, B \in FP(R)$, $2A \cong 2B$ and $3A \cong 3B \implies Ae \leq^{\oplus} Be$ and $B(1-e) \leq^{\oplus} A(1-e)$ for some $e \in B(R)$.

Proof. Clearly, R can be seen as an ideal of itself. Therefore the proof is an immediate consequence of [7, Lemma 4.1].

Lemma 3.3. Every exchange ring satisfying related comparability is separative.

Proof. Let R be an exchange ring satisfying related comparability. Suppose that $A, B \in FP(R)$ such that $A \oplus A \cong A \oplus B \cong B \oplus B$. Since R satisfies related comparability, by [6, Theorem 6], we have $Ae \leq^{\oplus} Be$ and $B(1-e) \leq^{\oplus} A(1-e)$ for some $e \in B(R)$. Therefore we get the result by Lemma 3.2.

Recall that a ring R has stable rank m if there exists the least number m such that $a_1R+\cdots+a_{m+1}R=R$ with $a_1,\cdots,a_{m+1}\in R$ implies that there exist $b_1,\cdots,b_m\in R$ such that $(a_1+a_{m+1}b_1)R+\cdots+(a_m+a_{m+1}b_m)R=R$. If this m does not exist, we say that R has stable rank ∞ .

Theorem 3.3. Let G be an abelian group such that End(G) is regular. If G is a reduced torsion group, then End(G) is separative, so has stable rank 1,2 or ∞ .

H. Chen

Proof. In view of Corollary 3.3, End(G) satisfies related comparability. Therefore End(G) is separative from Lemma 3.3. Therefore we complete the proof by [1, Theorem 3.3].

Proposition 3.1. Let R be a simple exchange ring. Then the following are equivalent:

- (1) R satisfies related comparability.
- (2) R is weakly stable.
- (3) R is separative.

Proof.

 $(1) \Longrightarrow (3)$ is obvious by Lemma 3.3.

(3) \Longrightarrow (2) If R is directly finite, R has stable range one from [1, Theorem 3.4]. If R is directly infinite, then $R \oplus D \cong R$ for some nonzero right R-module D. Let $e, f \in R$ be idempotents. If e = 0 or f = 0, then $eR \leq^{\oplus} fR$ or $fR \leq^{\oplus} eR$. Now we assume that $e \neq 0, f \neq 0$. Clearly, there exists a nonzero idempotent $g \in R$ such that $D \cong gR$. Since R is simple, we see that RgR = R. Thus, there are some $s_i, t_i \in R(1 \leq i \leq n)$ such that $\sum_{i=1}^n s_i gt_i = 1$. Construct a R-morphism $\varphi : n(gR) \to R$ given by $\varphi(gr_1, \cdots, gr_n) = \sum_{i=1}^n s_i gr_i$. It is easy to verify that φ is a R-epimorphism. As R is projective, there exists a right R-module N such that $R \oplus N \cong n(gR)$. Hence, $R \leq^{\oplus} nD$; whence, $eR \leq^{\oplus} nD$. Thus $eR \oplus R \leq^{\oplus} nD \oplus R \cong R$, and so $eR \oplus R \leq^{\oplus} R \leq^{\oplus} fR \oplus R$. Hence, $R \oplus (eR \oplus E) \cong R \oplus fR$ for a right R-module E. As eR and fR are both nonzero, we also have $R \leq^{\oplus} s(eR) \lesssim^{\oplus} s(eR \oplus E)$ and $R \lesssim^{\oplus} t(fR)$ for some $s, t \in \mathbb{N}$. Applying [1, Lemma 2.1], $eR \lesssim^{\oplus} eR \oplus E \cong fR$. In view of Corollary 2.2, R is weakly stable. (2) \Longrightarrow (1) is trivial.

References

- P. Ara, K. R. Goodearl, K. C. O'Meara and E. Pardo, Separative cancellation for projective modules over exchange rings, *Israel J. Math.* **105** (1998), 105–137.
- [2] D. M. Arnold, Finite Rank Torsion Free Abelian Groups and Rings, Lecture Notes in Math., 931, Springer, Berlin, 1982.
- [3] A. J. Berrick and M. E. Keating, An Introduction to Rings and Modules with K-Theory in View, Cambridge Univ. Press, Cambridge, 2000.
- [4] H. Chen, Elements in one-sided unit regular rings, Comm. Algebra 25 (1997), no. 8, 2517–2529.
- [5] H. Chen, Comparability of modules over regular rings, Comm. Algebra 25 (1997), no. 11, 3531–3543.
- [6] H. Chen, Related comparability over exchange rings, Comm. Algebra 27 (1999), no. 9, 4209–4216.
- [7] H. Chen, Separative ideals of exchange rings, Bull. Iranian Math. Soc., to appear.
- [8] G. Ehrlich, Units and one-sided units in regular rings, Trans. Amer. Math. Soc. 216 (1976), 81–90.
- [9] K. R. Goodearl, Von Neumann Regular Rings, Pitman, Boston, Mass., 1979.
- [10] W. Jiaqun, Unit-regularity and stable range conditions, Comm. Algebra 33 (2005), no. 6, 1937–1946.
- [11] T. Y. Lam, A crash course on stable range, cancellation, substitution and exchange, J. Algebra Appl. 3 (2004), no. 3, 301–343.
- [12] K. C. O'Meara and C. Vinsonhaler, Separative cancellation and multiple isomorphism in torsion-free abelian groups, J. Algebra 221 (1999), no. 2, 536–550.
- [13] A. Tuganbaev, Rings Close to Regular, Kluwer Acad. Publ., Dordrecht, 2002.