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Abstract. In this paper, we shall introduce generalized fuzzy compactness in

L-spaces where L is a complete de Morgan algebra. This definition does not
rely on the structure of basis lattice L and no distributivity is required. The

intersection of a generalized fuzzy compact L-set and a generalized closed L-

set is a generalized fuzzy compact L-set. The generalized irresolute image of a
generalized fuzzy compact L-set is a generalized fuzzy compact L-set.
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1. Introduction and preliminaries

In 1976, Lowen first introduced the concepts of fuzzy compactness in [0, 1]-spaces in
[6]. Subsequently its characterization was given by Wang in terms of α-net in [11].
In 1988, it is again extended to L-spaces [12], where L is a completely distributive de
Morgan algebra (i.e., a F lattice). However the above mentioned definitions of fuzzy
compactness seriously depend on the structure of the basis lattice L and complete
distributivity was required.

Kubiák also extended fuzzy compactness to L-spaces by means of closed L-sets
and the way below relation in [4], where complete distributivity was not required.
But his definition still depend on the structure of the basis lattice L and can’t be
restated in terms of open L-sets by simply using quasi-complementation.

In [9, 10], a new definition of fuzzy compactness in presented in L-topological
space by means of an inequality, which doesn’t depend on the structure of L and
no distributivity is require in L. When L is a completely distributive de Morgan
algebra, it is equivalent to the notion of fuzzy compactness in [5, 7, 12].
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The notions of generalized open sets, generalized closed sets and generalized-
irresolute mapping were introduced by Balasubramanian and Sundaram in [1].

In this paper, following the lines of [9, 10], we shall introduce a concept of gener-
alized compactness in L-topological spaces in terms of generalized open L-sets and
their inequality, where L is a complete de Morgan algebra. This definition doesn’t
rely on the structure of basis lattice L and no distributivity in L is required. It can
also be characterized by generalized closed L-sets and their inequality. When L is a
completely distributive de Morgan algebra, its many characterizations are presented.

Throughout this paper, (L,
∨
,
∧
,′ ) is a complete de Morgan algebra. 0 and 1

denote the smallest element and the largest element in L, respectively.
A complete lattice L is a complete Heyting algebra if it satisfies the following

infinite distributive law: For all a ∈ L and all B ⊂ L, a ∧
∨
B =

∨
{a ∧ b | b ∈ B}.

For a nonempty set X, LX denotes the set of all L-topological fuzzy sets (or
L-sets for short) on X. 0 and 1 denote the smallest element and the largest element
in LX , respectively. An L-space (L-space for short) is a pair (X, T ), where T is a
subfamily LX which contains 0, 1 and is closed for any suprema and finite infima.
T is called an L-topology on X. Each member of T is called an open L-set and its
quasi-complementation is called a closed L-set. An element a in L is called a prime
element if b ∧ c ≤ a implies b ≤ a or c ≤ a. a in L is called co-prime element if
a′ is a prime element. The set of all nonzero co-prime elements in L is denoted by
M(L). It is easy to see that M(LX) = {xα | x ∈ X,α ∈M(L)} is exactly the set of
all nonzero ∨-irreducible elements in LX .

According to [12], we know that L is completely distributive if and only if each
element a in L has the greatest minimal family (the greatest maximal family), de-
noted by β(a)(α(a)). Obviously β∗(a) = β(a)

⋂
M(L) is a minimal family of a and

α∗(a) = β(a)
⋂
P (L) is a maximal family of a.

For a subfamily Φ ⊂ LX , 2(Φ) denotes the set of all finite subfamily of Φ.
In [1], the notions of generalized open sets, generalized closed sets and generalized-

irresolute mapping were introduced in [0,1]-fuzzy set theory by Balasubramanian and
Sundaram. They can easily be extended to L-sets as follows:

Definition 1.1. Let (X, T ) be an L-space and A ∈ LX . Then A is called generalized
closed L-set (or gl-closed for short) if cl(A) ≤ U whenever A ≤ U and U is open
L-set. A is called generalized open (gl-open for short) if A′ is gl-closed.

GLO(X) and GLC(X) will always denote the family of all generalized open
L-sets and family of all generalized closed L-sets in X, respectively.

Definition 1.2. Let (X, T1) and (Y, T2) be two L-spaces, f : X → Y be a mapping
and f→L : LX → LY be the extension of f . Then f called a generalized irresolute
mapping if f←L (B) is generalized open in (X, T1) for each generalized open L-set B
in (Y, T2).

Definition 1.3. [9, 10] Let (X, T ) be an L-space, G ∈ LX . Then G is called fuzzy
compact if for every family U ⊂ T , it follows that∧

x∈X

(
G′(x) ∨

∨
A∈U

A(x)

)
≤

∨
V∈2(U)

∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

)
.
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Lemma 1.1. [10] Let (X, T1) and (Y, T2) be two L-spaces, where L is a complete
Heyting algebra, f : X → Y be a mapping, f→L : LX → LY is the extension of f .
Then for any P ⊂ LY , we have that∨

y∈Y

(
f→L (G)(y) ∧

∧
B∈P

B(y)

)
=
∨
x∈X

(
G(x) ∧

∧
B∈P

f←L (B)(x)

)
.

2. Generalized fuzzy compactness of L-subsets

Definition 2.1. Let (X, T ) be an L-space, G ∈ LX . Then G is called generalized
fuzzy compact if for every family U ⊂GLO(X), it follows that∧

x∈X

(
G′(x) ∨

∨
A∈U

A(x)

)
≤

∨
V∈2(U)

∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

)
.

Now we consider characterizations of generalized fuzzy compactness. First we
introduce the following concept.

Definition 2.2. Let (X, T ) be an L-space, a ∈ L \ {1} and G ∈ LX . A family
U ⊂GLO(X) is said to be a generalized open a-shading of G if for any x ∈ X with
G(x) ≥ a′, there exists an A ∈ U such that A(x) 6≤ a. U is said to be a generalized
open strong a-shading of G if∧

x∈X

(
G′(x) ∨

∨
A∈U

A(x)

)
6≤ a

for any x ∈ X.

Obviously, a generalized open strong a-shading of G is a generalized open a-
shading of G and U is a generalized open a-shading of G if and only if

G′(x) ∨
∨
A∈U

A(x) 6≤ a.

By Definition 2.1 and Definition 2.2 we obtain the following result.

Theorem 2.1. Let (X, T ) be an L-space and G ∈ LX . Then G is generalized fuzzy
compact if and only if for any a ∈ L \ {1}, each generalized open strong a-shading
U of G has a finite subfamily V which is still a generalized open strong a-shading of
G.

Proof. Suppose that G is generalized fuzzy compact and for any a ∈ L \ {1}, U is
any generalized open strong a-shading of G. Then∧

x∈X

(
G′(x) ∨

∨
A∈U

A(x)

)
≤

∨
V∈2(U)

∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

)
and ∧

x∈X

(
G′(x) ∨

∨
A∈U

A(x)

)
6≤ a.



460 Z.-G Xu, H.-Y. Li and Z.-Q Yun

So that ∨
V∈2(U)

∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

)
6≤ a,

hence there exists V ∈ 2(U) such that∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

)
6≤ a.

Thus V is finite subfamily of U and V is a generalized open strong a-shading of G.
Conversely, suppose that for any a ∈ L \ {1}, each generalized open strong a-

shading U of G has a finite subfamily V which is still a generalized open strong
a-shading of G. Hence we have that∧

x∈X

(
G′(x) ∨

∨
A∈U

A(x)

)
6≤ a implies that

∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

)
6≤ a,

therefore ∧
x∈X

(
G′(x) ∨

∨
A∈U

A(x)

)
≤
∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

)
.

Thus we obtain that∧
x∈X

(
G′(x) ∨

∨
A∈U

A(x)

)
≤

∨
V∈2(U)

∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

)
.

Hence G is generalized fuzzy compact from Definition 2.1.
Moreover from Definition 2.1 we easily obtain the following theorem by simply

using quasi-complementation.

Theorem 2.2. Let (X, T ) be an L-space and G ∈ LX . Then G is generalized fuzzy
compact if and only if for every subfamily P ⊂GLC(X), it follows that∨

x∈X

(
G(x) ∧

∧
B∈P

B(x)

)
≥

∧
F∈2(P)

∨
x∈X

(
G(x) ∧

∧
B∈F

B(x)

)
.

Definition 2.3. Let (X, T ) be an L-space, a ∈ L \ {1} and G ∈ LX . A family
P ⊂GLC(X) is said to be a generalized closed a-remote family of G if for any
x ∈ X with G(x) ≥ a, there exists a B ∈ P such that B(x) 6≥ a. P is said to be a
generalized closed strong a-remote family of G if∨

x∈X

(
G(x) ∧

∧
B∈P

B(x)

)
6≥ a.

It is obvious that a generalized closed strong a-remote family of G is a generalized
closed a-remote family of G, P is a generalized closed a-remote family of G if and
only if

G(x) ∧
∧
B∈P

B(x) 6≥ a

and P is a generalized closed strong a-remote family of G if and only if P ′ is a
generalized open strong a-shading of G.
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From Theorem 2.2 we obtain the following result.

Theorem 2.3. Let (X, T ) be an L-space and G ∈ LX . Then G is generalized fuzzy
compact if and only if for any a ∈ L \ {0}, each generalized closed strong a-remote
family P of G has a finite subfamily F which is still a generalized closed strong
a-remote family of G.

Proof. Analogous to the proof of Theorem 2.1.

Theorem 2.4. Let L be a complete Heyting algebra. If both G and H are generalized
fuzzy compact, then G ∨H is generalized fuzzy compact.

Proof. For any family P ⊂GLC(X), by Theorem 2.2 we have that∨
x∈X

(
(G ∨H)(x) ∧

∧
B∈P

B(x)

)

=

{ ∨
x∈X

(
G(x) ∧

∧
B∈P

B(x)

)}
∨

{ ∨
x∈X

(
H(x) ∧

∧
B∈P

B(x)

)}

≥

 ∧
F∈2(P)

∨
x∈X

(
G(x) ∧

∧
B∈F

B(x)

) ∨
 ∧
F∈2(P)

∨
x∈X

(
H(x) ∧

∧
B∈F

B(x)

)
=

∧
F∈2(P)

∨
x∈X

(
(G ∨H)(x) ∧

∧
B∈P

B(x)

)
.

This shows that G ∨H is generalized fuzzy compact.

Theorem 2.5. If G is a generalized fuzzy compact L-set and H is a generalized
closed L-set, then G ∧H is a generalized fuzzy compact L-set.

Proof. Since G is a generalized fuzzy compact L-set, for any family P ⊂GLC(X),
by Theorem 2.2 we have that∨

x∈X

(
(G ∧H)(x) ∧

∧
B∈P

B(x)

)

=
∨
x∈X

G(x) ∧
∧

B∈P∪{H}

B(x)

 ≥ ∧
F∈2(P∪{H})

∨
x∈X

(
G(x) ∧

∧
B∈P

B(x)

)

=

 ∧
F∈2(P)

∨
x∈X

(
G(x) ∧

∧
B∈F

B(x)

)
∧

 ∧
F∈2(P)

∨
x∈X

(
G(x) ∧

(
H(x) ∧

∧
B∈F

B(x)

))
=

∧
F∈2(P)

∨
x∈X

(
(G ∧H)(x) ∧

∧
B∈P

B(x)

)
.

This shows that G ∧H is a generalized fuzzy compact L-set.
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Theorem 2.6. Let (X, T1) and (Y, T2) be two L-spaces, where L is a complete
Heyting algebra, f : X → Y be a generalized irresolute mapping. If G is generalized
fuzzy compact in (X, T1), then so is f→L (G) is in (Y, T2).

Proof. For any P ⊂GLC(X), by Lemma 1.1 and Theorem 2.2, we have that∨
y∈Y

(
f→L (G)(y) ∧

∧
B∈P

B(y)

)
=
∨
x∈X

(
G(x) ∧

∧
B∈P

f←L (B)(x)

)

≥
∧

F∈2(P)

∨
x∈X

(
G(x) ∧

∧
B∈F

f←L (B)(x)

)

=
∧

F∈2(P)

∨
y∈Y

(
f→L (G)(y) ∧

∧
B∈F

B(y)

)
.

Therefore f→L (G) is generalized fuzzy compact.

3. Some characterizations of generalized fuzzy compact

In this section, we assume that L is a completely distributive de Morgan algebra.
We give many characterizations of generalized fuzzy compact.

Theorem 3.1. Let (X, T ) be an L-space and G ∈ LX . Then the following conditions
are equivalent:

(1) G is generalized fuzzy compact;
(2) For any a ∈ L \ {0}, each generalized closed strong a-remote family P of G

has a finite subfamily F which is a generalized closed strong a-remote family
of G;

(3) For any a ∈ L \ {0}, each generalized closed strong a-remote family P of G
has a finite subfamily F which is a generalized closed a-remote family of G;

(4) For any a ∈ L \ {0}, each generalized closed strong a-remote family P of G
has a finite subfamily F and b ∈ β(a) such that F is a generalized closed
strong b-remote family of G;

(5) For any a ∈ L \ {0}, each generalized closed strong a-remote family P of
G has a finite subfamily F of P and b ∈ β(a) such that F is a generalized
closed b-remote family of G;

(6) For any a ∈ M(L), each generalized closed strong a-remote family P of G
has a finite subfamily F which is a generalized closed strong a-remote family
of G;

(7) For any a ∈ M(L), each generalized closed strong a-remote family P of G
has a finite subfamily F which is a generalized closed a-remote family of G;

(8) For any a ∈ M(L), each generalized closed strong a-remote family P of G
has a finite subfamily F of P and b ∈ β∗(a) such that F is a generalized
closed strong b-remote family of G;

(9) For any a ∈ M(L), each generalized closed strong a-remote family P of G
has a finite subfamily F of P and b ∈ β∗(a) such that F is a generalized
closed b-remote family of G.
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Proof. By Theorem 2.3 we can obtain (1)⇐⇒(2). (2)=⇒(3) is obvious. Now to
prove (3)=⇒(4), suppose that a ∈ L \ {0} and P is a generalized closed strong
a-remote family of G, then we obtain that∨

x∈X

(
G(x) ∧

∧
B∈P

B(x)

)
6≥ a,

take c ∈ β(a) such that ∨
x∈X

(
G(x) ∧

∧
B∈P

B(x)

)
6≥ c,

obviously P is a strong generalized closed c-remote family of G, by (3) we know that
P has a finite subfamily F which is a generalized closed c-remote family of G. Take
b ∈ β(a) such that c ∈ β(b), then F is a generalized closed strong b-remote family
of G. (4) is shown. (4)=⇒(5) is obvious, we prove (5)=⇒(2). For any a ∈ L \ {0},
suppose that P is any generalized closed strong a-remote family of G, by (5), P has
a finite subfamily F and b ∈ β(a) such that F is a generalized closed b-remote family
of G. So that for any

x ∈ X,G(x) ∧
∧
B∈F

B(x) 6≥ b,

we obtain ∨
x∈X

(
G(x) ∧

∧
B∈F

B(x)

)
6≥ a,

in fact, if ∨
x∈X

(
G(x) ∧

∧
B∈F

B(x)

)
≥ a,

then by b ∈ β(a), there exists x0 ∈ X such that

G(x0) ∧
∧
B∈F

B(x0) ≥ b,

a contradiction. So that ∨
x∈X

(
G(x) ∧

∧
B∈F

B(x)

)
6≥ a.

This implies that F is a generalized closed strong a-remote family of G. Similarly
we can prove that (2)=⇒(6)=⇒(7)=⇒(8)=⇒(9)=⇒(1).

Now we present some characterizations of generalized fuzzy compactness by means
of generalized open L-sets.

Theorem 3.2. Let (X, T ) be an L-space and G ∈ LX . Then the following conditions
are equivalent:

(1) G is generalized fuzzy compact;
(2) For any a ∈ L \ {1}, each generalized open strong a-shading U of G has a

finite subfamily V which is a generalized open strong a-shading of G;
(3) For any a ∈ L \ {1}, each generalized open strong a-shading U of G has a

finite subfamily V which is a generalized open a-shading of G;
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(4) For any a ∈ L\{1}, each generalized open strong a-shading U of G, there ex-
ists a finite subfamily V of U and b ∈ α(a) such that V is a strong generalized
open b-shading of G;

(5) For any a ∈ L \ {1}, each generalized open strong a-shading U of G, there
exists a finite subfamily V of U and b ∈ α(a) such that V is a generalized
open b-shading of G;

(6) For any a ∈ P (L), each generalized open strong a-shading U of G has a
finite subfamily V which is a generalized open strong a-shading of G;

(7) For any a ∈ P (L), each generalized open strong a-shading U of G has a
finite subfamily V which is a generalized open a-shading of G;

(8) For any a ∈ P (L), each generalized open strong a-shading U of G has a
finite subfamily V of U and b ∈ α∗(a) such that V is a strong generalized
open b-shading of G;

(9) For any a ∈ P (L), each generalized open strong a-shading U of G has a finite
subfamily V of U and b ∈ α∗(a) such that V is a generalized open b-shading
of G.

Proof. By Theorem 2.1 we can obtain (1)⇐⇒(2).
(2)=⇒(3) is obvious.
(3)=⇒(4). Suppose that a ∈ L \ {1} and U is a generalized open strong a-shading
of G, then ∧

x∈X

(
G′(x) ∨

∨
B∈U

B(x)

)
6≤ a.

Take c ∈ α(a) such that ∧
x∈X

(
G′(x) ∨

∨
B∈U

B(x)

)
6≤ c,

obviously U is a generalized open strong c-shading of G and by (3) we know that U
has a finite subfamily V which is a generalized open c-shading of G. Take b ∈ α(a)
such that c ∈ α(b), then V is a generalized open strong b-shading of G, (4) is shown.
(4)=⇒(5) is obvious.
(5)=⇒(2). For any a ∈ L \ {1}, suppose that U is any generalized open strong
a-shading of G, by (5), U has a finite subfamily V and b ∈ α(a) such that V is a
generalized open b-shading of G. So that for any x ∈ X,

G′(x) ∨
∨
B∈V

B(x) 6≤ b,

we obtain ∧
x∈X

(
G′(x) ∨

∨
B∈V

B(x)

)
6≤ a,

in fact, if ∧
x∈X

(
G′(x) ∨

∨
B∈V

B(x)

)
≤ a,
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then by b ∈ α(a), there exists x0 ∈ X such that

G(x0) ∨
∨
B∈V

B(x0) ≤ b,

a contradiction. So that ∧
x∈X

(
G′(x) ∨

∨
B∈V

B(x)

)
6≤ a.

This implies that V is a generalized open strong a-shading of G.
Similarly we can prove that (2)=⇒(6)=⇒(7)=⇒(9) =⇒(9)=⇒(1).

Definition 3.1. Let (X, T ) be an L-space, a ∈ L \ {0} and G ∈ LX . A family
U ⊂GLO(X) is said to be a generalized open βa-cover of G if for any x ∈ X with
a 6∈ β(G′(x)), there exists A ∈ U such that a ∈ β(A(x)). U is said to be a generalized
open strong βa-cover of G if

a ∈ β

( ∧
x∈X

(
G′(x) ∨

∨
A∈U

A(x)

))
.

It is obvious that a generalized open strong βa-cover of G is generalized open
βa-cover G and U is a generalized open βa-cover of G if and only if for any x ∈ X,

a ∈ β

(
G′(x) ∨

∨
A∈U

A(x)

)
.

Theorem 3.3. Let (X, T ) be an L-space and G ∈ LX . Then the following conditions
are equivalent:

(1) G is generalized fuzzy compact;
(2) For any a ∈ L \ {0}, each generalized open strong βa-cover U of G has a

finite subfamily V which is a generalized open strong βa-cover of G;
(3) For any a ∈ L \ {0}, each generalized open strong βa-cover U of G has a

finite subfamily V which is a generalized open βa-cover of G;
(4) For any a ∈ L \ {0}, any generalized open strong βa-cover U of G, there

exists a finite subfamily V of U and b ∈ L with a ∈ β(b) such that V is a
generalized open strong βa-cover of G;

(5) For any a ∈ L \ {0}, any generalized open strong βa-cover U of G, there
exists a finite subfamily V of U and b ∈ L with a ∈ β(b) such that V is a
generalized open βa-cover of G;

(6) For any a ∈M(L), each generalized open strong βa-cover U of G has a finite
subfamily V which is a generalized open strong βa-cover of G;

(7) For any a ∈M(L), each generalized open strong βa-cover U of G has a finite
subfamily V which is a generalized open βa-cover of G;

(8) For any a ∈ M(L) and any generalized open strong βa-cover U of G, there
exists a finite subfamily V of U and b ∈M(L) with a ∈ β∗(b) such that V is
a generalized open strong βa-cover of G;

(9) For any a ∈ M(L) and any generalized open strong βa-cover U of G, there
exists a finite subfamily V of U and b ∈M(L) with a ∈ β∗(b) such that V is
a generalized open βa-cover of G.
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Proof. We only prove (1)⇐⇒(2).
(1)=⇒(2). Suppose that G is generalized fuzzy compact and for any a ∈ L \ {0}, U
is any generalized open strong βa-cover of G. Then∧

x∈X

(
G′(x) ∨

∨
A∈U

A(x)

)
≤

∨
V∈2(U)

∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

)
.

So

β

( ∧
x∈X

(
G′(x) ∨

∨
A∈U

A(x)

))
≤ β

 ∨
V∈2(U)

∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

) .

By

a ∈ β

( ∧
x∈X

(
G′(x) ∨

∨
A∈U

A(x)

))
,

we obtain

a ∈ β

 ∨
V∈2(U)

∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

) ,

therefore

a ∈
⋃
V∈2(U)

β

( ∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

))
,

hence there exists a V ∈ 2(U) such that

a ∈ β

( ∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

))
.

Thus V is a generalized open strong βa-cover of G.
(2)=⇒(1). Suppose that for any a ∈ L \ {0}, each generalized open strong βa-cover
U of G has a finite subfamily V which is a generalized open strong βa-cover of G,
then we know that

a ∈ β

( ∧
x∈X

(
G′(x) ∨

∨
A∈U

A(x)

))
implies that a ∈ β

( ∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

))

where V ∈ 2(U). Hence

β

( ∧
x∈X

(
G′(x) ∨

∨
A∈U

A(x)

))
≤ β

( ∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

))
.

Thus ∧
x∈X

(
G′(x) ∨

∨
A∈U

A(x)

)
≤

∨
V∈2(U)

∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

)
.

This prove that G is generalized fuzzy compact.



Generalized Fuzzy Compactness in L-Topological Spaces 467

Definition 3.2. Let (X, T ) be an L-space, a ∈ L \ {0} and G ∈ LX . A family
U ⊂GLO(X) is said to be a generalized open Qa-cover of G if for any x ∈ X it
follows that

G′ ∨
∨
A∈U

A(x) ≥ a.

It is obvious that a generalized open βa-cover of G is a generalized open Qa-cover
of G. Moreover form Definition 2.1 we also can obtain the following result.

Theorem 3.4. Let (X, T ) be an L-space and G ∈ LX . Then the following conditions
are equivalent:

(1) G is generalized fuzzy compact;
(2) For any a ∈ L \ {0} and any b ∈ β(a) \ {0}, each generalized open Qa-cover

of G, has a finite subfamily which is a generalized open Qb-cover of G;
(3) For any a ∈ L \ {0} and any b ∈ β(a) \ {0}, each generalized open Qa-cover

of G, has a finite subfamily which is a generalized open βa-cover of G;
(4) For any a ∈ L \ {0} and any b ∈ β(a) \ {0}, each generalized open Qa-cover

of G, has a finite subfamily which is a generalized open strong βa-cover of
G;

(5) For any a ∈M(L) and any b ∈ β∗(a), each generalized open Qa-cover of G,
has a finite subfamily which is a generalized open Qb-cover of G;

(6) For any a ∈M(L) and any b ∈ β∗(a), each generalized open Qa-cover of G,
has a finite subfamily which is a generalized open βb-cover of G;

(7) For any a ∈M(L) and any b ∈ β∗(a), each generalized open Qa-cover of G,
has a finite subfamily which is a generalized open strong βb-cover of G.
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