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Abstract. In this paper, we shall introduce generalized fuzzy compactness in
L-spaces where L is a complete de Morgan algebra. This definition does not
rely on the structure of basis lattice L and no distributivity is required. The
intersection of a generalized fuzzy compact L-set and a generalized closed L-
set is a generalized fuzzy compact L-set. The generalized irresolute image of a
generalized fuzzy compact L-set is a generalized fuzzy compact L-set.
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1. Introduction and preliminaries

In 1976, Lowen first introduced the concepts of fuzzy compactness in [0, 1]-spaces in
[6]. Subsequently its characterization was given by Wang in terms of a-net in [11].
In 1988, it is again extended to L-spaces [12], where L is a completely distributive de
Morgan algebra (i.e., a F' lattice). However the above mentioned definitions of fuzzy
compactness seriously depend on the structure of the basis lattice L and complete
distributivity was required.

Kubidk also extended fuzzy compactness to L-spaces by means of closed L-sets
and the way below relation in [4], where complete distributivity was not required.
But his definition still depend on the structure of the basis lattice L and can’t be
restated in terms of open L-sets by simply using quasi-complementation.

In [9, 10], a new definition of fuzzy compactness in presented in L-topological
space by means of an inequality, which doesn’t depend on the structure of L and
no distributivity is require in L. When L is a completely distributive de Morgan
algebra, it is equivalent to the notion of fuzzy compactness in [5, 7, 12].
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The notions of generalized open sets, generalized closed sets and generalized-
irresolute mapping were introduced by Balasubramanian and Sundaram in [1].

In this paper, following the lines of [9, 10], we shall introduce a concept of gener-
alized compactness in L-topological spaces in terms of generalized open L-sets and
their inequality, where L is a complete de Morgan algebra. This definition doesn’t
rely on the structure of basis lattice L and no distributivity in L is required. It can
also be characterized by generalized closed L-sets and their inequality. When L is a
completely distributive de Morgan algebra, its many characterizations are presented.

Throughout this paper, (L,\/, A, ) is a complete de Morgan algebra. 0 and 1
denote the smallest element and the largest element in L, respectively.

A complete lattice L is a complete Heyting algebra if it satisfies the following
infinite distributive law: For all e € L and all BC L, a A\/ B=\/{aAb|be B}.

For a nonempty set X, L¥ denotes the set of all L-topological fuzzy sets (or
L-sets for short) on X. 0 and 1 denote the smallest element and the largest element
in LX, respectively. An L-space (L-space for short) is a pair (X,7), where 7 is a
subfamily LX which contains 0,1 and is closed for any suprema and finite infima.
T is called an L-topology on X. Each member of 7 is called an open L-set and its
quasi-complementation is called a closed L-set. An element a in L is called a prime
element if b A ¢ < a implies b < a or ¢ < a. a in L is called co-prime element if
a’ is a prime element. The set of all nonzero co-prime elements in L is denoted by
M(L). Tt is easy to see that M (LX) = {z, | z € X,a € M(L)} is exactly the set of
all nonzero V-irreducible elements in LX.

According to [12], we know that L is completely distributive if and only if each
element @ in L has the greatest minimal family (the greatest maximal family), de-
noted by B(a)(a(a)). Obviously 5*(a) = B(a) (VM (L) is a minimal family of a and
a*(a) = B(a) N P(L) is a maximal family of a.

For a subfamily ® ¢ LX, 2(®) denotes the set of all finite subfamily of ®.

In [1], the notions of generalized open sets, generalized closed sets and generalized-
irresolute mapping were introduced in [0,1]-fuzzy set theory by Balasubramanian and
Sundaram. They can easily be extended to L-sets as follows:

Definition 1.1. Let (X,T) be an L-space and A € L. Then A is called generalized
closed L-set (or gl-closed for short) if cl(A) < U whenever A < U and U is open
L-set. A is called generalized open (gl-open for short) if A’ is gl-closed.

GLO(X) and GLC(X) will always denote the family of all generalized open
L-sets and family of all generalized closed L-sets in X, respectively.

Definition 1.2. Let (X,77) and (Y,72) be two L-spaces, f : X — Y be a mapping
and f;7 : LY — LY be the extension of f. Then f called a generalized irresolute
mapping if f;(B) is generalized open in (X, Th) for each generalized open L-set B
in (Y, T5).

Definition 1.3. [9, 10] Let (X,7) be an L-space, G € L. Then G is called fuzzy
compact if for every family U C T, it follows that

A\ <G’(x)\/ \/ A(x)) <V A (G’(x)\/ \/ A(x)).

z€X Aeu Vea) zeX Aey
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Lemma 1.1. [10] Let (X,77) and (Y,72) be two L-spaces, where L is a complete
Heyting algebra, f : X — Y be a mapping, f;” : L — LY is the extension of f.
Then for any P C LY, we have that

V (JT(G)(y)A A B(y)> =V (G(af)A A ff(B)(fﬂ)>~

yey BeP reX BeP

2. Generalized fuzzy compactness of L-subsets

Definition 2.1. Let (X,T) be an L-space, G € LX. Then G is called generalized
fuzzy compact if for every family U CGLO(X), it follows that

A <G’(x)\/ \V A(:c)) <V A (G’(:p)\/ \V A(x)).
zeX AeU vea) zeX Aey

Now we consider characterizations of generalized fuzzy compactness. First we
introduce the following concept.

Definition 2.2. Let (X,7) be an L-space, a € L\ {1} and G € LX. A family
U CGLO(X) is said to be a generalized open a-shading of G if for any x € X with
G(z) > d', there exists an A € U such that A(z) € a. U is said to be a generalized
open strong a-shading of G if

/\ <G’(x) % \/ A(x)) £ a

zeX AelUd
for any x € X.

Obviously, a generalized open strong a-shading of G is a generalized open a-
shading of G and U is a generalized open a-shading of G if and only if

G'x)v \/ Al) £ a
AeU
By Definition 2.1 and Definition 2.2 we obtain the following result.
Theorem 2.1. Let (X,T) be an L-space and G € L. Then G is generalized fuzzy
compact if and only if for any a € L\ {1}, each generalized open strong a-shading

U of G has a finite subfamily V which is still a generalized open strong a-shading of
G.

Proof. Suppose that G is generalized fuzzy compact and for any a € L\ {1}, U is
any generalized open strong a-shading of G. Then

A (G’(x)v \ A(x)) <V A <G’(x)\/ \ A(m))
zeX AeU vea) xeX A€y
and

A (G’(x)v \/ A(:@) £ a.

reX AelU
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So that
VoA (aw vV A<x>) za
ve2) zeX Aey
hence there exists V € 2¢) such that

A (G’(x) vV A@)) £ a.

zeX Aey
Thus V is finite subfamily of ¢/ and V is a generalized open strong a-shading of G.
Conversely, suppose that for any a € L\ {1}, each generalized open strong a-
shading U of G has a finite subfamily V which is still a generalized open strong
a-shading of G. Hence we have that

/\ <G'(:L‘) % \/ A(:U)) # aimplies that /\ (G’(x) % \/ A(x)) £ a,

zeX AeU zeX Aey
therefore
A <G’(x)\/ \V A(z)) <A (G’(x)\/ \ A(x)).
zeX Aeu zeX Aey
Thus we obtain that

/\ <G’($) % \/ A(a:)) < \/ /\ (G'(aj) % \/ A(m)) :
reX AelU Vve2) zeX Aey
Hence G is generalized fuzzy compact from Definition 2.1. 1

Moreover from Definition 2.1 we easily obtain the following theorem by simply
using quasi-complementation.

Theorem 2.2. Let (X,T) be an L-space and G € L. Then G is generalized fuzzy
compact if and only if for every subfamily P CGLC(X), it follows that

\/ (G(x)/\ A B@:)) > AV (G(x)/\ A B@:)).

reX BeP Fe2(P) xzeX BeF

Definition 2.3. Let (X,7) be an L-space, a € L\ {1} and G € LX. A family
P CGLC(X) is said to be a generalized closed a-remote family of G if for any
x € X with G(x) > a, there exists a B € P such that B(z) 7 a. P is said to be a
generalized closed strong a-remote family of G if

\/ <G(x)/\ A B@:)) #a.

zeX BeP

It is obvious that a generalized closed strong a-remote family of G is a generalized
closed a-remote family of GG, P is a generalized closed a-remote family of G if and
only if

G@)n )\ Bx)#a
BeP
and P is a generalized closed strong a-remote family of G if and only if P’ is a
generalized open strong a-shading of G.
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From Theorem 2.2 we obtain the following result.

Theorem 2.3. Let (X,T) be an L-space and G € LX. Then G is generalized fuzzy
compact if and only if for any a € L\ {0}, each generalized closed strong a-remote
family P of G has a finite subfamily F which is still a generalized closed strong
a-remote family of G.

Proof. Analogous to the proof of Theorem 2.1. |

Theorem 2.4. Let L be a complete Heyting algebra. If both G and H are generalized
fuzzy compact, then GV H is generalized fuzzy compact.

Proof. For any family P CGLC(X), by Theorem 2.2 we have that

\/ <(G\/H)(x)/\ A B(@)

zeX BeP

L (e o) e o)

> AV <G(x)/\ A B(:@) ve AV (H(x)/\ N B@;))
Fe2(P) zeX BeF Fe2(P) zeX BeF
= ANV ((G\/H)(m)/\ A B(:r)).
Fe2(P) zeX BeP
This shows that G V H is generalized fuzzy compact. 1

Theorem 2.5. If G is a generalized fuzzy compact L-set and H is a generalized
closed L-set, then G N\ H is a generalized fuzzy compact L-set.

Proof. Since G is a generalized fuzzy compact L-set, for any family P CGLC(X),
by Theorem 2.2 we have that

\/ ((G/\H)(x)/\ A B(@)

rzeX BeP
=V |Gaon AN B@w)|= A V (G(x)/\ A B(z))
z€X BePU{H} Fe2(PU{H}) z€X BeP
=< AV (G’(x)/\ A B@:))
Fe2(P) zeX BeF
NNV (G(:c)/\ <H(x)/\ N B@;)))
Fe2(P)zeX BeF
= ANV ((G/\H)(x)/\ A B(x)).
Fe2(P)zeX BeP

This shows that G A H is a generalized fuzzy compact L-set. 1
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Theorem 2.6. Let (X,71) and (Y,7T2) be two L-spaces, where L is a complete
Heyting algebra, f: X — Y be a generalized irresolute mapping. If G is generalized
fuzzy compact in (X,Tq), then so is f;7(G) is in (Y, T2).

Proof. For any P CGLC(X), by Lemma 1.1 and Theorem 2.2, we have that

V (fF(G)(y)/\ A B(y)> =\ (G(aﬁ)/\ A f‘L_(B)(w)>

yey BeP zeX BeP
> ANV (G(ﬂf)A A ff(B)($)>
Fe2(P) zeX BeF
= AV (J‘E’(G)(y)A A B(y)>-
Fe2(P) yeY BeF
Therefore f;7(G) is generalized fuzzy compact. |

3. Some characterizations of generalized fuzzy compact

In this section, we assume that L is a completely distributive de Morgan algebra.
We give many characterizations of generalized fuzzy compact.

Theorem 3.1. Let (X, 7T) be an L-space and G € L. Then the following conditions
are equivalent:

(1) G is generalized fuzzy compact;

(2) For any a € L\ {0}, each generalized closed strong a-remote family P of G
has a finite subfamily F which is a generalized closed strong a-remote family
of G;

(3) For any a € L'\ {0}, each generalized closed strong a-remote family P of G
has a finite subfamily F which is a generalized closed a-remote family of G;

(4) For any a € L\ {0}, each generalized closed strong a-remote family P of G
has a finite subfamily F and b € B(a) such that F is a generalized closed
strong b-remote family of G;

(5) For any a € L\ {0}, each generalized closed strong a-remote family P of
G has a finite subfamily F of P and b € B(a) such that F is a generalized
closed b-remote family of G;

(6) For any a € M(L), each generalized closed strong a-remote family P of G
has a finite subfamily F which is a generalized closed strong a-remote family
of G;

(7) For any a € M(L), each generalized closed strong a-remote family P of G
has a finite subfamily F which is a generalized closed a-remote family of G;

(8) For any a € M(L), each generalized closed strong a-remote family P of G
has a finite subfamily F of P and b € *(a) such that F is a generalized
closed strong b-remote family of G;

(9) For any a € M(L), each generalized closed strong a-remote family P of G
has a finite subfamily F of P and b € $*(a) such that F is a generalized
closed b-remote family of G.
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Proof. By Theorem 2.3 we can obtain (1)<=(2). (2)==(3) is obvious. Now to
prove (3)==(4), suppose that a € L\ {0} and P is a generalized closed strong
a-remote family of G, then we obtain that

\/ (G(x)/\ /\ B(m)) 7 a,

zeX BeP
take ¢ € B(a) such that

V (G(az) A B(x)) %,
zeX BeP

obviously P is a strong generalized closed c-remote family of G, by (3) we know that
‘P has a finite subfamily F which is a generalized closed c-remote family of G. Take
b € S(a) such that ¢ € B(b), then F is a generalized closed strong b-remote family
of G. (4) is shown. (4)=-(5) is obvious, we prove (5)=-(2). For any a € L\ {0},
suppose that P is any generalized closed strong a-remote family of G, by (5), P has
a finite subfamily F and b € §(a) such that F is a generalized closed b-remote family
of G. So that for any

zeX,Gx)A N Blx)#b,

BeF
we obtain
\/ <G(:r)/\ /\ B(m)) ? a,
rzeX BeF
in fact, if
\/ (G(m)/\ /\ B(m)) > a,
rzeX BeF

then by b € B(a), there exists zp € X such that
G(.’IJ()) A\ /\ B(.To) > b,
BeF
a contradiction. So that

\/ (G(m) A /\ B(x)) Z a.

zeX BeF

This implies that F is a generalized closed strong a-remote family of G. Similarly

we can prove that (2)=-(6)=(7)=(8)=(9)=-(1). i
Now we present some characterizations of generalized fuzzy compactness by means

of generalized open L-sets.

Theorem 3.2. Let (X,7) be an L-space and G € LX. Then the following conditions
are equivalent:
(1) G is generalized fuzzy compact;
(2) For any a € L\ {1}, each generalized open strong a-shading U of G has a
finite subfamily V which is a generalized open strong a-shading of G;
(3) For any a € L\ {1}, each generalized open strong a-shading U of G has a
finite subfamily V which is a generalized open a-shading of G;
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(4) For any a € L\{1}, each generalized open strong a-shadingU of G, there ex-
ists a finite subfamily V of U and b € a(a) such that 'V is a strong generalized
open b-shading of G;

(5) For any a € L\ {1}, each generalized open strong a-shading U of G, there
exists a finite subfamily V of U and b € a(a) such that V is a generalized
open b-shading of G;

(6) For any a € P(L), each generalized open strong a-shading U of G has a
finite subfamily V which is a generalized open strong a-shading of G;

(7) For any a € P(L), each generalized open strong a-shading U of G has a
finite subfamily V which is a generalized open a-shading of G;

(8) For any a € P(L), each generalized open strong a-shading U of G has a
finite subfamily V of U and b € a*(a) such that V is a strong generalized
open b-shading of G;

(9) For anya € P(L), each generalized open strong a-shadingU of G has a finite
subfamily V of U and b € o*(a) such that V is a generalized open b-shading
of G.

Proof. By Theorem 2.1 we can obtain (1)<=(2).

(2)==(3) is obvious.

(3)=(4). Suppose that a € L\ {1} and U is a generalized open strong a-shading
of G, then

/\ <G'(x)\/ \/ B(m)) £ a.

reX Beu
Take ¢ € a(a) such that

A (G’(m)\/ \/ B(x)) £ c,

zeX BeUu

obviously U is a generalized open strong c-shading of G and by (3) we know that U
has a finite subfamily V which is a generalized open c-shading of G. Take b € a(a)
such that ¢ € a(b), then V is a generalized open strong b-shading of G, (4) is shown.
(4)==(5) is obvious.

(5)=(2). For any a € L\ {1}, suppose that I is any generalized open strong
a-shading of G, by (5), U has a finite subfamily V and b € a(a) such that V is a
generalized open b-shading of G. So that for any = € X,

G'(@)v \/ Blx) £b.

Bevy
we obtain
A <G’(x) v\ B(x)) £ a,
zeX Bevy
in fact, if
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then by b € a(a), there exists ¢ € X such that

G(xo) V \/ B(xo) S b,
Bev
a contradiction. So that

A <G’(x) v\ B(x)) £ a.
zeX Bey

This implies that V is a generalized open strong a-shading of G.
Similarly we can prove that (2)=(6)=(7)=(9) =(9)=(1). 1

Definition 3.1. Let (X,7) be an L-space, a € L\ {0} and G € LX. A family
U CGLO(X) is said to be a generalized open (,-cover of G if for any x € X with
a & B(G'(x)), there exists A € U such that a € B(A(x)). U is said to be a generalized
open strong (B,-cover of G if

aep < /\X <G’(w) Vv A\/UA(x)>> .

It is obvious that a generalized open strong (,-cover of G is generalized open
Ba-cover G and U is a generalized open (,-cover of G if and only if for any z € X,

a€p (G’(w) % \/ A(x)) .
AeU
Theorem 3.3. Let (X,7) be an L-space and G € L. Then the following conditions
are equivalent:

(1) G is generalized fuzzy compact;

(2) For any a € L\ {0}, each generalized open strong B,-cover U of G has a
finite subfamily V which is a generalized open strong [3,-cover of G,

(3) For any a € L\ {0}, each generalized open strong B,-cover U of G has a
finite subfamily V which is a generalized open [3,-cover of G;

(4) For any a € L\ {0}, any generalized open strong (Bq-cover U of G, there
exists a finite subfamily V of U and b € L with a € B(b) such that V is a
generalized open strong B,-cover of G;

(5) For any a € L\ {0}, any generalized open strong B,-cover U of G, there
exists a finite subfamily V of U and b € L with a € B(b) such that V is a
generalized open (B,-cover of G;

(6) For anya € M(L), each generalized open strong Bq-cover U of G has a finite
subfamily V which is a generalized open strong B,-cover of G;

(7) For anya € M(L), each generalized open strong Bq-coverU of G has a finite
subfamily V which is a generalized open (3,-cover of G;

(8) For any a € M(L) and any generalized open strong [3,-cover U of G, there
exists a finite subfamily V of U and b € M (L) with a € §*(b) such that V is
a generalized open strong B,-cover of G;

(9) For any a € M(L) and any generalized open strong B,-cover U of G, there
exists a finite subfamily V of U and b € M (L) with a € 3*(b) such that V is
a generalized open (B,-cover of G.
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Proof. We only prove (1)<=(2).

(1)==(2). Suppose that G is generalized fuzzy compact and for any a € L\ {0}, U
is any generalized open strong (,-cover of G. Then

A <G’(x)\/ \ A(z)) <V A (G’(z)\/ \ A@;)).
zeX Aeu vea) zeX Aey

So
ﬁ(/\ (G/(g;)v \/ A(@)) gﬁ( VA (G’(x)v \/ A@))) .
rzeX Aelu veaW) zeX Aey
By
a€p ( <G’(m) % \/ A(x))) ,
reX AeU
we obtain
aeﬁ( \/ /\ (G’(x)\/ \/ A(x))) ,
vea) zeX Aey

therefore

ac J 6(/\ (G/(x)v \/A(@)),

ve2) zeX Aey
hence there exists a V € 2¢) such that
a€p ( A (G’(m)\/ \V A(x))) :
zeX Aey

Thus V is a generalized open strong (3,-cover of G.

(2)=>(1). Suppose that for any a € L\ {0}, each generalized open strong (,-cover
U of G has a finite subfamily V which is a generalized open strong (,-cover of G,
then we know that

a€p ( /\ (G’(x) v \/ A(x))) implies that a € 8 ( /\ (G’(a:) v \/ A(m)))

reX Aeu reX Aey

where V € 2 Hence
& ( A (G’(m) v\ A(:@)) <B ( A (G’(m)\/ \/ A(x)>> .
zeX Aeu zeX Aev

/\ (G’(x)\/ \/ A(m)) < \/ /\ (G'(a:)\/ \/ A(x)) :
rzeX AelU vea) zeX A€y

This prove that G is generalized fuzzy compact. ]

Thus
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Definition 3.2. Let (X,7) be an L-space, a € L\ {0} and G € LX. A family
U CGLO(X) is said to be a generalized open Qq-cover of G if for any x € X it
follows that

¢'v'\/ Ax)>a.

AelU

It is obvious that a generalized open [(,-cover of G is a generalized open ),-cover

of G. Moreover form Definition 2.1 we also can obtain the following result.

Theorem 3.4. Let (X, 7T) be an L-space and G € L. Then the following conditions
are equivalent:

(1) G is generalized fuzzy compact;

(2) For any a € L\ {0} and any b € B(a) \ {0}, each generalized open Qq-cover
of G, has a finite subfamily which is a generalized open Qp-cover of G;

(3) For any a € L\ {0} and any b € B(a) \ {0}, each generalized open Q,-cover
of G, has a finite subfamily which is a generalized open [3,-cover of G;

(4) For any a € L\ {0} and any b € B(a) \ {0}, each generalized open Qq-cover
of G, has a finite subfamily which is a generalized open strong f,-cover of
G;

(5) For any a € M(L) and any b € $*(a), each generalized open Q,-cover of G,
has a finite subfamily which is a generalized open Qy-cover of G;

(6) For any a € M(L) and any b € 8*(a), each generalized open Q,-cover of G,
has a finite subfamily which is a generalized open [By-cover of G;

(7) For any a € M(L) and any b € 3*(a), each generalized open Qq-cover of G,
has a finite subfamily which is a generalized open strong By-cover of G.
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