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Abstract. In this article we prove that a flat nonplanar surface in the Eu-
clidean space E3 with pointwise 1-type Gauss map of the second kind is either

a right circular cone or a cylinder such that the curvature of the base curve

satisfies a specific differential equation. We conclude that there is no tangent
developable surface in E3 with pointwise 1-type Gauss map of the second kind.
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1. Introduction

A submanifold M of a Euclidean space Em is said to be of finite type if its position
vector x can be expressed as a finite sum of eigenvectors of the Laplacian ∆ of M ,
that is, x = x0+x1+· · ·+xk, where x0 is a constant map, x1, . . . , xk are nonconstant
maps such that ∆xi = λixi, λi ∈ R, i = 1, 2, . . . , k. If λ1, λ2, . . . , λk are all different,
thenM is said to be of k-type (cf. [5, 6]). In [7], this definition was similarly extended
to differentiable maps, in particular, to Gauss maps of submanifolds. The notion
of finite type Gauss map is an especially useful tool in the study of submanifolds
(cf. [1, 2, 3, 4, 7, 17]). In [7], Chen and Piccinni made a general study on compact
submanifolds of Euclidean spaces with finite type Gauss map, and for hypersurfaces
they proved that a compact hypersurface M of En+1 has 1-type Gauss map if and
only if M is a hypersphere in En+1.

If a submanifold M of a Euclidean space has 1-type Gauss map G, then ∆G =
λ(G + C) for some λ ∈ R and some constant vector C. However, the Laplacian of
the Gauss maps of several surfaces such as helicoid, catenoid and right cones in E3,
and also some hypersurfaces has the form of the product

(1.1) ∆G = f(G+ C)
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for some smooth function f on M and some constant vector C. A submanifold of a
Euclidean space is said to have pointwise 1-type Gauss map if its Gauss map satisfies
(1.1) for some smooth function f on M and some constant vector C. A submanifold
with pointwise 1-type Gauss map is said to be of the first kind if the vector C in
(1.1) is the zero vector. Otherwise, a submanifold with pointwise 1-type Gauss map
is said to be of the second kind.

Remark 1.1. For a plane M in E3 the Gauss map G is a constant vector and
∆G = 0. For f = 0 if we write ∆G = 0 · G, then M has pointwise 1-type Gauss
map of the first kind. If we choose C = −G for any nonzero smooth function f ,
then (1.1) holds. In this case M has pointwise 1-type Gauss map of the second kind.
Therefore we say that a plane in E3 is a trivial surface with pointwise 1-type Gauss
map of the first kind or the second kind.

Surfaces in Euclidean spaces and in pseudo-Euclidean spaces with pointwise 1-
type Gauss map were recently studied in [8, 9, 12, 13, 14, 18]. Also, hypersurfaces
of Euclidean space En+1 with pointwise 1-type Gauss map were studied in [10]. In
particular, the classification of surfaces of revolution with pointwise 1-type Gauss
map was given in [8]. It was proved that the right circular cones are the only surfaces
of revolution of polynomial kind with pointwise 1-type Gauss map of the second kind.

Here we prove that a right circular cone is the only cone in E3 with pointwise
1-type Gauss map of the second kind. Then we describe all cylinders in E3 with
pointwise 1-type Gauss map of the second kind such that the curvature k of the
base curve of the cylinders satisfies a specific differential equation which determines
k implicitly. Also, we conclude that there is no tangent developable surface in E3

with pointwise 1-type Gauss map of the second kind.

2. Preliminaries

Let M be an oriented surface in the Euclidean space E3. The map G : M → S2 ⊂ E3

which sends each point of M to the unit normal vector to M at the point is called
the Gauss map of the surface M , where S2 is the unit sphere in E3 centered at the
origin. We denote by h,AG, ∇̃ and ∇, the second fundamental form, the Weingarten
map, the Levi-Civita connection of E3 and the induced Riemannian connection on
M , respectively.

We choose an oriented orthonormal moving frame {e1, e2, e3} on M in E3 such
that e1, e2 are tangent to M and e3 = G is normal to M .

Denote by {ω1, ω2, ω3} the dual 1-forms to {e1, e2, e3} and by {ωAB}, A,B =
1, 2, 3, the connection 1-forms associated with {ω1, ω2, ω3} satisfying ωAB + ωBA = 0.
Then we have ∇̃ek

ei =
∑2
j=1 ω

j
i (ek)ej + hike3, ∇̃ek

e3 =
∑2
j=1 ω

j
3(ek)ej , where hik

are the coefficients of the second fundamental form h. By Cartan’s Lemma, we also
have ω3

j =
∑2
k=1 hjkω

k, hjk = hkj .
The mean curvature H and the Gauss curvature K are, respectively, defined by

H = (h11 + h22)/2 and K = h11h22 − h12h21.
Let I be an open interval containing zero in the real line R. A ruled surface M is

parametrized by
x(s, t) = α(s) + tβ(s), s ∈ I, t ∈ R,
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where α and β are smooth mappings from I into E3 and β is nowhere zero. The
map α = α(s) is called a base curve and β = β(s) is called a director curve. We say
that a ruled surface M is a cylinder if β is a constant vector, M is a cone if α is a
constant vector, and M is a tangent surface if β is tangent to α.

A surface in the Euclidean space E3 whose Gaussian curvature vanishes on the
regular part is called a developable surface. Then we have the following well-known
classification theorem of developable surfaces [16].

Theorem 2.1. [16] A developable surface is one of the following:
(1) A part of cylindrical surface.
(2) A part of a conical surface.
(3) A part of a tangent developable surface.
(4) The result of gluing two or more surfaces of the above three types.

3. Surfaces with pointwise 1-type Gauss map of second kind

We study flat surfaces (developable ruled surface) of E3 with pointwise 1-type Gauss
map of the second kind.

Lemma 3.1. [10] Let M be an oriented hypersurface of a Euclidean space En+1.
Then the Laplacian of the Gauss map G is given by

(3.1) ∆G = ‖AG‖2G+ n∇H,
where ∇H is the gradient of the mean curvature H and ‖AG‖2 = tr(AGAG).

We prove the following lemma for later use.

Lemma 3.2. Let M be an oriented surface in the Euclidean space E3. Let e1, e2
be the unit principal directions of the shape operator AG of M . If C is a constant
vector in E3, then the components of C = C1 e1 +C2e2 +C3G in the basis {e1, e2, G}
of E3 satisfy the following equations:

(3.2) e1(C1) + ω1
2(e1)C2 − h11 C3 = 0,

(3.3) e1(C2)− ω1
2(e1)C1 = 0,

(3.4) e1(C3) + h11 C1 = 0,

(3.5) e2(C1) + ω1
2(e2)C2 = 0,

(3.6) e2(C2)− ω1
2(e2)C1 − h22 C3 = 0,

(3.7) e2(C3) + h22 C2 = 0,

where Ci = 〈C, ei〉 , i = 1, 2 and C3 = 〈C,G〉.

Proof. Let e1, e2 be the unit principal directions of the shape operator AG. Then
we have AG(ei) = hiiei, i = 1, 2, and h12 = h21 = 0. When we take derivative of the
vector C in direction ek and use the formulas of Gauss and Weingarten, we obtain

∇̃ek
C = [ek(C1) + ω1

2(ek)C2 − hk1 C3]e1

+ [ek(C2)− ω1
2(ek)C1 − hk2 C3]e2



472 U. Dursun

+ [ek(C3) + h1k C1 + h2k C2]G = 0

which produces equations (3.2)–(3.7) for k = 1, 2.
In [8], it was shown that a right circular cone is the only surface of revolution

of polynomial kind with pointwise 1-type Gauss map of the second kind in E3. We
prove:

Theorem 3.1. Let M be an oriented flat regular surface in the Euclidean space E3.
Then M has pointwise 1-type Gauss map of the second kind if and only if M is an
open part of the following surfaces:

(1) A right circular cone in E3,
(2) a plane in E3,
(3) a cylinder given, up to a rigid motion, by

(3.8) x(s, t) =
(
± q

2
0

d0
µ(s)− s

d0
+ d1,−

q0
2d0k2(s)

+ d2, t

)
,

where d0 6= 0, q0 6= 0, d1, and d2 are arbitrary constants, while the function
µ(s) and the curvature function k(s) of the base curve are related by

µ(s) =
∫

dk

k3
√

(d2
0 − 1)k2 + 2q0k − q20

,

and k(s) satisfies the differential equation q20k
′2 = k4[(d2

0−1)k2 +2q0k−q20 ].

Proof. Suppose that M is a flat nonplanar surface of E3 with pointwise 1-type Gauss
map of the second kind. Then the gradient vector ∇H of the mean curvature H
is nonzero on M because of (3.1). If ∇H were zero, then the Gauss map would
be of pointwise 1-type of the first kind. So the mean curvature H is a nonconstant
function on M .

Let e1, e2 be the unit principal directions of AG, i.e., AG(ei) = hiiei, i = 1, 2,
and h12 = h21 = 0. By (1.1) and (3.1) we have

(3.9) ‖AG‖2G+ 2∇H = f(G+ C)

for some nonzero smooth function f on M and some nonzero constant vector C ∈ E3.
In the basis {e1, e2, G} we can write

C = C1 e1 + C2e2 + C3G,

where Ci = 〈C, ei〉 , i = 1, 2 and C3 = 〈C,G〉 which satisfy equations (3.2)–(3.7) in
Lemma 3.2. Hence equation (3.9) implies

(3.10) ||AG||2 = f(1 + C3),

(3.11) 2 e1(H) = f C1,

(3.12) 2 e2(H) = f C2.

As the Gauss curvature is zero, that is, M is a developable ruled surface, then
from Theorem 2.1 M is a part of a cone, a cylinder or a tangent developable surface.
So, to prove the theorem we consider three cases.
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Case 1. M is an open part of a cone. Then, by an appropriate rigid motion, M
can be parametrized locally by

x(s, t) = α0 + tβ(s), t 6= 0,

where 〈β(s), β(s)〉 = 1 and 〈β′(s), β′(s)〉 = 1, while α0 is a constant vector. The
coordinate vector fields xs = tβ′(s) and xt = β(s) are orthogonal as 〈β(s), β(s)〉 = 1.
So we take the orthonormal tangent frame {e1, e2} on M such that e1 = 1

t
∂
∂s and

e2 = ∂
∂t . The Gauss map of M is given by G = e1 × e2 = β′(s)× β(s).

By calculation we obtain

∇̃e1e1 = −1
t
e2 −

kg(s)
t

G, ∇̃e1e2 =
1
t
e1, ∇̃e2e1 = ∇̃e2e2 = 0,

where kg(s) = 〈β(s), β′(s)× β′′(s)〉 6= 0 which is the geodesic curvature of β in the
unit sphere S2(1). All these relations imply that

ω2
1(e1) = −1

t
, ω1

2(e2) = 0, h11 = −kg(s)
t

, h12 = h21 = h22 = 0.

Thus, e1, e2 are principal vectors of the surface, H = −kg(s)
2t , and ‖AG‖2 = k2

g(s)

t2 .
Now (3.5)–(3.7) imply that C1, C2, and C3 are functions of s, and equations

(3.2)–(3.4) become

(3.13) C ′
1(s) + C2(s) + kg(s)C3(s) = 0,

(3.14) C ′
2(s)− C1(s) = 0,

(3.15) C ′
3(s)− kg(s)C1(s) = 0.

On the other hand, we have from (3.10), (3.11), and (3.12),

(3.16)
k2
g(s)
t2

= f(1 + C3),

(3.17) − 1
t2
dkg(s)
ds

= f C1,

(3.18)
kg(s)
t2

= f C2.

It follows from (3.18) that C2 6= 0. Also, (3.16) and (3.18) give

(3.19) kg(s)C2(s)− C3(s) = 1

from which by taking derivative with respect to s we get

(3.20) k′
g(s)C2(s) + kg(s)C ′

2(s) = C ′
3(s)

which equals k′
g(s)C2(s) = 0 in view of (3.14) and (3.15). Hence we obtain k′

g(s) = 0
as C2 6= 0, that is, kg(s) is a nonzero constant. It is well-known that a spherical
curve in S2 is completely determined by its geodesic curvature, in particular, if kg is
a nonzero constant, then it is a small circle of S2. Therefore, β is a part of a small
circle in the unit sphere. As a result, M is an open part of a right circular cone.
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Moreover we have C1 = 0 from (3.17), and C ′
2 = 0 and C ′

3 = 0 from (3.14) and
(3.15), respectively. That is, C2 and C3 are constants, and thus, from (3.13) and
(3.19) we get

C2 =
kg

1 + k2
g

, C3 = − 1
1 + k2

g

.

Also, we have from (3.18) f = 1+k2
g

t2 . Therefore M has pointwise 1-type Gauss map

of the second kind, that is, equation (1.1) holds for f = 1+k2
g

t2 and for the constant
vector C = kg

1+k2
g
e2 − 1

1+k2
g
G.

Case 2. M is an open part of a cylinder. Locally it can be parametrized by

(3.21) x(s, t) = α(s) + tβ,

where α(s) is a base curve of the cylinder parametrized by arc length that lies in
a plane with unit normal vector β which is the director of the cylinder. By an
appropriate rigid motion, we may assume that α(s) = (α1(s), α2(s), 0) and β =
(0, 0, 1) without lose of generality.

If the curvature k(s) of α(s) is zero, then α is a line, and the cylinder M is a plane
which has pointwise 1-type Gauss map of the second kind by choosing C = −G for
any nonzero smooth function f . This proves the part 2 of Theorem 3.1. We then
assume that k is a nonconstant function because if k(s) were a nonzero constant,
then M would be a circular cylinder which has pointwise 1-type Gauss map of the
first kind.

Now we take an orthonormal tangent frame {e1, e2} on M such that e1 = ∂
∂t and

e2 = ∂
∂s since 〈α′(s), α′(s)〉 = 1, 〈β, β〉 = 1 and 〈α′(s), β〉 = 0. Thus the Gauss map

is G = e1 × e2.
By a direct calculation we obtain ∇̃e1e1 = ∇̃e1e2 = ∇̃e2e1 = 0 and ∇̃e2e2 =

k(s)G, where k(s) is the curvature of α(s). All these imply that ω1
2(e1) = ω1

2(e2) = 0,
h11 = h12 = h21 = 0, and h22 = k(s). Therefore e1 and e2 are the principal vectors
of the surface, H = k(s)/2 which is the function of s, and ‖AG‖2 = k2(s). Hence
(3.11) and (3.12) give, respectively, C1 = 0 and C2 6= 0.

On the other hand it follows from (3.2)–(3.4) that C1, C2, and C3 are functions
of s, and equations (3.6) and (3.7) give, respectively

(3.22) C ′
2(s)− k(s)C3(s) = 0

and

(3.23) C ′
3(s) + k(s)C2(s) = 0

which yield C2
2 (s) + C2

3 (s) = d2
0, where d0 is a nonzero constant. We may put

(3.24) C2(s) = d0 sinλ(s), C3(s) = d0 cosλ(s)

which implies equations (3.22) and (3.23) if λ(s) = k0 +
∫
k(s)ds, where k0 is an

integration constant.
If we make use of (3.10) and (3.12) together with (3.24) we obtain

k′(s)
k2(s)

=
d0 sinλ(s)

1 + d0 cosλ(s)
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from which by the integration we obtain

(3.25) d0 cosλ(s) =
q0
k(s)

− 1,

where q0 is a nonzero constant. By the last two equations we have

(3.26) d0 sinλ(s) =
q0k

′(s)
k3(s)

.

Now, by (3.25) and (3.26) the equation C2
2 (s) + C2

3 (s) = d2
0 yields the differential

equation

(3.27) q20k
′2 = k4[(d2

0 − 1)k2 + 2q0k − q20 ].

One can obtain the solution of the differential equation which defines k implicitly as
a function s.

Also, from (3.10) and (3.25) we get f = k3

q0
. Therefore, M has pointwise 1-type

Gauss map of the second kind, that is, equation (1.1) holds for f = k3

q0
and for the

constant vector C = q0k
′

k3 e2 + ( q0k − 1)G = (0, d0, 0) if the curvature k(s) satisfies
(3.27).

It is well-known that given a differentiable function k(s), a parametrized plane
curve having k(s) as curvature is determined uniquely, up to a rigid motion, by(∫

cosλ(s)ds+ d1,

∫
sinλ(s)ds+ d2

)
,

where λ(s) =
∫
k(s)ds+k0 and s is the arc length parameter of the curve. Therefore,

we can write the base curve α(s) of the cylinder by considering (3.25) and (3.26) as
follows

(3.28) α(s) =
(
q0
d0

∫
ds

k(s)
− s

d0
+ d1,

q0
d0

∫
k′(s)
k3(s)

ds+ d2, 0
)
.

When we evaluate the integral in the second component of α(s) we have

(3.29)
∫
k′(s)ds
k3(s)

= − 1
2k2(s)

.

Also, using (3.27) we write the integral in the first component of α(s) as

(3.30)
∫

ds

k(s)
= ±q0

∫
dk

k3
√

(d2
0 − 1)k2 + 2q0k − q20

which can be evaluated in terms of elementary functions. Therefore, we have (3.8)
from (3.21), (3.28), (3.29), and (3.30).

Case 3. M is an open part of a tangent developable surface. We will show that
there is no tangent developable surface in E3 with pointwise 1-type Gauss map of
the second kind. The surface M is locally parametrized by

x(s, t) = α(s) + tα′(s), t 6= 0,

where α(s) is a unit speed curve with nonzero curvature k(s) in E3. We assume that
the torsion τ(s) of α(s) is nonzero. If τ = 0, then the tangent surface is a part of a
plane which has no pointwise 1-type Gauss map of the second kind.
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Let T,N and B denote the unit tangent vector, principal normal vector and
binormal vector of the curve α, respectively. The coordinate vector fields are xs =
α′(s) + tα′′(s) = T + tk(s)N and xt = α′(s) = T which are not orthogonal. The
parametrization x is regular if tk 6= 0. We take the orthonormal tangent frame
{e1, e2} on M such that e1 = ∂

∂t and e2 = 1
tk(s)

(
∂
∂s −

∂
∂t

)
. It is seen that e1 = T and

e2 = N . Then the Gauss map of M is given by G = e1 × e2 = T ×N = B.
By a direct calculation we obtain

∇̃e1e1 = ∇̃e1e2 = 0, ∇̃e2e1 =
1
t
e2, ∇̃e2e2 = −1

t
e1 +

τ

tk
G.

These relations imply that ω1
2(e1) = 0, ω2

1(e2) = 1
t , h11 = h12 = h21 = 0 and h22 =

τ
tk . Therefore e1, e2 are principal vectors of the surface, H = τ

2tk , and ‖AG‖2 = ( τtk )2.
Now, it follows from (3.2)–(3.4) that C1, C2 and C3 are functions of s, and thus

equations (3.5)–(3.7) become

(3.31) C ′
1(s)− k(s)C2(s) = 0,

(3.32) C ′
2(s) + k(s)C1(s)− τ(s)C3(s) = 0,

(3.33) C ′
3(s) + τ(s)C2(s) = 0.

On the other hand, we have from (3.10), (3.11) and (3.12)

(3.34)
τ2

t2k2
= f(1 + C3),

(3.35) − τ

t2k
= f C1,

(3.36)
1
t2k

(
d

ds

(τ
k

)
+
τ

tk

)
= f C2.

Equation (3.35) implies that C1 6= 0 as τ 6= 0. So, by the equations (3.34) and (3.35)
we obtain

(3.37) τ(s)C1(s) + k(s)C3(s) = −k(s)

from which by taking derivative with respect to s we get

(3.38) τ ′(s)C1(s) + τ(s)C ′
1(s) + k′(s)C3(s) + k(s)C ′

3(s) = −k′(s).

In view of (3.31) and (3.33), the equation (3.38) turns into

(3.39) τ ′(s)C1(s) + k′(s)C3(s) = −k′(s).

If τ ′(s)k(s) − k′(s)τ(s) 6= 0, then equations (3.37) and (3.39) give C1 = 0 and
C3 = −1. Hence, we have τ = 0 from (3.34) or (3.35) which is a contradiction.

Now suppose that τ ′(s)k(s)−k′(s)τ(s) = 0 which means that τ
k = r0 is a constant.

In this case, by (3.35) and (3.36) we get tk(s)C2(s) + C1(s) = 0 which implies that
C1 = C2 = 0, that is, τ = 0 by (3.35). This is a contradiction. Therefore the torsion
τ is zero, and there is no tangent developable surface with pointwise 1-type Gauss
map of the second kind.

The converse of the proof follows from a straightforward calculation.
We then have the following:
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Corollary 3.1. A right circular cone in the Euclidean space E3 is the only cone
with pointwise 1-type Gauss map of the second kind.

Corollary 3.2. There is no tangent developable surface in the Euclidean space E3

with pointwise 1-type Gauss map of the second kind.

Example 3.1. Let d0 = q0 = 1 and d1 = d2 = 0 in (3.8). Solving the differential
equation (3.27) we obtain

(3.40) s =
∫

dk

k2
√

2k − 1
=
√

2k − 1
k

+ 2 arctan
√

2k − 1 + k1,

where k1 is an integration constant. Now, if we evaluate the integral defining the
function µ(s) in the second part of Theorem 3.1, then we obtain

(3.41) µ(s) =
(1 + 3k)

√
2k − 1

2k2
+ 3 arctan

√
2k − 1 + k2.

By taking the integration constants k1 and k2 zero and using (3.40) we get

µ(s) =
3s
2

+
√

2k − 1
2k2

.

Therefore the cylinder with pointwise 1-type Gauss map of the second kind with
(3.8) is in this case parametrized by

(3.42) x(s, t) =

(
s

2
+

√
2k(s)− 1
2k2(s)

,− 1
2k2(s)

, t

)
, k > 1/2,

where k satisfies
√

2k − 1 + 2k arctan
√

2k − 1− sk = 0. Using this equation we can
parametrize (3.42) in terms of k and t.
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