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Abstract. Let F be a family of meromorphic functions in a domain D, and
k be a positive integer, and let ¢(2)(# 0,00) be a meromorphic function in D
such that f and ¢(z) have no common zeros for all f € F and ¢(z) has no
simple zeros in D, and all poles of p(z) have multiplicity at most k. If, for each
f € F, all zeros of f have multiplicity at least k + 1, f*)(2) = 0 = f(z) =
0, f*)(2) = (2) = f(2) = ¢(2), then F is normal in D. This result improves
and extends related results due to Schwick, Fang, Fang-Zalcman and Xu, et al.
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1. Introduction

Let f,g be two meromorphic functions in a domain D, and let a be a complex
number. If g(z) = a whenever f(z) = a, we denoteitby f=a=g=a. f=a<
g = a means f(z) = a if and only if g(z) = a, and we say that f and g share a.

Let D be a domain in C, and F be a family of meromorphic functions defined
on D. F is said to be normal on D, in the sense of Montel, if for any sequence
{fn} € F there exists a subsequence {f,,}, such that {f,,} converges spherically
locally uniformly on D, to a meromorphic function or oo (see [5, 8, 14].

Schwick [9] discovered a connection between normality criteria and shared values.
He proved:

Theorem 1.1. Let F be a family of meromorphic functions in a domain D, and
let ay,as, a3 be distinct complex numbers. If, for each f € F, f(2) = a; & f'(2) =
a;(i=1,2,3), then F is normal in D.

This result has undergone various extensions. The following result is due to Fang

and Zalcman [4].
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Theorem 1.2. Let F be a family of meromorphic functions in a domain D, and k
be a positive integer, and let a # 0 be complex number. If, for each f € F, all zeros
of f have multiplicity at least k+1, f*)(2) =0 = f(2) =0, fF(2) = a = f(2) = a,
then F is normal in D.

In [3], Fang proved that Theorem 1.2 is still valid if a is replaced by a non-
vanishing analytic function v (z) for k = 1, as follows:

Theorem 1.3. Let F be a family of meromorphic functions in a domain D, let ¥(2)
be a non-vanishing analytic function in D, If, for each f € F, f(z2) =0 f/'(2) =
0, f'(z) =¢(2) = f(2) = ¢¥(2), then F is normal in D.

Recently, Xu [12] proved the following result, which extends Theorems 1.2 and
1.3, and improves Theorem 1.1.

Theorem 1.4. Let F be a family of meromorphic functions in a domain D, and k
be a positive integer, and let p(z)(Z£ 0) be an analytic function in D such that f and
©(2) have no common zeros for all f € F and ¢(z) has no simple zeros in D. If,
for each f € F, all zeros of f have multiplicity at least k+1, fF)(2) =0 = f(2) =
0, fB)(2) = p(2) = f(2) = p(2), then F is normal in D.

Remark 1.1. There is an example in [12] that shows the hypothesis “f € F and
©(z) have no common zeros in D” is necessary in Theorem 1.4.

A natural problem arises: What can we say if the analytic function p(2)(# 0) in
Theorem 1.4 is replaced by a meromorphic function ¢(z)(# 0,00) %
In this paper, we first prove the following result.

Theorem 1.5. Let F be a family of meromorphic functions in a domain D, and k
be a positive integer, and let p(z)(# 00) be a non-vanishing meromorphic function
in D such that all poles of ¢(z) have multiplicity at most k. If, for each f € F, all
zeros of f have multiplicity at least k+1, fF)(2) =0 = f(2) =0, fF)(2) = p(2) =
f(z) = p(z), then F is normal in D.

Since normality is a local property, combining the above theorem and Theorem
1.4, we can obtain the following theorem, which improves and generalizes Theorems
1.1-1.4.

Theorem 1.6. Let F be a family of meromorphic functions in a domain D, and k be
a positive integer, and let o(z)(# 0,00) be a meromorphic function in D such that f
and ¢(z) have no common zeros for all f € F and p(z) has no simple zeros in D, and
all poles of p(z) have multiplicity at most k. If, for each f € F, all zeros of f have
multiplicity at least k + 1, fF)(2) =0 = f(2) =0, fF)(2) = p(2) = f(2) = ¢(2),
then F s normal in D.

Remark 1.2. The restriction on the poles of ¢(z) in Theorems 1.5 and 1.6 can not
be omitted, which is shown by the following example.

Example 1.1. [2] Let k € N, D = {2 : |2| < 1}, ¢(2) = -5, and

1
f{fn(z)m,ZED,nl,Qv}
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Since fy(z) and fr(lk)(z) have no zeros, fék)(z) =0 = fn(2) = 0. Obviously, there
exists ng € N such that f,sk)(z) — p(2) # 0 for n > ng, hence f,(f)(z) = ¢(z) =
fn(2) = ¢(2). But F is not normal in D.

Remark 1.3. We conjecture that Theorem 1.5 and 1.6 still hold if we replace “all
poles of ¢(z) have multiplicity at most k” by “for all f € F, f and ¢ have no
common poles in D”.

2. Some lemmas
To prove our results, we need the following lemmas.

Lemma 2.1. (3] Let f be a meromorphic function of finite order in the plane C. If
f(z)=0% f'(z) =0, f(2) # 1, then f is a constant.

Lemma 2.2. [4] Let f be a meromorphic function of finite order in the plane C
and k > 2 be a positive integer. If all zeros of f have multiplicity at least k + 1,
f® () =0= f(2) =0,f®)(2) #1, then f is a constant.

Lemma 2.3. [11] Let f be a transcendental meromorphic function, let R(z)(# 0) be
a rational function, and k be a positive integer. If all zeros of f have multiplicity at
least k+1, except for finitely many, and f*)(2) = 0= f(z) =0, then f*)(2)— R(z)
has infinitely many zeros.

Lemma 2.4. [13] Let k,l be positive integers, and let Q(z) be a rational function
all of whose zeros are of order at least k. If QW) (2) # 27!, then Q(z) is constant.

The well-known Zalcman’s lemma is a very important tool in the study of normal
families. It has also undergone various extensions and improvements. The following
is one up-to-date local version, which is due to Pang and Zalcman [7] (cf. [1, 2, 10,
15]).

Lemma 2.5. Let k be a positive integer and let F be a family of meromorphic
functions defined in a domain D, such that each function f € F has only zeros of
order at least k, and suppose that there exists A > 1 such that |f*)(2)| < A whenever
f(z) =0. If F is not normal at zo € D, thus, for each 0 < o < k, there exist

(a) a sequence of points z, € D, z, — 2o;

(b) a sequence of positive numbers p, — 0;

(¢) a sequence of functions f, € F,

such that g,(C) = p, % fn(zn + pnC) — ¢(¢) locally uniformly with respect to the
spherical metric, where g is a nonconstant meromorphic function on C, all of whose
zeros have multiplicity > k, such that g% ({) < g*(0) = kA + 1. Moreover, g has
order at most 2.

Lemma 2.6. Let k be a positive integer and F = {f,} be a family of meromorphic
functions defined in a domain D, all of whose zeros have multiplicity at least k + 1,
and let v, (2) be a sequence of holomorphic functions in D such that p,(z) — p(2)(#
0) locally uniformly in D. If there exist a sequence of points a, — 0, such that

(2) = 0= ful(2) = 0, £7(2) = u(2) = ful2) = an*on(2), then F is normal
i D.
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Proof. Suppose F is not normal at zy € D. By Lemma 2.5, there exist a sequence
of complex numbers z, — zg, a sequence of positive numbers p,, — 0, and a subse-
quence of F, which we continue to denote by {f,}, such that

_ Jn(2zn + pn()
- o
locally uniformly on C with respect to the spherical metric, where F' is a nonconstant
meromorphic function on C, all of whose zeros have multiplicity > k£ + 1. We claim

(1) F®(C) =0 = F(¢) =0, and

(2) F®(C) # ¢(20)-

Suppose that F(*)((y) = 0, since all zeros of F(¢) have multiplicity at least k+1,

we have F(®)(¢) # 0. Then there exist ¢, — (o such that (for n sufficiently large)

Fv(Lk)(Cn) = fﬁk)(zn + pnén) = 0.
Since f,(Lk)(z) =0= fun(z) =0, thus f,(zn + pnln) = 0, and then

P(Co) = Tim Fa(Gy) = lim L2Cnt Pnln)

n—o0 P

Fa(Q) — F(C)

=0.

This proves (1).
Next we prove (2). Suppose F*)((y) = ¢(20)(# 0,00), clearly, F*)(¢) # ¢(z)
since all zeros of F({) have multiplicity at least k 4+ 1. Noting that

Fr(zk) (€) = n(zn + pnl) = fr(zk)(zn + pnC) = n(2n + puC) — F® (Co) = ¢(20)-

By Hurwitz’s theorem, there exist (, — (o such that (for n sufficiently large)

'r(Lk)(Zn + pnCn) = (Pn(zn + pnCn)v and thus fn(zn + pnCn) = a;k(ﬂn(zn + pnCn)

Hence

F(¢o) = lim Fy(C,) = lim w"(zzlfaf n) _ oo
This contradicts that F*)((y) = ¢(20) # oco. This proves (2).
Hence, by Lemma 2.1 and 2.2, F'(¢) must be a constant, a contradiction. Lemma

2.6 is proved. 1

Using the argument as the proof of Lemma 2.6, we can obtain the following
lemma.

Lemma 2.7. Let F be a family of meromorphic functions defined in a domain D,
all of whose zeros have multiplicity at least k+1, and let p(z)(# 0) be a holomorphic
function in D. If, for each function f € F, f*F)(2) =0 = f(2) =0 and f*F)(z) =
w(z) = f(z) = v(z), then F is normal in D.

3. Proof of Theorem 1.5

Since normality is a local property, by Lemma 2.7, we only need to prove that
F is normal at every pole of ¢(z). Without loss of generality, we may assume
D=A={z:|z| <1}, and

1 a4 P(2)

QO(Z):?‘F Zl_l +:7 (ZEA),
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where | < k is a positive integer , ¢(0) = 1,¢(z) # 0,00 for 0 < |z] < 1. So it is
enough to show that F is normal at z = 0.

Suppose that F is not normal at z = 0. By Lemma 2.5 (oo = k — 1), there exist a
sequence of complex numbers z, — 0, a sequence of positive numbers p,, — 0, and
a sequence of functions f, € F, such that

_ fn(zn + pnC)
pr!
locally uniformly on C with respect to the spherical metric, where F' is a nonconstant
meromorphic function on C, all of whose zeros have multiplicity > k + 1. Using
almost the same argument as in the proof of Lemma 2.6, we deduce that F(*) Q) =

0= F(¢) =0.
We distinguish two cases.

Fa(¢) — F()

Case 1. z,/p, — 0.
Consider

Y (C) = Ziz_kfn(zn + z2n() = Zil_kfn(zn(l +Q))-
By the assumptions of f,,, we see that all zeros of ,,(¢) have multiplicity at least

k41, and 97 (¢) = 0= ¥ (¢) = 0.
Next we prove

oy el 2 Q) 6 40)
w0 =g O = s
Indeed, if ¥ (¢) = 2 £ (20 (1 + €)) = ¢z (1 + €)) /(1 + ¢)', then
_ dz(1+¢))
F (zn(1+0) = Lol P(zn(1+ Q).
Since fr(bk)(z) = p(2) = fu(z) = ¢(2), we have
a1+ 0) = (a1 + ) = 2L,

e Call+Q) _ _19len(140)
_ l,kgbzn 1+¢ . 7k¢zn 1+¢
wn(C) = Zn Zé(l + C)l = Zn (1 + C)l :

Obviously, for each n, ¢(z,(1 + ¢)/(1 + ¢)! is holomorphic on A. Noting that
2z, — 0 and ¢(2,(14+¢)/(1+¢)! — 1/(1+¢)!(# 0) on A. Then, by Lemma 2.6, the
family {¢,,(¢)} is normal on A.

Now we can find a subsequence {1, (¢)} and a function 1(z) such that

Un; () = 25 * fny (2, (14 €)) = 9(C)-
If 4(0) # oo, then

_ . _ . _ Pn
FOD(Q) = Tim £ (on, + pn, O) = Tim £E7 (2, + 2, (7

zn Q)

J

— lim D (280) = 4D (o),
j—o0 7 Zna

nj
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This implies that F*=D(¢) is a constant, and then F*)({) = 0. It follows that
F(¢) = ag_1¢* 1 + - 4+ a1¢ + ag. We arrive at a contradiction since F(¢) is non-
constant and all zeros of F'(¢) have multiplicity > k + 1.

If 4(0) = oo, then

g (224€) = #4oy (on, + 0, ) = 010) =

and hence

F(C) — lim f’ﬂj (an +pn]-<)

; k—1
] Pn;

k—1
. an l—k —
= lim ( ) Zn,; fn; (2n; + pn;C) = oo

Jj—o0 pnj

We arrive at a contradiction since F' is a nonconstant meromorphic function.

Case 2. z,/p, 7 co. Taking a subsequence and renumbering, we may assume that
Zn/pn — @, a finite complex number. Then

() () POt pnC) ey - L
on C\{—a}.

We first prove that F*)(¢) — 1/(a 4 ¢)' # 0 on C\{—a}. Suppose that there
exists (o € C\{—a} such that F*) () — 1/(a + ¢o)* = 0. Since all poles of F(*¥)(¢)
have multiplicity > k41 > I, F®)(¢) —1/(a+¢)" # 0. Then, by Hurwitz’s theorem,
there exist ¢, — (o such that (for n sufficiently large)

piﬂb(zn + pnCn) _

FR(¢,) —
Since
)¢y _ PndGnt Q) 1 (e _ 0(n £ pn€)
we have ( :
(k) _ P+ pnln) _
fa? (zn + pnGa) (zn + puCa)t
and thus ( )
¢ Zn + pnCn B
fn(zn + pnCn) - m =
Hence

F(Co) = lim F,(¢,) = lim ———F~7 =
But this contradicts the fact that F®)(¢) = 1/(a + o).
Now we prove that F®)(¢) # 1/(a + ¢)!. To do this, we need to prove that
F(—a) # oo. For simplicity, we assume that & = 0 . Suppose that ¢ = 0 is a pole

of F(¢), thus F*)(¢) has a pole of order at least k+1 > [+ 1 at ¢ = 0. Thus
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F®)(¢) —1/¢" # 0 on C. Then Lemma 2.3 implies that F®*)(¢) —1/¢* is a rational
function. Furthermore, we have
1 1
FW(Q) = & = =,
© ¢t p(Q)

where p({) is a polynomial with a zero of order at least [ + 1 at ( = 0. By using the
Laurent expansion of F(*)(¢) around ¢ = oo, we have

1 1
F®(¢) = a +0 (Cl“) , (— 0.
Repeated integrations give

=1
Pt = U a0 +0 () ¢

where ¢(¢) is a polynomial of degree <[ — 2. The residue theorem yields

1 (h—1+1) (=t
2mi K,:RF THQdC = (1—1)!

for R > 0 large enough. On the other hand, F*~+1)({) has the primitive function
Fk=D) (¢), and thus its integral on closed paths must vanish, which is a contradiction.

Therefore, by Lemma 2.3 and 2.4, we deduce that F({) is a constant, a contra-
diction. This finally completes the proof of Theorem 1.5. 1
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