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Abstract. Let F be a family of meromorphic functions in a domain D, and
k be a positive integer, and let ϕ(z)( 6≡ 0,∞) be a meromorphic function in D

such that f and ϕ(z) have no common zeros for all f ∈ F and ϕ(z) has no

simple zeros in D, and all poles of ϕ(z) have multiplicity at most k. If, for each

f ∈ F , all zeros of f have multiplicity at least k + 1, f (k)(z) = 0 ⇒ f(z) =

0, f (k)(z) = ϕ(z) ⇒ f(z) = ϕ(z), then F is normal in D. This result improves

and extends related results due to Schwick, Fang, Fang-Zalcman and Xu, et al.
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1. Introduction

Let f, g be two meromorphic functions in a domain D, and let a be a complex
number. If g(z) = a whenever f(z) = a, we denote it by f = a ⇒ g = a. f = a ⇔
g = a means f(z) = a if and only if g(z) = a, and we say that f and g share a.

Let D be a domain in C, and F be a family of meromorphic functions defined
on D. F is said to be normal on D, in the sense of Montel, if for any sequence
{fn} ∈ F there exists a subsequence {fnj}, such that {fnj} converges spherically
locally uniformly on D, to a meromorphic function or ∞ (see [5, 8, 14].

Schwick [9] discovered a connection between normality criteria and shared values.
He proved:

Theorem 1.1. Let F be a family of meromorphic functions in a domain D, and
let a1, a2, a3 be distinct complex numbers. If, for each f ∈ F , f(z) = ai ⇔ f ′(z) =
ai(i = 1, 2, 3), then F is normal in D.

This result has undergone various extensions. The following result is due to Fang
and Zalcman [4].
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Theorem 1.2. Let F be a family of meromorphic functions in a domain D, and k
be a positive integer, and let a 6= 0 be complex number. If, for each f ∈ F , all zeros
of f have multiplicity at least k+1, f (k)(z) = 0⇒ f(z) = 0, f (k)(z) = a⇒ f(z) = a,
then F is normal in D.

In [3], Fang proved that Theorem 1.2 is still valid if a is replaced by a non-
vanishing analytic function ψ(z) for k = 1, as follows:

Theorem 1.3. Let F be a family of meromorphic functions in a domain D, let ψ(z)
be a non-vanishing analytic function in D, If, for each f ∈ F , f(z) = 0 ⇔ f ′(z) =
0, f ′(z) = ψ(z)⇒ f(z) = ψ(z), then F is normal in D.

Recently, Xu [12] proved the following result, which extends Theorems 1.2 and
1.3, and improves Theorem 1.1.

Theorem 1.4. Let F be a family of meromorphic functions in a domain D, and k
be a positive integer, and let ϕ(z)( 6≡ 0) be an analytic function in D such that f and
ϕ(z) have no common zeros for all f ∈ F and ϕ(z) has no simple zeros in D. If,
for each f ∈ F , all zeros of f have multiplicity at least k + 1, f (k)(z) = 0⇒ f(z) =
0, f (k)(z) = ϕ(z)⇒ f(z) = ϕ(z), then F is normal in D.

Remark 1.1. There is an example in [12] that shows the hypothesis “f ∈ F and
ϕ(z) have no common zeros in D” is necessary in Theorem 1.4.

A natural problem arises: What can we say if the analytic function ϕ(z)( 6≡ 0) in
Theorem 1.4 is replaced by a meromorphic function ϕ(z)( 6≡ 0,∞)?

In this paper, we first prove the following result.

Theorem 1.5. Let F be a family of meromorphic functions in a domain D, and k
be a positive integer, and let ϕ(z)( 6≡ ∞) be a non-vanishing meromorphic function
in D such that all poles of ϕ(z) have multiplicity at most k. If, for each f ∈ F , all
zeros of f have multiplicity at least k+ 1, f (k)(z) = 0⇒ f(z) = 0, f (k)(z) = ϕ(z)⇒
f(z) = ϕ(z), then F is normal in D.

Since normality is a local property, combining the above theorem and Theorem
1.4, we can obtain the following theorem, which improves and generalizes Theorems
1.1–1.4.

Theorem 1.6. Let F be a family of meromorphic functions in a domain D, and k be
a positive integer, and let ϕ(z)( 6≡ 0,∞) be a meromorphic function in D such that f
and ϕ(z) have no common zeros for all f ∈ F and ϕ(z) has no simple zeros in D, and
all poles of ϕ(z) have multiplicity at most k. If, for each f ∈ F , all zeros of f have
multiplicity at least k + 1, f (k)(z) = 0 ⇒ f(z) = 0, f (k)(z) = ϕ(z) ⇒ f(z) = ϕ(z),
then F is normal in D.

Remark 1.2. The restriction on the poles of ϕ(z) in Theorems 1.5 and 1.6 can not
be omitted, which is shown by the following example.

Example 1.1. [2] Let k ∈ N, D = {z : |z| < 1}, ϕ(z) = 1
zk+1 , and

F =
{
fn(z) =

1
nz
, z ∈ D,n = 1, 2, · · ·

}
.
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Since fn(z) and f
(k)
n (z) have no zeros, f (k)

n (z) = 0 ⇒ fn(z) = 0. Obviously, there
exists n0 ∈ N such that f (k)

n (z) − ϕ(z) 6= 0 for n ≥ n0, hence f (k)
n (z) = ϕ(z) ⇒

fn(z) = ϕ(z). But F is not normal in D.

Remark 1.3. We conjecture that Theorem 1.5 and 1.6 still hold if we replace “all
poles of ϕ(z) have multiplicity at most k” by “for all f ∈ F , f and ϕ have no
common poles in D”.

2. Some lemmas

To prove our results, we need the following lemmas.

Lemma 2.1. [3] Let f be a meromorphic function of finite order in the plane C. If
f(z) = 0⇔ f ′(z) = 0, f ′(z) 6= 1, then f is a constant.

Lemma 2.2. [4] Let f be a meromorphic function of finite order in the plane C
and k ≥ 2 be a positive integer. If all zeros of f have multiplicity at least k + 1,
f (k)(z) = 0⇒ f(z) = 0, f (k)(z) 6= 1, then f is a constant.

Lemma 2.3. [11] Let f be a transcendental meromorphic function, let R(z)( 6≡ 0) be
a rational function, and k be a positive integer. If all zeros of f have multiplicity at
least k+1, except for finitely many, and f (k)(z) = 0⇒ f(z) = 0, then f (k)(z)−R(z)
has infinitely many zeros.

Lemma 2.4. [13] Let k, l be positive integers, and let Q(z) be a rational function
all of whose zeros are of order at least k. If Q(k)(z) 6= z−l, then Q(z) is constant.

The well-known Zalcman’s lemma is a very important tool in the study of normal
families. It has also undergone various extensions and improvements. The following
is one up-to-date local version, which is due to Pang and Zalcman [7] (cf. [1, 2, 10,
15]).

Lemma 2.5. Let k be a positive integer and let F be a family of meromorphic
functions defined in a domain D, such that each function f ∈ F has only zeros of
order at least k, and suppose that there exists A ≥ 1 such that |f (k)(z)| ≤ A whenever
f(z) = 0. If F is not normal at z0 ∈ D, thus, for each 0 ≤ α ≤ k, there exist

(a) a sequence of points zn ∈ D, zn → z0;
(b) a sequence of positive numbers ρn → 0;
(c) a sequence of functions fn ∈ F ,

such that gn(ζ) = ρ−αn fn(zn + ρnζ) → g(ζ) locally uniformly with respect to the
spherical metric, where g is a nonconstant meromorphic function on C, all of whose
zeros have multiplicity ≥ k, such that g#(ζ) ≤ g#(0) = kA + 1. Moreover, g has
order at most 2.

Lemma 2.6. Let k be a positive integer and F = {fn} be a family of meromorphic
functions defined in a domain D, all of whose zeros have multiplicity at least k + 1,
and let ϕn(z) be a sequence of holomorphic functions in D such that ϕn(z)→ ϕ(z)( 6=
0) locally uniformly in D. If there exist a sequence of points an → 0, such that
f

(k)
n (z) = 0 ⇒ fn(z) = 0, f (k)

n (z) = ϕn(z) ⇒ fn(z) = a−kn ϕn(z), then F is normal
in D.
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Proof. Suppose F is not normal at z0 ∈ D. By Lemma 2.5, there exist a sequence
of complex numbers zn → z0, a sequence of positive numbers ρn → 0, and a subse-
quence of F , which we continue to denote by {fn}, such that

Fn(ζ) =
fn(zn + ρnζ)

ρkn
→ F (ζ)

locally uniformly on C with respect to the spherical metric, where F is a nonconstant
meromorphic function on C, all of whose zeros have multiplicity ≥ k + 1. We claim

(1) F (k)(ζ) = 0⇒ F (ζ) = 0, and
(2) F (k)(ζ) 6= ϕ(z0).

Suppose that F (k)(ζ0) = 0, since all zeros of F (ζ) have multiplicity at least k+ 1,
we have F (k)(ζ) 6≡ 0. Then there exist ζn → ζ0 such that (for n sufficiently large)

F (k)
n (ζn) = f (k)

n (zn + ρnζn) = 0.

Since f (k)
n (z) = 0⇒ fn(z) = 0, thus fn(zn + ρnζn) = 0, and then

F (ζ0) = lim
n→∞

Fn(ζn) = lim
n→∞

fn(zn + ρnζn)
ρkn

= 0.

This proves (1).
Next we prove (2). Suppose F (k)(ζ0) = ϕ(z0)( 6= 0,∞), clearly, F (k)(ζ) 6≡ ϕ(z0)

since all zeros of F (ζ) have multiplicity at least k + 1. Noting that

F (k)
n (ζ)− ϕn(zn + ρnζ) = f (k)

n (zn + ρnζ)− ϕn(zn + ρnζ)→ F (k)(ζ0)− ϕ(z0).

By Hurwitz’s theorem, there exist ζn → ζ0 such that (for n sufficiently large)
f

(k)
n (zn + ρnζn) = ϕn(zn + ρnζn), and thus fn(zn + ρnζn) = a−kn ϕn(zn + ρnζn).

Hence

F (ζ0) = lim
n→∞

Fn(ζn) = lim
n→∞

ϕn(zn + ρnζn)
ρkna

k
n

=∞.

This contradicts that F (k)(ζ0) = ϕ(z0) 6=∞. This proves (2).
Hence, by Lemma 2.1 and 2.2, F (ζ) must be a constant, a contradiction. Lemma

2.6 is proved.
Using the argument as the proof of Lemma 2.6, we can obtain the following

lemma.

Lemma 2.7. Let F be a family of meromorphic functions defined in a domain D,
all of whose zeros have multiplicity at least k+1, and let ϕ(z)(6= 0) be a holomorphic
function in D. If, for each function f ∈ F , f (k)(z) = 0 ⇒ f(z) = 0 and f (k)(z) =
ϕ(z)⇒ f(z) = ϕ(z), then F is normal in D.

3. Proof of Theorem 1.5

Since normality is a local property, by Lemma 2.7, we only need to prove that
F is normal at every pole of ϕ(z). Without loss of generality, we may assume
D = ∆ = {z : |z| < 1}, and

ϕ(z) =
1
zl

+
a−l+1

zl−1
+ · · · = φ(z)

zl
(z ∈ ∆),
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where l ≤ k is a positive integer , φ(0) = 1, φ(z) 6= 0,∞ for 0 < |z| < 1. So it is
enough to show that F is normal at z = 0.

Suppose that F is not normal at z = 0. By Lemma 2.5 (α = k − l), there exist a
sequence of complex numbers zn → 0, a sequence of positive numbers ρn → 0, and
a sequence of functions fn ∈ F , such that

Fn(ζ) =
fn(zn + ρnζ)

ρk−ln

→ F (ζ)

locally uniformly on C with respect to the spherical metric, where F is a nonconstant
meromorphic function on C, all of whose zeros have multiplicity ≥ k + 1. Using
almost the same argument as in the proof of Lemma 2.6, we deduce that F (k)(ζ) =
0⇒ F (ζ) = 0.

We distinguish two cases.

Case 1. zn/ρn →∞.
Consider

ψn(ζ) = zl−kn fn(zn + znζ) = zl−kn fn(zn(1 + ζ)).

By the assumptions of fn, we see that all zeros of ψn(ζ) have multiplicity at least
k + 1, and ψ

(k)
n (ζ) = 0⇒ ψn(ζ) = 0.

Next we prove

ψ(k)
n (ζ) =

φ(zn(1 + ζ))
(1 + ζ)l

⇒ ψn(ζ) = z−kn
φ(zn(1 + ζ))

(1 + ζ)l
.

Indeed, if ψ(k)
n (ζ) = zlnf

(k)
n (zn(1 + ζ)) = φ(zn(1 + ζ))/(1 + ζ)l, then

f (k)
n (zn(1 + ζ)) =

φ(zn(1 + ζ))
zln(1 + ζ)l

= ϕ(zn(1 + ζ)).

Since f (k)
n (z) = ϕ(z)⇒ fn(z) = ϕ(z), we have

fn(zn(1 + ζ)) = ϕ(zn(1 + ζ)) =
φ(zn(1 + ζ))
zln(1 + ζ)l

.

Thus

ψn(ζ) = zl−kn

φ(zn(1 + ζ))
zln(1 + ζ)l

= z−kn
φ(zn(1 + ζ))

(1 + ζ)l
.

Obviously, for each n, φ(zn(1 + ζ)/(1 + ζ)l is holomorphic on ∆. Noting that
zn → 0 and φ(zn(1 + ζ)/(1 + ζ)l → 1/(1 + ζ)l( 6= 0) on ∆. Then, by Lemma 2.6, the
family {ψn(ζ)} is normal on ∆.

Now we can find a subsequence {ψnj
(ζ)} and a function ψ(z) such that

ψnj
(ζ) = zl−knj

fnj
(znj

(1 + ζ))→ ψ(ζ).

If ψ(0) 6=∞, then

F (k−l)(ζ) = lim
j→∞

f (k−l)
nj

(znj
+ ρnj

ζ) = lim
j→∞

f (k−l)
nj

(znj
+ znj

(
ρnj

znj

ζ))

= lim
j→∞

ψ(k−l)
nj

(
ρnj

znj

ζ) = ψ(k−l)(0).
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This implies that F (k−l)(ζ) is a constant, and then F (k)(ζ) ≡ 0. It follows that
F (ζ) = ak−1ζ

k−1 + · · · + a1ζ + a0. We arrive at a contradiction since F (ζ) is non-
constant and all zeros of F (ζ) have multiplicity ≥ k + 1.

If ψ(0) =∞, then

ψnj

(
ρnj

znj

ζ

)
= zl−knj

fnj (znj + ρnjζ)→ ψ(0) =∞,

and hence

F (ζ) = lim
j→∞

fnj
(znj

+ ρnj
ζ)

ρk−lnj

= lim
j→∞

(
znj

ρnj

)k−l
zl−knj

fnj
(znj

+ ρnj
ζ) =∞.

We arrive at a contradiction since F is a nonconstant meromorphic function.

Case 2. zn/ρn 6→ ∞. Taking a subsequence and renumbering, we may assume that
zn/ρn → α, a finite complex number. Then

F (k)
n (ζ)− ρlnφ(zn + ρnζ)

(zn + ρnζ)l
→ F (k)(ζ)− 1

(α+ ζ)l

on C\{−α}.
We first prove that F (k)(ζ) − 1/(α + ζ)l 6= 0 on C\{−α}. Suppose that there

exists ζ0 ∈ C\{−α} such that F (k)(ζ0)− 1/(α+ ζ0)l = 0. Since all poles of F (k)(ζ)
have multiplicity ≥ k+1 > l, F (k)(ζ)−1/(α+ζ)l 6≡ 0. Then, by Hurwitz’s theorem,
there exist ζn → ζ0 such that (for n sufficiently large)

F (k)
n (ζn)− ρlnφ(zn + ρnζn)

(zn + ρnζn)l
= 0.

Since

F (k)
n (ζ)− ρlnφ(zn + ρnζ)

(zn + ρnζ)l
= ρln

(
f (k)
n (zn + ρnζ)− φ(zn + ρnζ)

(zn + ρnζ)l

)
,

we have

f (k)
n (zn + ρnζn)− φ(zn + ρnζn)

(zn + ρnζn)l
= 0,

and thus

fn(zn + ρnζn)− φ(zn + ρnζn)
(zn + ρnζn)l

= 0.

Hence

F (ζ0) = lim
n→∞

Fn(ζn) = lim
n→∞

φ(zn + ρnζn)
ρkn( zn

ρn
+ ζn)l

=∞.

But this contradicts the fact that F (k)(ζ0) = 1/(α+ ζ0)l.
Now we prove that F (k)(ζ) 6= 1/(α + ζ)l. To do this, we need to prove that

F (−α) 6= ∞. For simplicity, we assume that α = 0 . Suppose that ζ = 0 is a pole
of F (ζ), thus F (k)(ζ) has a pole of order at least k + 1 ≥ l + 1 at ζ = 0. Thus
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F (k)(ζ)− 1/ζl 6= 0 on C. Then Lemma 2.3 implies that F (k)(ζ)− 1/ζl is a rational
function. Furthermore, we have

F (k)(ζ)− 1
ζl

=
1
p(ζ)

,

where p(ζ) is a polynomial with a zero of order at least l+ 1 at ζ = 0. By using the
Laurent expansion of F (k)(ζ) around ζ =∞, we have

F (k)(ζ) =
1
ζl

+O

(
1

ζl+1

)
, ζ →∞.

Repeated integrations give

F (k−l+1)(ζ) =
(−1)l−1

(l − 1)!ζ
+ q(ζ) +O

(
1
ζ2

)
, ζ →∞,

where q(ζ) is a polynomial of degree ≤ l − 2. The residue theorem yields

1
2πi

∫
|ζ|=R

F (k−l+1)(ζ)dζ =
(−1)l−1

(l − 1)!

for R > 0 large enough. On the other hand, F (k−l+1)(ζ) has the primitive function
F (k−l)(ζ), and thus its integral on closed paths must vanish, which is a contradiction.

Therefore, by Lemma 2.3 and 2.4, we deduce that F (ζ) is a constant, a contra-
diction. This finally completes the proof of Theorem 1.5.
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