
BULLETIN of the
Malaysian Mathematical

Sciences Society
http://math.usm.my/bulletin

Bull. Malays. Math. Sci. Soc. (2) 33(3) (2010), 487–498

The Partial-Isometric Crossed Products of c0

by the Forward and the Backward Shifts

1Sriwulan Adji and 2Abbas Hosseini
1,2School of Mathematical Sciences, Universiti Sains Malaysia,

11800, USM Penang, Malaysia
1wulan@cs.usm.my, 2hosseini.md08@student.usm.my

Abstract. Let (A,α) be a system consisting of a C∗-algebra A and an ex-

tendible endomorphism α on A. We consider the partial-isometric crossed prod-
uct A ×α N generated by a copy of A and a power partial isometry. We show

that for an extendible α-invariant ideal I in A, the quotient (A×αN)/(I×αN) of

partial-isometric crossed products is isomorphic to the partial-isometric crossed
product A/I ×α̃ N of the quotient algebra. Then we use this to give concrete

descriptions of the partial-isometric crossed products of c0 by the forward shift

and the backward shift.
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1. Introduction

Let A be a C∗-algebra (not necessarily unital). We refer to [1, 2, 8] to call an
endomorphism α on A extendible if it extends uniquely to a strictly continuous
endomorphism α on the multiplier algebra M(A). This happens precisely when
there is an approximate identity (aλ) for A such that α(aλ) converges strictly to
a projection in M(A). Thus any endomorphism on a unital C∗-algebra is trivially
extendible.

Suppose we have an extendible endomorphism α on A. For any ideal I of A,
there always exists a canonical nondegenerate homomorphism ψ : A→M(I) which
satisfies ψ(a)i = ai for a ∈ A and i ∈ I. Denote by ψ the extension of ψ. Then
we again refer to [1, 2, 8] to call an ideal I of A extendible if I is an α-invariant
ideal, i.e. α(I) ⊆ I, and it contains an approximate identity (iλ) such that α(iλ)
converges strictly to ψ(α(1)) in M(I). This is equivalent to α|I extending to a
strictly continuous endomorphism α|I on M(I) such that α|I(1) = ψ(α(1)).
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Lindiarni and Raeburn in [9] studied the partial-isometric crossed products of
semigroup dynamical systems (A,Γ+, α) where Γ+ is the positive cone in a totally
ordered abelian group Γ and α is an action of Γ+ by extendible endomorphisms
of A. They describe the structure of the crossed product associated to the system
(BΓ+ ,Γ+, τ) arising in [3] for the analysis of Toeplitz algebras. The crossed product
BΓ+ ×τ Γ+ is universal for partial-isometric representation of Γ+. They show that
there is a large commutative diagram of six exact sequences for BΓ+ ×τ Γ+ induced
by the ideals I and J such that: the quotients (BΓ+ ×τ Γ+)/I and (BΓ+ ×τ Γ+)/J
are the Toeplitz algebra T (Γ), the other two quotients I/(I ∩ J) and J/(I ∩ J) are
the commutator ideal CΓ of T (Γ), and the ideal I ∩ J is described by the kernels of
homomorphisms of BΓ+ ×τ Γ+ onto the crossed product BI ×τ Γ+ of BI associated
to intervals I in Γ+. When Γ+ is the additive semigroup N, BN is the C∗-algebra c
of convergent sequences, τ is the forward shift on c. The structure theory of c×τ N
and the crossed product c×σ N by backward shift are described in [9]. The crossed
product c ×τ N is the universal C∗-algebra generated by a power partial isometry.
The large commutative diagram for c×τN consists of familiar exact sequences, which
includes the exact sequence 0 −→ A −→ c ×τ N −→ T (Z) −→ 0, where A is the
subalgebra C(N ∪ {∞},K(`2(N))).

Here we consider systems (A,α) over the additive semigroup N, and our goal is
to show that A is the crossed product c0 ×τ N and C0(N,K(`2(N))) is the crossed
product c0×σN by the backward shift σ. If I is an extendible α-invariant ideal of A,
then the endomorphism α̃ : a+ I 7→ α(a) + I on the quotient algebra A/I is always
extendible, so we can also talk about the system (A/I, α̃). We prove in §2 a version
of [1, Theorem 3.1] and [8, Theorem 1.7] for partial-isometric crossed products: the
crossed product of the quotient algebra A/I×α̃N is the quotient (A×αN)/(I×αN).
In §3, we apply this theorem to the systems (c, τ) and (c, σ) and to the ideal c0.
We show that the ideal c0 ×τ N of c ×τ N is kerϕT∗ where ϕT∗ : c ×τ N → T (Z)
induced by the Toeplitz representation. For the backward shift we show that the
isomorphism πF,Q × F appearing in the structure of c ×σ N, carries c0 ×σ N onto
C0(N,K(`2(N))).

2. The partial-isometric crossed products

Let (A,α) be a system consisting of a C∗-algebra A which may not have an identity
element, and an extendible endomorphism α on A. We take from [9] the definitions
of a covariant representation and a partial-isometric crossed product of the system.

But first we shall remind our readers for an operator V on a Hilbert space H to
be said a partial isometry if ‖V h‖ = ‖h‖ for all h ∈ (kerV )⊥, and this is equivalent
to V V ∗V = V . If V is a partial isometry on H then so is V ∗, and then the operators
V V ∗ and V ∗V are orthogonal projections on the initial space (kerV )⊥ and the range
V H respectively. Accordingly, an element v of a C∗-algebra A is called a partial
isometry if vv∗v = v. The product of two partial isometries is not in general a partial
isometry, and therefore the n product vn of v is not always a partial isometry for a
partial isometry v. A partial isometry v is called a power partial isometry if vn is a
partial isometry for every n ∈ N.

A partial isometric representation of N on a Hilbert space H is a map V : N →
B(H) such that Vn is a partial isometry and VnVk = Vn+k for every n, k ∈ N. Since
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Vn = (V1)n, a partial-isometric representation V of N is always determined by the
single partial isometry V1. Conversely a single partial isometry W generates a partial
isometric representation V : n 7→Wn if and only if W is a power partial isometry.

Definition 2.1. A covariant representation of (A,α) on a Hilbert space H (or in a
C∗-algebra B) is a pair (π, V ) of a nondegenerate representation π of A on a Hilbert
space H and a partial isometric representation V of N on H such that

(2.1) π(αm(a)) = Vmπ(a)V ∗m and V ∗mVmπ(a) = π(a)V ∗mVm
for all m ∈ N, a ∈ A.

Every covariant representation (π, V ) of (A,α), by Lemma 4.2 of [9], extends to
a covariant representation (π̄, V ) of (M(A), α), and that the covariance relation in
(2.1) is, by Lemma 4.3 of [9], equivalent to

π(αm(a))Vm = Vmπ(a) and VmV
∗
m = π(αm(1)) for all a ∈ A and m ∈ N.

It is shown in [9, Example 4.6] that every system (A,α) admits covariant represen-
tations (π, V ) with π faithful.

Definition 2.2. Given a system (A,α), a C∗-algebra B is called a (partial-isometric)
crossed product of (A,α), if there exist a nondegenerate homomorphism iA : A→ B
and a homomorphism iN : N→M(B) such that

(i) (iA, iN) is covariant;
(ii) for every covariant representation (π, V ) of (A,α) on H, there is a nonde-

generate representation π × V of B on H such that (π × V ) ◦ iA = π and
(π × V ) ◦ iN = V ;

(iii) B is generated by iA(A) and iN(N).
If (jA, jN) is a pair of such homomorphisms for (A,α) in a C∗-algebra C that satisfies
(i), (ii) and (iii), then there is an isomorphism of C onto B that takes (jA, jN) into
(iA, iN).

Remark 2.1. The crossed product of (A,α) is by [5, Proposition 3.4] the Toeplitz
algebra of a Hilbert bimodule. We recall from [7] the definition of this algebra. A
Hilbert bimodule over a C∗-algebra A is a right Hilbert A-module X together with
a homomorphism φ : A→ L(X) that gives a left action a · x := φ(a)x of A on X. A
Toeplitz representation of X in a C∗-algebra B is a pair (ψ, π) for which ψ : X → B
is a linear map and π : A→ B is a homomorphism that satisfy:

ψ(x · a) = ψ(x)π(a), ψ(a · x) = π(a)ψ(x) and ψ(x)∗ψ(y) = π(〈x, y〉A)

for all x ∈ X and a ∈ A. The Toeplitz algebra TX of X is the C∗-algebra generated
by the range of the universal Toeplitz representation (iX , iA) of X, so that whenever
(ψ, π) is a Toeplitz representation of X in B, there is a homomorphism ψ×π : TX →
B which maps (iX , iA) into (ψ, π). For every Hilbert bimodule X, the Toeplitz
algebra TX always exists and it is unique up to isomorphism.

Given a system (A,α), [5, Proposition 3.4] says there is a partial isometric rep-
resentation (iA, iN) of (A,α) in the Toeplitz algebra TX of the Hilbert bimodule
X = α(1)A, such that iA is injective. Let (kX , kA) be the universal representation of
X in TX , then for an approximate identity (ai) in A, (kX(α(ai)))m converges strictly
for every m ∈ N in M(TX) [5, Lemma 3.3], and then the pair (iA, iN) is defined by
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iA(a) = kA(a) and iN(m) = limi→∞[(kX(α(ai)))m]∗. The C∗-algebra TX together
with this (iA, iN) is a crossed product for (A,α). Thus TX is the partial-isometric
crossed product of (A,α), and we use the standard notation A ×α N to denote the
crossed product of (A,α). Throughout we often use the fact that (A×α N, iA, iN) is
spanned by {iN(s)∗iA(a)iN(t) : s, t ∈ N, a ∈ A}.

We state the theorem in [9] for faithful representations of A×α N.

Theorem 2.1. [9, Theorem 4.8] A covariant representation (π, V ) of (A,α) on H
gives a faithful representation π × V of A ×α N if and only if π acts faithfully on
(V ∗nH)⊥ for every n > 0.

Next, we want to prove a version of [1, Theorem 3.1] and [8, Theorem 1.7] for the
partial isometric crossed product of (A,α). We adopt the proof of these theorems
and translate into the context of partial-isometric crossed product.

Theorem 2.2. Suppose α is an extendible endomorphism on a C∗-algebra A, and
I is an extendible α-invariant ideal of A. Let (A×α N, iA, iN) be the crossed product
for (A,α). Then there is a short exact sequence

0 −→ I ×α N φ−→ A×α N ψ−→ A/I ×α̃ N −→ 0

where φ is an isomorphism of I ×α N onto the ideal

D := span{iN(s)∗iA(a)iN(t) : a ∈ I, s, t ∈ N}

of A×α N. If (jI , jN) and (kA/I , kN) are the universal covariant pairs for (I, α) and
(A/I, α̃), respectively, then

φ ◦ jI = iA|I , φ ◦ jN = iN and ψ ◦ iA = kA/I ◦ q, ψ ◦ iN = kN.

Proof. To see D as an ideal of A ×α N, let ξ = iN(s)∗iA(b)iN(t) where b ∈ I. Since
iN(m)∗ξ = iN(m+ s)∗iA(b)iN(t);

iA(a)ξ = iA(a)iN(s)∗iA(b)iN(t) = (iN(s)iA(a∗))∗iA(b)iN(t)

= (iA(αs(a∗))iN(s))∗iA(b)iN(t) = iN(s)∗iA(αs(a)b)iN(t);

and iN(m)ξ = iN(m)iN(s)∗iA(b)iN(t) is

iN(s−m)∗iN(s)iN(s)∗iA(b)iN(t) = iN(s−m)∗iA(αs(1)b)iN(t) for m < s,

iN(m)iN(m)∗iA(b)iN(t) = iA(αm(1)b)iN(t) for m = s,

iN(m− s)iN(s)∗iN(s)∗iA(b)iN(t) = iN(m− s)iA(αs(1)b)iN(t)

= iA(αm−s(αs(1)b))iN(m− s+ t) for m > s,

and which all belong to D. It follows that D is an ideal of A×α N.
Because D is an ideal of A×α N, there is a canonical homomorphism

r : A×α N→M(D) such that r(ξ)d = ξd for ξ ∈ A×α N and d ∈ D.

Denote by r, the unique extension of r on the multiplier M(A ×α N), and let jI :
I → D be the composition

I
iA|I−→ A×α N r−→M(D),
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and jN : N→M(D) to be the composition

N iN−→M(A×α N) r−→M(D).

We claim that the triple (D, jI , jN) is a crossed product for (I, α). Certainly jN
is a partial isometry representation of N in M(D), and that

jI((α|I)n(i)) = jN(n)jI(i)jN(n)∗

and
jN(n)∗jN(n)jI(i) = jI(i)jN(n)∗jN(n)

for n ∈ N, i ∈ I. To get jI nondegenerate, we need the extendibility of ideal I in A:
for an approximate identity (iλ) in I, ϕ : A→M(I) the canonical homomorphism,
we have

jI(iλ)(iN(n)∗iA(i)iN(m)) = iN(n)∗iA(αn(iλ)i)iN(m)

converges to iN(n)∗iA(αn|I(1M(I)i)iN(m), and the extendibility of I gives

iA(αn|I(1M(I))i) = iA(ϕ(αn|I(1M(I)i)) = iA(αn(1M(A)))iA(i),

so

iN(n)∗iA(αn|I(1M(I))i)iN(m) = iN(n)∗iA(αn(1M(A)))iA(i)iN(m) = iN(n)∗iA(i)iN(m),

therefore jI(iλ).d (and similarly for d.jI(iλ)) converges to d in D for every d, this
means that jI(iλ) converges strictly to 1M(D) in M(D), i.e. jI is nondenegenerate.

Next, since any covariant representation (π, V ) of (I, α|I) on H extends to the
covariant representation (π, V ) of (M(I), α|I) such that if ϕ : A → M(I) denotes
the canonical homomorphism, then the pair (π ◦ ϕ, V ) is a covariant representation
of (A,α). Consequently we have a nondegenerate representation ρ of A×α N which
satisfies ρ ◦ iA = π ◦ ϕ and ρ ◦ iN = V . Moreover ρ|D is nondegenerate, hence it
extends to the representation ρ|D of M(D) such that ρ|D ◦ r = ρ. So ρ|D ◦ jI =
ρ|D ◦ iA|I = π ◦ ϕ|I = π and ρ|D ◦ jN = ρ|D ◦ (r ◦ iN) = ρ ◦ iN = V . This completes
the proof of our claim.

Finally to get a surjective homomorphism ψ : A×αN −→ A/I×α̃N with kerψ =
D, we note that (kA/I ◦ q, kN) is a covariant representation of (A,α) in A/I ×α̃ N.
Hence there is a nondegenerate representation ψ := kA/I ◦ q × kN of A ×α N such
that ψ ◦ iA = kA/I ◦ q and ψ ◦ iN = kN. So the range of ψ is all of A/I ×α̃ N. The
ideal D is certainly contained in kerψ. To see that kerψ ⊂ D, take a representation
ρ of A ×α N with ker ρ = D. Then (ρ ◦ iA, ρ ◦ iN) is a covariant representation
of (A,α), and I ⊂ ker ρ ◦ iA. So ρ̃ : a + I ∈ A/I 7→ ρ ◦ iA(a) is a well-defined
representation of A/I, which together with ρ ◦ iN form a covariant representation of
(A/I, α̃). Consequently there is a nondegenerate representation Φ of A/I ×α̃ N that
satisfies Φ ◦ kN = ρ ◦ iN. We then check that Ψ ◦ ψ agrees with ρ on their spanning
elements, hence Φ ◦ ψ = ρ on the two algebras. Therefore kerψ = D.

Remark 2.2. Theorem 2.2 can also be proved using the theory of Toeplitz algebras
of Hilbert bimodules, as is in Example 3.12 [6] for the case of isometric crossed
products. The crossed product of (A,α) is the Toeplitz algebra TX of the Hilbert
bimodule X := α(1)A. An α-extendibly invariant ideal I of A gives the bimodule
XI = α(1M(I))I associated to α|I , such that X/XI = α̃(1M(A/I))(A/I). So TXI is
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I ×α N, and [6, Corollary 3.2] implies that TX/TXI ' TX/XI , which is the crossed
product for (A/I, α̃).

3. The crossed products c0 ×τ N and c0 ×σ N

3.1. The crossed product c0 ×τ N

Consider the unital C∗-algebra c of convergent sequences, and the action τ of N on
c generated by the forward shift:

τ1(x0, x1, x2, · · · ) = (0, x0, x1, x2, · · · ).
Viewing sequences in c as functions on N, each function

1n(m) =
{

1 if m ≥ n
0 otherwise

belongs to c, and span{1n : n ∈ N} is all of c. The unit in c is 1 := 10, and the
action τ of N on c = span{1n : n ∈ N} satisfies τm(1n) = 1m+n which is trivially
extedible.

Any partial isometric representation V of N, by [9, §5], induces a representation
πV of the algebra c given by πV (1n) = VnV

∗
n , such that (πV , V ) is a covariant repre-

sentation of (c, τ), and it is follows from [9, Proposition 5.4] that the representation
πV × V of c×τ N is faithful if and only if

(3.1) (1− V ∗r Vr)(VuV ∗u − VtV ∗t ) 6= 0 for every r > 0, u < t in N.
The crossed product (c ×τ N, i) is the universal C∗-algebra generated by a power
partial isometry by [7, Proposition 5.3]: if B is a unital C∗-algebra and w ∈ B is
a power partial isometry, then there is a unital homomorphism h : (c×τ N, i)→ B
which satisfies h(iN(1)) = w.

The ideal c0 = span{1m − 1n : m < n ∈ N} of sequences convergent to 0 is
an extendible τ -invariant ideal of c. So by Theorem 2.2 we obtain a short exact
sequence

(3.2) 0 −→ c0 ×τ N −→ c×τ N q−→ c/c0 ×τ̃ N −→ 0.

We show in the Lemma 3.1 that c/c0 ×τ̃ N is isomorphic to the Toeplitz algebra
T (Z), the unital C∗-subalgebra of B(`2(N)) generated by {Tn : n ∈ N}, where
Tn is the nonunitary isometry defined on the usual basis {em : m ∈ N} of `2(N) by
Tn(em) = en+m for all m ∈ N. We recall from [3] for the readers that every isometric
representation of N gives a unital representation ρV of the Toeplitz algebra T (Z)
such that ρV (Tn) = Vn, and if each of Vn is nonunitary then ρV is faithful. So T (Z)
is the universal C∗-algebra generated by a nonunitary isometry [4], and with the
homomorphism ψT : Tm 7→ εm ∈ C(T) (εm is the evaluation map in C(T)), there is
an exact sequence

0 −→ K(`2(N)) −→ T (Z)
ψT−→ C(T) −→ 0.

Murphy extends this theorem in [10] from (Z,N) to the pair (Γ,Γ+) of partially
ordered abelian group Γ and its positive cone Γ+.

Lemma 3.1. There is an isomorphism φ : (c/c0 ×τ̃ N, k) −→ T (Z) such that
φ(kN(m)) = T ∗m for all m ∈ N.
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Proof. First we consider the system (C, id). We claim the crossed product (C×idN, ι)
is isomorphic to the Toeplitz algebra T (Z). To justify this, we let

(3.3) j : λ ∈ C 7→ λI ∈ T (Z) and w : n ∈ N 7→ T ∗n ∈ T (Z).

Then we want to show that (T (Z), j, w) is a crossed product for (C, id). One can
see from (3.3) that (j, w) is a covariant representation of (C, id) in T (Z), and that
{wn = T ∗n : n ∈ N} ∪ j(C) generates the Toeplitz algebra T (Z).

Next suppose (π, V ) is a covariant representation of (C, id) on H. Then π(λ) =
λIB(H) and VnV

∗
n = IB(H) for all n. Therefore V ∗ : n 7→ V ∗n is an isometric

representation of N on H, so we have a unital representation ρV ∗ of T (Z) on H such
that ρV ∗(wn) = V ∗n for n ∈ N and ρV ∗(j(λ)) = λIB(H) for λ ∈ C. Thus (T (Z), j, w)
is a crossed product for (C, id) as we claimed. Consequently there is an isomorphism
Φ : (C×id N, ι)→ T (Z) such that Φ(ιC(λ)) = λI and Φ(ιN(n)) = T ∗n for λ ∈ C and
n ∈ N.

By viewing c as the algebra of all functions f on N that have limits as n → ∞,
we let the map ` : c → C defined by `(f) = limn→∞ f(n). It is a surjective
homomorphism with ker ` = c0, which therefore induces an isomorphism ˜̀ : f +
c0 7→ `(f) of the quotient c/c0 onto C such that ˜̀◦ τ̃ = id ◦ ˜̀. So the system
(c/c0, τ̃) is equivariant to (C, id), and hence we have an isomorphism ρ : (c/c0 ×τ̃
N, k) −→ (C×id N, ι) that satisfies ρ(kN(m)) = ιN(m) and ρ(kc/c0(f)) = ιC(˜̀(f)) =
limn→∞ f(n).

Finally let φ be the composition

(c/c0 ×τ̃ N, k)
ρ−→ (C×id N, ι) Φ−→ T (Z).

Then φ is the isomorphism which satisfies the requirement.
We now consider the algebra A defined by authors of [9] as

(3.4) A = {f : N→ K(`2(N)) : f(n) ∈ PnK(`2(N))Pn and lim
n→∞

f(n) exists}

where Pn := 1−Tn+1T
∗
n+1 is the projection onto span{ei : 0 ≤ i ≤ n}. The isometric

representation T ∗ : m ∈ N 7→ T ∗m of N in T (Z) gives a surjective homomorphism
ϕT∗ : c ×τ N → T (Z), and its kernel kerϕT∗ is, by [9, Proposition 6.9], isomorphic
to A. We shall recall the construction of this isomorphism.

For every n, consider the operator PnTPn := PnT1Pn on `2(N). It is a power
partial isometry:

(PnTkPn)(PnTkPn)∗(PnTkPn) = PnTkT
∗
kTkPn = PnTkPn

for k ≤ n, and PnTkPn = 0 for all k > n. So, by the universality of c ×τ N, there
is a unital representation πn of (c ×τ N, i) on `2(N) such that πn(iN(1)) = PnTPn
and πn(ic(1m)) = PnTmT

∗
mPn. We note that each of the representation πn is not

faithful: For an arbitrary n ∈ N choose u, t ∈ N such that n < u < t, then PnTu = 0
and PnTt = 0, therefore

(1− PnT ∗r PnTrPn)(PnTuT ∗uPn − PnTtT ∗t Pn) = 0 for any r,

so πn is not faithful by [9, Proposition 5.4]. The key is that for every a ∈ kerϕT∗ ,
the sequence {πn(a)}n∈N belongs to A [9, §6], and therefore a 7→ π(a) := {πn(a)} is
a well-defined map of kerϕT∗ into A, and is then proved in [9, Proposition 6.9] that
the map π : kerϕT∗ → A is an isomorphism.
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We show in the next corollary that the crossed product c0×τN is the ideal kerϕT∗
of c×τ N.

Corollary 3.1. The ideal kerϕT∗ of c ×τ N is the crossed product c0 ×τ N. Thus
we have an isomorphism π : c0 ×τ N −→ A such that, for i, j, s < t ∈ N,

(3.5) π[iN(i)∗ic(1s − 1t)iN(j)] is the sequence {PnT ∗i Pn(TsT ∗s − TtT ∗t )PnTjPn}n∈N

which converges to T ∗i (TsT ∗s − TtT ∗t )Tj.

Proof. Consider the quotient map q in (3.2) and the isomorphism φ in Lemma 3.1.
We see that φ ◦ q(iN(n)) = φ(kN(n)) = T ∗n = ϕT∗(iN(n)) for all n. So we get the
commutative diagram:

(3.6)

c×τ N c/c0 ×τ̃ N

T (Z).

Q
Q

QQsϕT∗

-q

?
φ

Consequently c0 ×τ N = ker q = kerφ ◦ q = kerϕT∗ , and is isomorphic to A by [9,
Proposition 6.9]. The map π on every spanning element of c0 ×τ N is

π[iN(i)∗ic(1s − 1t)iN(j)] = {πn[iN(i)∗ic(1s − 1t)iN(j)]}n
= {PnT ∗i Pn(TsT ∗s − TtT ∗t )PnTjPn}n∈N

= {T ∗i Pn(TsT ∗s − TtT ∗t )PnTj}n∈N,(3.7)

and since
Pn(TsT ∗s − TtT ∗t )Pn = TsT

∗
s − TtT ∗t

for n > t > s, the sequence in (3.7) converges to T ∗i (TsT ∗s −TtT ∗t )Tj ∈ K(`2(N)).

3.2. The crossed product c0 ×σ N

Now consider the system (c, σ) where the action σ is given by the backward shift:

σk(1n) =
{

1n−k if n ≥ k
1 otherwise.

Each of σk is an extendible endomorphism of c. The ideal c0 is a σ-invariant ideal
of c. It is an extendible ideal because for the approximate identity (1 − 1n)n∈N in
c0, the sequence σk(1 − 1n)n∈N = (1 − 1n−k)n∈N converges strictly to 1 = σk(1) in
M(c0). So by Theorem 2.2 there is a short exact sequence

(3.8) 0 −→ c0 ×σ N −→ c×σ N q−→ c/c0 ×σ̃ N −→ 0.

The same proof of Lemma 3.1 is valid for the system (c, σ), and we can therefore
have an isomorphism φ : (c/c0 ×σ̃ N, k) −→ T (Z) such that

φ(kN(i)∗kc/c0([1m])kN(j)) = TiT
∗
j for all i, j,m ∈ N.

We shall now remind our readers the universal property of c ×σ N described in
[9, Proposition 7.1]. Every covariant representation (π, v) of (c, σ) always satisfies

vnv
∗
n = vnπ(1)v∗n = π(σn(1)) = π(1) = 1 for every n ∈ N.
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Thus v represents N as coisometry operators. Let

Q0 = 1− v∗v and Qn = π(1n)− v∗π(σn(1))v for n > 0,

then every Qn is a projection in which · · · ≤ Qn+1 ≤ Qn ≤ Qn−1 ≤ · · · ≤ Q0. From
this sequence {Qn} and the coisometry v1, we can recover the representation π by
the following equation

(3.9) π(1n) = (v∗1)n(v1)n +
n−1∑
k=0

(v∗1)nQn−k(v1)n for all n > 0.

Conversely for any coisometry w on a Hilbert space H and a sequence of decreas-
ing projections {Qn}, there is a covariant representation (πw,Q, w) of (c, σ) on H
such that πw,Q satisfies the equation (3.9). Thus covariant representations of (c, σ)
is in bijective correspondence to pairs of coisometries and decreasing sequences of
projections.

The crossed product c ×σ N which, by definition, is the universal C∗-algebra
generated by the canonical covariant representation (kc, kN), is generated by the
coisometry kN(1) and by elements

qn := kc(1n)− kN(1)∗kc(σn(1))kN(1),

such that whenever we have a pair (w, {Qn}) of a coisometry w and a sequence of
projections {Qn} in a C∗-algebra B with · · · ≤ Qn+1 ≤ Qn ≤ Qn−1 ≤ · · · ≤ Q0,
there is a homomorphism πw,Q×w : c×σ N→ B that satisfies πw,Q×w(kN(1)) = w
and πw,Q×w(qm) = Qm for all m. [9, Proposition 7.3] says that πw,Q×w is faithful
if and only if Qn 6= Qn+1 for all n ≥ 0.

Authors in [9] prove that there is a faithful representation of c ×σ N, in the C∗-
algebra Cb(N, B(`2(N))). We shall now recall the construction. Let T be the unilat-
eral shift on `2(N) and T ∗ its adjoint. Then the coisometry element of Cb(N, B(`2(N)))
is given by the constant function F : n 7→ T ∗. Each projectionQm ∈ Cb(N, B(`2(N)))
is defined by

Qm(n) =
{

1− TT ∗ for n ≥ m
0 otherwise.

It can be seen from this definition that {Qm} is a decreasing sequence of projections
in which Qm 6= Qm+1 for all m ≥ 0. So by [9, Proposition 7.1] there is a covariant
representation (πF,Q, F ) of (c, σ), and the representation πF,Q×F of (c×σN, kc, kN)
satisfies πF,Q × F (kN(1)) = F and πF,Q × F (qm) = Qm. Moreover [9, Proposition
7.3] says that πF,Q × F is a faithful representation of c ×σ N in Cb(N, B(`2(N))).
Note that πF,Q × F maps every spanning element

ξ := kN(i)∗kc(1m)kN(j)

of (c×σ N, kc, kN) into the function πF,Q × F (ξ) given by

(πF,Q × F (ξ))(n) =
{
Ti+(m−n)T

∗
j+(m−n) for n ≤ m

TiT
∗
j for n > m.

So (πF,Q×F (ξ))(n) belongs to T (Z) for all n, and limn→∞(πF,Q×F (ξ))(n) = TiT
∗
j .

It is shown in [9, Theorem 7.4] that the range of πF,Q × F is the C∗-algebra

B := {f ∈ C(N ∪ {∞}, T (Z)) : ψT (f(n)) is constant},
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where ψT is the homomorphism in the exact sequence

0 −→ K(`2(N)) −→ T (Z)
ψT−→ C(T)→ 0.

Thus πF,Q × F is an isomorphism of c ×σ N onto B. We describe the C∗-algebra
πF,Q × F (c0 ×σ N) in the next proposition.

Proposition 3.1. The isomorphism πF,Q × F : c ×σ N −→ B in [9, Theorem 7.4]
restricts to an isomorphism of the crossed product c0 ×σ N onto C0(N,K(`2(N))).

Proof. By applying Theorem 2.2 to the system (c, σ) and the extendible ideal c0 of
c, the crossed product c0 ×σ N is isomorphic to the ideal

D = span{kN(i)∗kc(1s − 1t)kN(j) : s < t ∈ N, i, j ∈ N}

of (c ×σ N, kc, kN). We show that πF,Q × F (D) and C0(N,K(`2(N))) contain each
other. So we write the spanning families for these two algebras

πF,Q × F (D) = span{πF,Q × F (kN(i)∗kc(1s − 1t)kN(j)) : i, j ∈ N, s < t ∈ N},

and the ideal C0(N,K(`2(N))) is spanned by the functions {emij : i, j,m ∈ N} in which

emij (n) =
{
Ti(1− TT ∗)T ∗j for m = n
0 otherwise.

Since

(3.10) emij = πF,Q×F (kN(i)∗kc(1m−1m+1)kN(j)− kN(i+1)∗kc(1m−1−1m)kN(j+1))

it follows that every emij belongs to πF,Q × F (D), which therefore gives the first
inclusion

C0(N,K(`2(N))) ⊂ πF,Q × F (D).

For the other inclusion, let i, j, s ∈ N, then we have

πF,Q × F (kN(i)∗kc(1s − 1s+1)kN(j)) (n) =
{
Ti+s−n(1− TT ∗)T ∗j+s−n for s ≥ n
0 otherwise

=
s∑

k=1

eki+s−k,j+s−k(n).

If s < t in N, then 1s − 1t =
∑t−s
u=1 1s+(u−1) − 1s+u. Therefore

πF,Q × F (kN(i)∗kc(1s − 1t)kN(j)) =
t−s∑
u=1

πF,Q × F (kN(i)∗kc(1s+(u−1) − 1s+u)kN(j))

=
t−s∑
u=1

n∑
k=1

ekx−k,y−k,

for x = i+ s+ (u− 1)− k and y = j + s+ (u− 1)− k. Thus

πF,Q × F (kN(i)∗kc(1s − 1t)kN(j)) ∈ C0(N,K(`2(N))),

and hence πF,Q × F (D) ⊂ C0(N,K(`2(N))).
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Consider the map ε∞ : B → T (Z) defined by ε∞(f) = f(∞). It is a ∗-
homomorphism, which satisfies

ε∞ ◦ (πF,Q × F ) (kN(i)kc(1m)kN(j)) = TiT
∗
j = φ ◦ q (kN(i)kc(1m)kN(j),

where q is the quotient map in the sequence

0→ c0 ×σ N→ c×σ N q→ c/c0 ×σ̃ N→ 0,

and φ : (c/c0 ×σ N, ι) −→ T (Z) is the isomorphism such that

φ(ιN(i)∗ιc/c0([1m])ιN(j)) = TiT
∗
j for all i, j,m ∈ N.

So we have

(3.11) ε∞ ◦ (πF,Q × F ) = φ ◦ q,

and therefore ε∞ is surjective. We claim that ker ε∞ = C0(N,K(`2(N))). From
(3.10) we know that every f ∈ C0(N,K(`2(N))) belongs to πF,Q × F (c ×σ N) = B,
and which ε∞(f) = 0. So

C0(N,K(`2(N))) ⊂ ker ε∞.

If g ∈ ker ε∞ then φ−1(ε∞(g)) = 0. From (3.11), we have φ−1◦ε∞ = q◦(πF,Q×F )−1.
It then follows that q◦(πF,Q×F )−1(g) = 0. Thus (πF,Q×F )−1(g) ∈ ker q = c0×σN,
and hence

g ∈ πF,Q × F (ker q) = πF,Q × F (c0 ×σ N) = C0(N,K(`2(N))).

So ker ε∞ ⊂ C0(N,K(`2(N))), and we have proved the claim.
We can now conclude this diagram commutes:

(3.12)

0 c0 ×σ N c×σ N c/c0 ×σ̃ N 0

0 C0(N,K(`2(N))) B T (Z) 0

- -

?
πF,Q×F

-q

?
πF,Q×F

?
φ

-

- - -ε∞ -
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