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Abstract. For ϕ a holomorphic self-map of the unit ball BN of CN , and

u ∈ H∞(BN ) (the Banach space of bounded holomorphic functions on BN ),
we investigate the essential norm and spectrum of the weighted composition

operator uCϕ acting on the space H∞(BN ). For ϕ univalent, not unitary on

any slice, and fixing a point of BN , we obtain a complete characterization of
the spectrum of uCϕ.
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1. Introduction

Let H∞(BN ) denote the space of bounded holomorphic functions in the unit ball
BN of CN , endowed with the norm of ‖f‖ = supz∈BN

|f(z)|. For ϕ, a non-constant
holomorphic map of the unit ball into itself, the composition operator Cϕ with the
symbol ϕ on H∞(BN ) is defined by Cϕ(f) = f ◦ ϕ. It is easy to see that Cϕ is
always bounded on H∞(BN ) with norm 1. For u holomorphic on BN , the weighted
composition operator uCϕ is defined by uCϕ(f) = u·f ◦ϕ. Notice that uCϕ1 = u(z),
it is obvious that uCϕ is bounded on H∞(BN ) if and only if u ∈ H∞(BN ).

Let ‖uCϕ‖e and ρe denote the essential norm and the essential spectral radius of
uCϕ respectively. The essential norm of an operator is the norm of its equivalence
class in the Calkin algebra. Similarly, the essential spectrum of an operator is the
spectrum of the equivalence class that contains this operator in the Calkin algebra.
The essential norms of composition operators on H∞(D) were characterised in [15].
The essential norms of weighted composition operators acting on the ball algebras
and H∞(BN ) were given in [13].
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On Hardy spaces Hp(BN ) when 0 < p < ∞ and N > 1, Cϕ is not always
bounded. When p = 2, spectral information for bounded composition operators
on some weighted Hardy spaces was given in [4]. When N = 1, that is, on the
unit disk, we recommend the interested readers refer to the books by J. H. Shapiro
[12] and Cowen and MacCluer [5], which are good sources for information on much
of the developments in the theory of composition operators up to the middle of
last decade. Recently the spectra of composition operators, both weighted and
unweighted (u ≡ 1,) have been studied for other spaces of holomorphic functions:
See [1, 2, 9, 10, 14, 15], for example.

Motivated by recent works of Aron and Lindström [1], and Zheng [15], we give es-
sential norm estimates and determine the spectra of weighted composition operators
uCϕ acting on H∞(BN ).

The remainder of the present paper is organized as follows: In the next section,
we provide the essential norm estimates of uCϕ acting on H∞(BN ). Using these
estimates, we find, in Section 3, the essential spectral radius of uCϕ. Then we deter-
mine the spectrum of uCϕ. Some techniques are inspired by [4], unlike the weighted
Hardy spaces of bounded type in [4], this paper gives a complete characterization
of the spectrum, and point out that the same results also hold for the composition
operator Cϕ (the case u = 1).

2. The essential norm

Recall that the essential norm of a bounded linear operator T is the distance from
T to the compact operators, that is,

‖T‖e = inf{‖T −K‖ : K is compact}.

Clearly T is compact if and only if its essential norm is 0.
The estimates of weighted composition operators on H∞(BN ) are similar to those

of [13], but we obtain different forms from which it is easy to determine the spectral
radii.

Proposition 2.1. If uCϕ is not compact on H∞(BN ), then

‖uCϕ‖e ≤ min
{

sup
z∈BN

|u(z)|, 2 lim
r→1

sup
z∈Er

|u(z)|
}

where Er = {z ∈ BN : |ϕ(z)| > r} for 0 < r < 1.

Proof. First of all ‖uCϕ‖e ≤ ‖uCϕ‖ = supz∈BN
|u(z)|, we need only to show ‖uCϕ‖e ≤

2 limr→1 supz∈Er
|u(z)|. The argument is similar to [13], we omit the details here.

Because u ∈ H∞(BN ) can be extremely oscillatory near every boundary point,
to give the lower estimate we need the interpolating sequence.

Definition 2.1. An interpolating sequence {zj} in the ball is the one for which,
given any bounded sequence {cj} of complex numbers, there is a bounded analytic
function f so that f(zj) = cj.

By the proof of Lemma 13 in [4], the following lemma follows.
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Lemma 2.1. Fix 0 < a < 1, any sequence {zk} in BN satisfying

1− |zk|
1− |zk+1|

< a < 1

is an H∞(BN ) interpolating sequence.

This lemma is the finite dimensional case of Theorem 5.1 in [7]. Using it we have
the following lower estimate.

Proposition 2.2. If uCϕ is not compact on H∞(BN ), then

2−1 lim
r→1

sup
z∈Er

|u(z)| ≤ ‖uCϕ‖e

where Er is given in Proposition 2.1 above.

Proof. Since uCϕ is not compact, it is easy to show that supz∈BN
|ϕ(z)| = 1, that

is, whenever r is sufficiently close to 1, Er is not empty. We want to show that there
exists a sequence {fn} ∈ H∞(BN ) with ‖fn‖ = 1 such that {fn} converges to 0
uniformly on compact subsets of BN and

lim
n→∞

‖(uCϕ)(fn)‖ ≥ 2−1 lim
r→1

sup
z∈Er

|u(z)|.

Denote limr→1 supz∈Er
|u(z)| by A. Without loss of generality we suppose A > 1,

then for any ε > 0, there is a δ ∈ (0, 1) such that for any r > δ, supz∈Er
|u(z)| > A−ε,

so there exists a zε ∈ Er, |u(zε)| > A− ε with |ϕ(zε)| > δ.
Now let ε = 1, there is a δ1 and a z1 such that |u(z1)| > A− 1 and |ϕ(z1)| > δ1.
Let ε = 1/2, there is a δ2 such that when r2 > δ2, supz∈Er2

|u(z)| > A− 1/2. Let
r′2 = max{r2, 1 − a + a|ϕ(z1)|}, where a is the fixed number in Lemma 2.1 above,
there is a z2 ∈ Er′2 such that |u(z2)| > A− 1/2.

By induction we can get a sequence {zj}n+1
j=1 with 1−|ϕ(zj)|

1−|ϕ(zj−1)| < a < 1 and |u(zj)| >
A− 1

j where zj ∈ Er′j .
It follows from Lemma 2.1 that for this sequence {zj}n+1

j=1 , there exists hk ∈
H∞(BN ) such that hk(ϕ(zj)) = 1 for k = j and hk(ϕ(zj)) = 0 for k 6= j with
‖hk‖ = 1. These hn’s are bounded with norm 1 and hn 6= hm if n 6= m.
{hn} is a sequence in the unit ball of H∞(BN ), so it must have a subsequence

which converges to some h ∈ H∞(BN ) weakly by Montel’s Theorem. Without loss
of generality we also denote this subsequence by {hn}. Let gn = hn−hn+1, then gn
converges to 0 uniformly on compact subsets of BN as n tends to ∞ with ‖gn‖ ≤ 2.

Let fn = gn/2, then ‖fn‖ ≤ 1 and fn(ϕ(zn)) = 1/2. Then

(uCϕ)(fn)(zn) = u(zn)f(ϕ(zn)) = 2−1u(zn).

Thus

‖uCϕ‖e ≥ lim
n→∞

‖(uCϕ)(fn)‖ ≥ lim
n→∞

sup
z∈BN

|(uCϕ)(fn)(z)|

≥ lim
n→∞

|u(zn)| · |f(ϕ(zn))| = 1/2 lim
n→∞

|u(zn)|

≥ 1/2 lim
n→∞

(A− 1
n

) = A/2.

This completes the proof.
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Combining Proposition 2.1 and Proposition 2.2, we actually have got the following
theorem.

Theorem 2.1. If uCϕ is not compact on H∞(BN ), then

1/2 lim
r→1

sup
z∈Er

|u(z)| ≤ ‖uCϕ‖e ≤ 2 lim
r→1

sup
z∈Er

|u(z)|

where Er is given in Proposition 2.1 above.

The constants 1/2 and 2 above may not be sharp, however, we have the following
corollary.

Corollary 2.1. If u ∈ H∞(BN ), then uCϕ acting on H∞(BN ) is compact if and
only if

lim
r→1

sup
z∈Er

|u(z)| = 0.

If the weight function u belongs to the ball algebra, that is, if u ∈ H(BN ) ∩
C(BN ), then u is uniformly continuous and can not be extremely oscillatory near
the boundary, we have the following lower estimate of the essential norm.

Proposition 2.3. If uCϕ is not compact on H∞(BN ) and u ∈ H(BN ) ∩ C(BN ),
then

lim
r→1

sup
z∈Er

|u(z)| ≤ ‖uCϕ‖e

where Er is given in Proposition 2.1 above.

Proof. Let {fj}∞j=1 be a sequence in H∞(BN ) with ‖fj‖ = 1 for all j and fn 6= fm
if n 6= m. Then for any compact operator K on H∞(BN ), {Kfj} has a convergent
subsequence, without loss of generality we also denote it by {Kfj}. Then there
exists a f ∈ H∞(BN ) such that a subsequence of {fj} converges to f weakly as j
tends to ∞ by Montel’s Theorem, denoted the subsequence also by {fj}. Without
loss of generality we suppose f 6= fj for all j, then fj − f 6= 0. Let gj = fj − f ,
then gj converges to 0 weakly in H∞(BN ) as j tends to ∞. gj 6= 0 implies that
‖gj‖ 6= 0, thus {gj/‖gj‖} is a sequence of unit vectors which converges to 0 uniformly
on compact subsets of BN , for the convenient continue to denote it by {gj}. For
any N ×N unitary matrix U , supz∈BN

|gj(Uz)| = 1.
To show that limr→1 supz∈Er

|u(z)| ≤ ‖uCϕ‖e, consider inf ‖uCϕ − K‖ for all
compact K.

‖uCϕ −K‖ ≥ lim
j→∞

‖(uCϕ −K)gj(Uz)‖ ≥ lim
j→∞

sup
z∈BN

|u(z)gj(Uϕ(z))|.

Let A = limr→1 supz∈Er
|u(z)|, then for ε = 1, there exists r1 ∈ (0, 1) such that

supz∈Er
|u(z)| > A − 1 for r > r1. Since |u(z)| is continuous on BN , then there

exists z1 ∈ Er1 with |u(z1)| > A− 1. By induction, for ε = 1
n , we get an increasing

sequence {rn} with rn ∈ (1− 1
n , 1), zn ∈ Ern such that |u(zn)| > A− 1

n .
Note that {zn} ⊂ Ern such that |ϕ(zn)| > rn and rn → 1, then there exists

a subsequence of {ϕ(zn)} converges to some z0 ∈ ∂BN . Let {ϕ(znk
)} be such a

subsequence, then |u(znk
)| > A − 1

nk
> A − 1

k , so without loss of generality we
suppose {ϕ(zn)} converges to z0.
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On the other hand, for any fixed j, supz∈BN
|gj(z)| = 1 means that for ε = 1

n ,
there is wn ∈ BN such that |gj(wn)| > 1− 1

n . It is clear that limn→∞ |gj(wn)| = 1.
From wn ∈ BN we know {wn} has a subsequence still denoted by {wn}, which
converges to some w0 ∈ ∂BN because of the maximum modulus principle. So the
continuity of |gj(w)| implies that |gj(w0)| = limn→∞ |gj(wn)| = 1. Let Uz0 = w0 for
a unitary matrix U , then

sup
z∈BN

|u(z)gj(Uϕ(z))| ≥ |u(znk
)| · |gj(Uϕ(znk

))| ≥ (A− 1
k

)|gj(Uϕ(znk
))|

from which, let k →∞,
sup
z∈BN

|u(z)gj(Uϕ(z))| ≥ A|gj(Uz0)| = A|gj(w0)|

the lower estimate follows by letting j →∞.
Combining Proposition 2.2 and Proposition 2.3, we have the following theorem.

Theorem 2.2. If uCϕ is not compact on H∞(BN ) and u ∈ H(BN )∩C(BN ), then

lim
r→1

sup
z∈Er

|u(z)| ≤ ‖uCϕ‖e ≤ min{ sup
z∈BN

|u(z)|, 2 lim
r→1

sup
z∈Er

|u(z)|}

where Er = {z ∈ BN : |ϕ(z)| > r} for 0 < r < 1.

If we let u = 1, by Theorem 2.2, we have the following corollary.

Corollary 2.2. The essential norm of Cϕ on H∞(BN ) is either 1 or 0.

The estimates of the essential norm of uCϕ acting on the ball algebra or H∞(BN )
can also be found in [13] with different forms. More generally, the essential norm of
a composition operator on a uniform algebra has recently been characterized in [6].

3. The essential spectral radius and spectrum

For uCϕ acting on H∞(BN ), we denote its spectral radius by ρ(uCϕ). Then

ρ(uCϕ) = lim
n→∞

‖(uCϕ)n‖ 1
n

and the essential spectral radius is given by

ρe(uCϕ) = lim
n→∞

‖(uCϕ)n‖
1
n
e .

Throughout the remainder of this paper, ϕn will denote the nth iterate of ϕ, that
is, ϕ1 = ϕ and ϕn = ϕ ◦ ϕn−1 for all n > 1. For any f ∈ H∞(BN ),

(uCϕ)n(f(z)) = u(z)u(ϕ(z)) · · ·u(ϕn−1(z)) · Cϕnf(z).

So (uCϕ)n is a weighted composition operator with symbol
ϕn and weight u(z)u(ϕ(z)) · · ·u(ϕn−1(z)). Using Theorem 2.1 and Theorem 2.2, the
essential spectral radius follows immediately.

Theorem 3.1. If uCϕ is not compact on H∞(BN ), then

ρe(uCϕ) = lim
n→∞

(
lim
r→1

sup
z∈Er

|u(z)u(ϕ(z)) · · ·u(ϕn−1(z))|
) 1

n

where Er is given in Proposition 2.1 in the last section.
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If u = 1, we obtain the essential spectral radius of the composition operator on
the H∞(BN ).

Corollary 3.1. The essential spectral radius of Cϕ on H∞(BN ) is either 1 or 0. If
Cϕn(= Cnϕ) is compact for some n ≥ 1, then ρe(Cϕ) = 0, otherwise ρe(Cϕ) = 1.

Unlike the finite dimensional case, if X is an infinite dimensional Banach space,
then for H∞(BX), it can occur that 0 < ρe(Cϕ) < 1. See [6] for more details. For
the spectrum we have the following theorem.

Theorem 3.2. Suppose u ∈ H∞(BN ) and ϕ is a holomorphic map of BN into BN
that is univalent with ϕ(a) = a for some a ∈ BN , and ϕa ◦ ϕ ◦ ϕa is not unitary on
any slice where ϕa is the involution which interchanges a and 0, then

σ(uCϕ) = {λ ∈ C : |λ| ≤ ρe(uCϕ)} ∪ {0, u(a), u(a)µ}
where µ is all products of eigenvalues of ϕ′(a).

From the above theorem, the spectrum for the composition operator on H∞(BN )
follows immediately if we let u = 1.

Corollary 3.2. Suppose ϕ is a holomorphic map of BN into BN under the condition
of Theorem 3.2 above, then

σ(Cϕ) = D, if ‖ϕn‖∞ = 1 for all n ∈ N,
and if ‖ϕn‖∞ < 1 for some n ∈ N,

σ(Cϕ) = {all products of eigenvalues of ϕ′(a)} ∪ {0, 1}.

This corollary is a special case of Theorem 7.1 in [7].
The proof of Theorem 3.2 will be given after some lemmas. For the proof, we also

need some complex calculation skills.
Now we introduce two subspaces.

Definition 3.1. For f ∈ H∞(BN ), the homogeneous expansions of f is denoted by
f(z) =

∑∞
s=0 fs(z). Then, for a non-negative integer m, the subspaces Lm and Hm

of H∞(BN ) are given by

Hm =

{
f(z) =

∞∑
s=0

fs(z) ∈ H∞(BN ) : fs(z) = 0 for all s ≥ m

}
and

Lm =

{
f(z) =

∞∑
s=0

fs(z) ∈ H∞(BN ) : fs(z) = 0 for all s < m

}
.

According to Lemma 7 and its argument in [4], it is convenient to order the
monomials zα by ordering the multi-indices. When |α| < |β|, we say α < β; when
|α| = |β|, we say α < β if there is j0 so that αj = βj for j < j0 and αj0 > βj0 . This
ordering has the convenient property that if zα precedes zα

′
and zβ precedes zβ

′
,

then zαzβ precedes zα
′
zβ
′
. Similar to Lemma 7 in [15] we get the following lemma.

Lemma 3.1. Suppose ϕ(0) = 0. Then Hm is an invariant subspace of uCϕ and
σ(Cm) ⊂ σ(uCϕ) where Cm = uCϕ|Hm

.
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Proof. For any f ∈ Hm ⊂ H∞(BN ), uCϕ(f) = u · f ◦ ϕ ∈ H∞(BN ). Let

f(z) =
∞∑
|γ|=m

cγz
γ

be the homogeneous expansion of f . Based on the argument given after Lemma 6
in [4], there is no loss of generality to assume that ϕ′(0) is lower triangular. Let εj
denote the multi-index corresponding to the monomial zj for j = 1, 2, · · · , N , then
if ϕ = (ϕ(1), ϕ(2), · · · , ϕ(N)),

ϕ(j)(z) =
∑
α

a(j),αz
α

where a(j),α = 0 for α < εj . Now the multiplicative property of the ordering implies
that

zβ ◦ ϕ = ϕβ1
(1)ϕ

β2
(2) · · ·ϕ

βN

(N) =
∑
α

bαz
α,

where bα = 0 for α < β. This means that

u(z)f(ϕ(z)) = u(z)
∞∑
|γ|=m

cγϕ(z)γ = u(z)
∞∑
|γ|=m

cγϕ
γ1
(1)ϕ

γ2
(2) · · ·ϕ

γN

(N)

= u(z)
∞∑
|γ|=m

cγ
∑
α

b′αz
α

where b′α = 0 for α < γ. So u · f ◦ ϕ ∈ Hm and thus Hm is invariant under uCϕ.
Since Lm is finite dimensional, the second statement follows by Lemma 7.17 in

[5] or as Lemma 7 in [15].

Lemma 3.2. Suppose ϕ is the same as in Theorem 3.2 with ϕ(0) = 0, if λ 6= 0 is
an eigenvalue of uCϕ, then λ ∈ {u(0), u(0)µ}. Moreover, {u(0), u(0)µ} ⊂ σ(uCϕ)
where µ denotes all possible products of eigenvalues for ϕ′(0).

Proof. If λ is an eigenvalue of uCϕ and f is a corresponding eigenvector of λ, then
u(z)f(ϕ(z)) = λf(z). Upon differentiating both sides, we arrived at the first state-
ment, for the detail we refer the readers to check Lemma 2.1 in [16]. To prove the
second statement, without loss of generality, we may assume that ϕ′(0) is lower
triangular, and µ = λs11 · · ·λ

sN

N where λ1, · · · , λN are eigenvalues of ϕ′(0). First
of all, u(0) ∈ σ(uCϕ) since for any f ∈ H∞(Bn), (u(0)I − uCϕ)f 6= 1. Indeed, if
u(0)f(z)−u(z)f(ϕ(z)) = 1, then u(0)f(0)−u(0)f(ϕ(0)) = 1. This is a contradiction.

Similarly, u(0)λ1 ∈ σ(uCϕ). Without loss of generality we suppose λ1 6= 1. If
there exists f ∈ H∞(Bn) such that (u(0)λ1I − uCϕ)f = z1, then f(0) = 0 and

u(0)λ1
∂f(z)
∂z1

− ∂u(z)
∂z1

f(ϕ(z))− u(z)ϕ′(z)
∂f(z)
∂ϕ(j)

= 1.

Since f(0) = 0 and ϕ′(0) is a lower triangular matrix,

u(0)λ1
∂f(0)
∂z1

− u(0)λ1
∂f(0)
∂z1

= 1.

This contradiction implies that u(0)λ1 ∈ σ(uCϕ).
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To show u(0)λ2 ∈ σ(uCϕ), assume f ∈ H∞(Bn) such that (u(0)λ2I−uCϕ)f = z2.
Then f(0) = 0 and

u(0)λ2
∂f(0)
∂z1

− u(0)λ1
∂f(0)
∂z1

= 0,

which means ∂f(0)
∂z1

= 0. Because

u(0)λ2
∂f(z)
∂z2

− ∂u(z)
∂z2

f(ϕ(z))− u(z)ϕ′(z)
∂f(z)
∂ϕ(i)

= 1,

we have

u(0)λ2
∂f(0)
∂z2

− u(0)λ2
∂f(0)
∂z2

= 1

where we used f(0) = 0, ∂f(0)
∂z1

= 0 and the fact that ϕ′(0) is lower triangular. By
induction we claim that for λj 6= 1, j = 1, · · · , N , u(0)λi ∈ σ(uCϕ).

Similarly, u(0)λ2
1 ∈ σ(uCϕ). Indeed, as we have shown above, assume f ∈

H∞(BN ) such that (u(0)λ2
1I −uCϕ)f = z2

1 , we get f(0) = 0 and ∂f(0)
∂zj

= 0. We also
have

u(0)λ2
1

∂f(z)
∂z1

− ∂u(z)
∂z1

f(ϕ(z))− u(z)ϕ′(z)
∂f(z)
∂ϕ(i)

= 2z1

and

u(0)λ2
1

∂2f(0)
∂z2

1

− u(0)λ2
1

∂2f(0)
∂z2

1

= 2.

This is a contradiction which means u(0)λ2
1 ∈ σ(uCϕ). By induction we have u(0)µ ∈

σ(uCϕ) if µ is a possible product of eigenvalues of ϕ′(0).
For any f ∈ H∞(BN ), we consider the pairing

〈f, g〉 =
∫
BN

f(z)g(z)dv(z), f ∈ H∞(BN ), g ∈ A1(BN )

where dv is the normalized Lebesgue measure of BN and A1(BN ) is the Bergman
space on BN , see [17]. Straightforward computation shows that for

Kw(z) =
1

(1− 〈z, w〉)N+1
,

we have for any f ∈ H∞(BN ),

〈f,Kw〉 = f(w).

So the norm of evaluation functional at w ∈ BN can be considered as the ‖ · ‖A1 of
Kw. Similarly, for any f ∈ Hm, let

Km
w (z) =

∞∑
s=m

(N − 1 + s)!(s+ 1)
(N − 1)!s!

〈z, w〉s,

then

(3.1) 〈f,Km
w 〉 = f(w)

for f in Hm. To give the ‖ · ‖A1 of Km
w , we must first compute that∫

BN

|〈z, w〉|sdv(z) = 2N
∫ 1

0

r2N−1+sdr

∫
SN

|〈ζ, w〉|s dσ (ζ)
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=
Γ(N − 1)Γ( s+2

2 )
Γ(N + s)

2N(N − 1)
2N + s

|w|s.

Then by Lemma 3 of [4], we have the following lemma.

Lemma 3.3. Suppose m is a positive integer greater than N − 1. If w and z are
points in BN with |〈z, w〉| < 1/(N3N+1), then

5
6N

P (m)(m+ 1)|〈z, w〉|m ≤ |Km
w (z)| ≤

(
3
2

)N
P (m)(m+ 1)|〈z, w〉|m

and
5

6N
Q(N,m)|w|m ≤ ‖Km

w ‖A1 ≤
(

3
2

)N
Q(N,m)|w|m

where

P (m) = 1−
N−2∑
k=0

(m+N − 1) · · · (m+ 1 + k)
(N − 1− k)!

which is given in [4] and

Q(N,m) = P (m)(m+ 1)
Γ(N − 1)Γ

(
m+2

2

)
Γ(N +m)

2N(N − 1)
2N +m

.

We say the sequence of points {zk}∞k=−K in BN is an iteration sequence for ϕ if
ϕ(zk) = zk+1 for k ≥ −K.

To prove Theorem 3.2 we also need some other lemmas which have been proved
by Carl Cowen and Barbara MacCluer in [4].

Lemma 3.4. [4, Lemma 11] Given ζ and η in ∂BN , for each positive integer m there
exist a homogeneous polynomials pm of degree 2m such that |pm(ζ)| = |pm(η)| = 1
and ‖pm‖∞ = 1.

Lemma 3.5. [4, Lemma 12–14] If ϕ is an analytic self map of the unit ball with
ϕ(0) = 0 which is not unitary on any slice in BN , then for 0 < r < 1, there is A > 1
so that

1− |ϕ(z)|
1− |z|

> A

for all z with |z| ≥ r. If {zk}∞−K is an iteration sequence with |zn| ≥ r for some
n ≥ 0 and if {wk}n−K is arbitrary, then there is an M < ∞ and an h in H∞(BN )
such that h(zk) = wk for −K ≤ k ≤ n and ‖h‖∞ ≤ M sup{|wk| : −K ≤ k ≤ n}.
Further there exists c < 1 such that |zk+1|

|zk| ≤ c whenever |zk| ≤ c.

Now we return to the proof of Theorem 3.3.
The argument is essentially the same as [1] and [7]. All proofs are based on

showing the fact that the adjoint on an invariant space is not bounded from below.
However, unlike the unit disc case in [1] and the unweighted case in [7], the argument
has a longer form for the complete proof. On the bounded analytic function space
of the infinite dimensional ball, the essential spectral radius is unknown, so it is an
open problem to characterize the spectra of weighted composition operators in the
infinite dimensional case.
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Without loss of generality, suppose a = 0. In fact, if a 6= 0, let ϕa(z) be the
automorphism of BN which interchanges a and 0, u1 = u ◦ ϕa and φ = ϕa ◦ ϕ ◦ ϕa.
Then φ(0) = 0, u1(0) = u(a), Cϕa ◦ Cϕa = I, so

Cϕa ◦ u1Cφ ◦ Cϕa = uCϕ.

Hence u1Cφ and uCϕ are similar and they have the same spectrum and essential
spectral radius.

By Lemma 3.2 we have that {u(0), u(0)µ} ⊂ σ(uCϕ). For λ ∈ σ(uCϕ) with |λ| >
ρe(uCϕ), it follows that λ is an eigenvalue (that is true for all bounded operators,
see Proposition 2.2 in [3]). If λ 6= 0 is an eigenvalue, Lemma 3.2 gives that λ ∈
{u(0), u(0)µ}, so it remains to show that

{λ ∈ C : |λ| ≤ ρe(uCϕ)} ⊂ σ(uCϕ).

If ρe(uCϕ) = 0, the argument is proved since 0 ∈ σ(uCϕ) when uCϕ is not
invertible. Now assume that ρe(uCϕ) > 0 and denote ρe(uCϕ) by ρ, because the
spectrum of uCϕ is closed, we can fix a λ with 0 < |λ| < ρ. By Lemma 3.1 it is
sufficient to show that λ ∈ σ(Cm) for some m. We find a positive integer m such
that (Cm−λI)∗ is not bounded from below, which means Cm−λI is not invertible.

For r = 1/N3N+1 it follows from Lemma 3.5 that there exists c < 1 so that
|ϕ(z)|/|z| ≤ c where |z| ≤ r. Since ϕ is univalent, Jcϕ′(0) 6= 0, ϕ′(0) is invertible.
Let z = ψ(w) = ϕ−1(w), note that ψ(0) = 0 and ψ′(0) = (ϕ′(0))−1, ‖ψ′(0)‖ =
‖(ϕ′(0))−1‖, then ψ(w) = ψ(0) + ψ′(0)w + o(|w|) = ψ′(0)w + o(|w|). From which
we have |ψ(w)| ≤ 2‖ψ′(0)‖|w| for w approaching zero, that is |z| ≤ 2‖ψ′(0)‖|ϕ(z)|,
|ϕ(z)| ≥ 1

2‖(ϕ′(0))−1‖ |z| for z approaching zero. On the other hand, since ϕ is an open
map and ϕ(0) = 0, the univalence of ϕ guarantees ϕ(z) is not near zero when z is not
near zero. Thus, there is c0 (with 0 < c0 < c) so that |ϕ(z)|/|z| ≥ c0 for 0 < |z| < 1.
Now let {zk}∞−K be any iteration sequence with c > |z0| > 1/N3N+1. Since {|zk|}
is not increasing, {k : |zk| > c0/N3N+1} is a finite subset of N, and let n = max{k :
|zk| > c0/N3N+1}. Note that |z1|/|z0| ≥ c0 implies |z1| > c0/N3N+1 so that n ≥ 1.
Let M be the interpolation constant for Lemma 3.5 with r = c0/N3N+1. Since
u ∈ H∞(BN ) is continuous, 0 < C := max{sup|z|≤c0/N3N+1 |u(z)|, |u(zn)|} < ∞.
Choose m greater than N − 1 so that

(3.2)
cmC

|λ|
< 1 and

c2mC

|λ|
<

1
1 + γM

,

where γ = 2N(3/2)N . Next we will show C∗m − λ̄I is not bounded below on Hm.
If {zk}∞k=−K is an iteration sequence for ϕ with n defined as above, let us define

the linear fractional Lλ,u on Hm by

Lλ,u(f) =
∞∑

k=−K

λ−ku(z−K) · · ·u(zk−1)f(zk), f ∈ Hm

where we agree that u(z−K)u(z−K−1) = 1 in the first term of the sum.
For k > n, since |zk|2 < |zk| < 1

N3N+1 ≤ 1
3N+1 , Lemma 3.3 implies

‖Km
zk
‖A1 ≤ (3/2)NQ(N,m)|zk|m
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where Q(N,m) is given in Lemma 3.3, and the choice of n gives

(3.3) |zk| = |zn|
(
|zn+1|
|zn|

)
· · ·
(
|zk|
|zk−1|

)
≤ |zn|ck−n.

It follows that
∞∑

k=n+1

|λ|−k|u(z−K)| · · · |u(zk−1)|‖Km
zk
‖A1

≤ |zn|
m

|λ|n

(
3
2

)N
Q(N,m)|u(z−K)| · · · |u(zn−1)|

∞∑
k=n+1

(
cmC

|λ|

)k−n
<∞.

Then the series
∞∑

k=−K

λ̄−ku(z−K) · · ·u(zk−1)Km
zk

converges in A1(BN ), which means Lλ,u(f) gives a bounded linear functional on Hm

by (3.1).
We also need a lower bound for Lλ,u. By Lemma 3.4, there exists a homogeneous

polynomial pm of degree 2m with |pm(z0)| = 1, |pm(Rzn)| = 1 and ‖pm‖∞ = 1 on
|z0|∂BN , where R|zn| = |z0| and R > 1 since |z0| = R|zn| < R|z0|. Using Lemma
3.5 with r = c0

N3N+1 , we can find h in H∞(BN ) so that ‖h‖∞ ≤ M , h(zk) = 0 for
k < n if k 6= 0, |h(z0)| = 1, |h(zn)| = 1

pm(zn)γR2m , u(z−K) · · ·u(z−1)h(z0)pm(z0) ≥ 0

and u(z−K) · · ·u(zn−1)h(zn)pm(zn)
λn ≥ 0.

Let g(z) = h(z)pm(z) ∈ H2m ⊂ Hm, it is easy to check ‖g‖∞ ≤M and

Lλ,u(g) = |u(z−K)| · · · |u(z−1)|+ |u(z−K)| · · · |u(zn−1)|
λnγR2m

+
∞∑

k=n+1

λ−ku(z−K) · · ·u(zk−1)h(zk)pm(zk).

The construction of pm implies |( |z0||zk| )
2mpm(zk)| = |pm( zk

|zk| |z0|)| ≤ 1 so that |pm(zk)| ≤
|zk|2m

|z0|2m . Using this inequality, the norm estimate ‖h‖∞ ≤ M , and then by (3.2) and
(3.3), it follows that∣∣∣∣∣

∞∑
k=n+1

λ−ku(z−K) · · ·u(zk−1)h(zk)pm(zk)

∣∣∣∣∣
≤

∞∑
k=n+1

|u(z−K)| · · · |u(zk−1)| |zk|
2m

|z0|2m
|λ|−k|h(zk)|

≤ M |u(z−K)| · · · |u(zn−1)||zn|2m

|z0|2m|λ|n
∞∑

k=n+1

(
c2mC

|λ|

)k−n
≤ |u(z−K)| · · · |u(zn−1)||zn|2m

γ|z0|2m|λ|n
.
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Finally, remembering that R|zn| = |z0|, we obtain∣∣∣∣∣
∞∑

k=n+1

λ−ku(z−K) · · ·u(zk−1)h(zk)pm(zk)

∣∣∣∣∣ ≤ |u(z−K)| · · · |u(zn−1)|
γR2m|λ|n

.

Then

(3.4) ‖Lλ,u‖ ≥
|Lλ,u(g)|
‖g‖∞

≥ |u(z−K)| · · · |u(z−1)|
M

.

For f ∈ Hm, straightforward computation shows that

〈f, (Cm − λI)∗Lλ,u〉 = −λK+1f(z−K).

From which we obtain that

‖(Cm − λI)∗Lλ,u‖ = sup
0 6=f∈Hm

∣∣〈f, (Cm − λI)∗ Lλ,u
〉∣∣

‖f‖∞

= sup
0 6=f∈Hm

|λ|K+1 |f |
‖f‖∞

= |λ|K+1
.

Since |λ| < ρ, given 0 < |λ| < ρ we can pick µ so that |λ| < µ < ρ. By Theorem
3.1, there exists n0 such that for all s ≥ n0,

‖(uCϕ)s‖e > µs.

Hence for any K ≥ n0 we can find a w ∈ BN so that |u(w)||u(ϕ(w))| · · ·
|u(ϕK−1(w))| ≥ µK

2 > 0 and |ϕK(w)| ≥ 1
N3N+1 .

For every K ≥ n0 define the iteration sequence {zk}∞k=−K by letting z−K = w and
zk+1 = ϕ(zk) for k ≥ −K. Then |z0| = |ϕK(w)| ≥ 1

N3N+1 and |u(z−K)||u(z−K+1)| · · ·
|u(z−1)| ≥ µK

2 > 0, and

‖(Cm − λI)∗Lλ,u‖
‖Lλ,u‖

≤ M |λ|K+1

|u(z−K)| · · · |u(z−1)|
≤ 2M |λ| |λ|

K

µK
.

Choosing K ≥ n0, where K is sufficiently large, it follows that (Cm − λI)∗ is not
bounded from below as desired, which completes the proof.
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