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Abstract. A polygroup is a multivalued algebraic system satisfying the group
like axioms. In recently, polygroups have been investigated by a number of au-

thors because such groups are related to algebraic combinatorics, color schemes

and relations, etc. In this paper, three isomorphism theorems of polygroups will
be established and the Fundamental homomorphism theorem of polygroups is

also proved. Our results generalize the classical isomorphism theorems of groups
to polygroups.
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1. Introduction

The concepts of hyperstructure and hypergroup were first introduced by Marty in
1934 [13]. As a special hypergroup, S. D. Comer considered polygroups and pointed
out that polygroups have application in color schemes [3, 4]. He also developed
the algebraic theory for polygroups. In recent years, the author and Poursalavati
[8] introduced the matrix representations of polygroups over hyperrings and inves-
tigated the structure of polygroup hyperrings so that some results of group rings
are generalized. Davvaz in [9], using the concept of generalized permutation defined
permutation polygroups, also see [10].

In this paper, we consider the normal subpolygroups and strong homomorphisms
between polygroups. As a consequence, by using the obtained results, we establish
the isomorphism theorems of polygroups. Our results extend the classical results of
groups to polygroups. Moreover, by considering the fundamental relation β∗ on a
polygroup, we prove the fundamental theorem for polygroups.

For notations and terminologies not given in this paper, the reader is referred to
the monographs of Corsini and Leoreanu [5, 6].
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2. Subpolygroups and strong homomorphisms

First, we summarize the preliminary definitions and results required in the sequel.
Let H be a non-empty set and let P∗(H) be the set of all non-empty subsets of H.
A hyperoperation on H is a map ◦ : H×H −→ ℘∗(H) and the couple (H, ◦) is called
a hypergroupoid. If A and B are non-empty subsets of H, then we denote

A ◦B =
⋃

a∈A, b∈B

a ◦ b, x ◦A = {x} ◦A and A ◦ x = A ◦ {x}.

A hypergroupoid (H, ◦) is called a semihypergroup if for all x, y, z of H we have
(x ◦ y) ◦ z = x ◦ (y ◦ z), which means that⋃

u∈x◦y
u ◦ z =

⋃
v∈y◦z

x ◦ v.

We say that a semihypergroup (H, ◦) is a hypergroup if for all x ∈ H, we have
x ◦H = H ◦ x = H.

A polygroup is a special case of a hypergroup. We now give the necessary defini-
tions.

Definition 2.1. A polygroup is a system P =< P, ., e,−1>, where e ∈ P, −1 is a
unitary operation on P , · maps P × P into the non-empty subsets of P , and the
following axioms hold for all x, y, z in P :

(i) (x · y) · z = x · (y · z);
(ii) e · x = x · e = x;
(iii) x ∈ y · z implies y ∈ x · z−1 and z ∈ y−1 · x.

The following elementary facts about polygroups follow easily from the axioms:
e ∈ x · x−1 ∩ x−1 · x, e−1 = e, (x−1)−1 = x, and (x · y)−1 = y−1 · x−1 where
A−1 = {a−1| a ∈ A}.

Example 2.1. Double coset algebra. Suppose that H is a subgroup of a group G.
Define a system G//H =< {HgH | g ∈ G}, ∗, H,−I >, where (HgH)−I = Hg−1H
and

(Hg1H) ∗ (Hg2H) = {Hg1hg2H |h ∈ H}.
The algebra of double cosets G//H is a polygroup introduced in Dresher and Ore
[12].

Example 2.2. Prenowitz algebras. Suppose G is a projective geometry with a set
P of points and suppose, for p 6= q, pq denoted the set of all points on the unique
line through p and q. Choose an object I 6∈ P and form the system

PG =< P ∪ {I}, ·, I,−1>

where x−1 = x and I · x = x · I = x for all x ∈ P ∪ {I} and for p, q ∈ P ,

p · q =
{
pq − {p, q} if p 6= q
{p, I} if p = q.

PG is a polygroup [15].
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Example 2.3. Conjugacy class polygroups. In dealing with a symmetry group two
symmetric operations belong to the same class if they present the same map with
respect to (possibly) different coordinate systems where one coordinate system is
converted into the other by a member of the group. In the language of group theory
this means the elements a, b in a symmetric group G belong to the same class if there
exists a g ∈ G such that a = gbg−1, i.e., a and b are conjugate. The collection of all
conjugacy classes of a group G is denoted by G and the system < G, ∗, {e},−1> is
a polygroup where e is the identity of G and the product A ∗B of conjugacy classes
A and B consists of all conjugacy classes contained in the elementwise product AB.
This hypergroup was recognized by Campaigne [2] and Diatzman [11].

Now, we illustrate constructions using the dihedral group D4. This group is
generated by a counter-clockwise rotation r of 90◦ and a horizontal reflection h.
The group consists of the following 8 symmetries:

{1 = r0, r, r2 = s, r3 = t, h, hr = d, hr2 = v, hr3 = f}.
The dihedral groups occur frequently in art and nature. Many of the decorative
designs used on floor coverings, pottery, and buildings have one of the dihedral
groups as a group of symmetry. In the case of D4 there are five conjugacy classes:
{1}, {s}, {r, t}, {d, f} and {h, v}. Let us denote these classes by C1, . . . , C5 respec-
tively. Then the polygroup D4 is

∗ C1 C2 C3 C4 C5
C1 C1 C2 C3 C4 C5
C2 C2 C1 C3 C4 C5
C3 C3 C3 C1, C2 C5 C4
C4 C4 C4 C5 C1, C2 C3
C5 C5 C5 C4 C3 C1, C2

As a sample of how to calculate the table entries, consider C3 · C3. To determine this
product, compute the elementwise product of the conjugacy classes {r, t}{r, t} =
{s, 1} = C1 ∪ C2. Thus C3 · C3 consists of the two conjugacy classes C1, C2 (see [3]).

For a, b ∈ P , we write the product of a, b by ab instead of a · b.

Definition 2.2. A non-empty subset K of a polygroup P is said to be a subpolygroup
of P if, under the hyperoperation in P , K itself forms a polygroup.

It would be useful to have some criterion for deciding whether a given subset of
a polygroup is a subpolygroup. This is the purpose of the next lemma.

Lemma 2.1. A non-empty subset K of a polygroup P is a subpolygroup of P if and
only if

(i) a, b ∈ K implies ab ⊆ K;
(ii) a ∈ K implies a−1 ∈ K.

Definition 2.3. The subpolygroup N of P is normal in P if and only if a−1Na ⊆ N
for all a ∈ P.

The following corollaries are direct consequences of Definitions 2.1–2.3.

Corollary 2.1. Let N be a normal subpolygroup of P . Then
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(i) Na = aN for all a ∈ P ;
(ii) (Na)(Nb) = Nab for all a, b ∈ P ;
(iii) Na = Nb for all b ∈ Na.

Corollary 2.2. Let K and N be subpolygroups of a polygroup P with N normal in
P . Then

(i) N ∩K is a normal subpolygroup of K;
(ii) NK = KN is a subpolygroup of P ;
(iii) N is a normal subpolygroup of NK.

Definition 2.4. If N is a normal subpolygroup of P , then we define the relation
x ≡ y (mod N) if and only if xy−1 ∩N 6= ∅. This relation is denoted by xNP y.

Lemma 2.2. The relation NP is an equivalence relation.

Proof.
(i) Since e ∈ xx−1 ∩N for all x ∈ P ; then xNPx, i.e., NP is reflexive.
(ii) Suppose that xNP y. Then there exists z ∈ xy−1 ∩ N which implies z−1 ∈

yx−1 and z−1 ∈ N , this means that yNPx, and so NP is symmetric.
(iii) Let xNP y and yNP z where x, y, z ∈ P . Then there exist a ∈ xy−1 ∩N and

b ∈ yz−1∩N . So x ∈ ay and z−1 ∈ y−1b, then z−1x ⊆ y−1bay. Since ba ⊆ N
and N is a normal subpolygroup, then y−1bay ⊆ N . Therefore z−1x∩N 6= ∅,
which satisfies the condition for xNP z, and so NP is transitive.

Let NP (x) be the equivalence class of the element x ∈ P . Suppose that [P : N ] =
{NP (x) | x ∈ P}. On [P : N ] we consider the hyperoperation � defined as follows:
NP (x) � NP (y) = {NP (z) | z ∈ NP (x)NP (y)}. For a subpolygroup K of P and
x ∈ P , denote the right coset of K by Kx and let P/K be the set of all right cosets
of K in P .

Lemma 2.3. Let N be a normal subpolygroup of P . Then Nx = NP (x).

Proof. Suppose that y ∈ Nx. Then there exists n ∈ N such that y ∈ nx, which
implies that n ∈ yx−1, and so yx−1 ∩N 6= ∅. Thus Nx ⊆ NP (x). Similarly we have
NP (x) ⊆ Nx.

Therefore we conclude that [P : N ] = P/N .

Lemma 2.4. Let N be a normal subpolygroup of P . Then for all x, y ∈ P , Nxy =
Nz for all z ∈ xy.

Proof. Suppose that z ∈ xy. Then it is clear that Nz ⊆ Nxy. Now, let a ∈ Nxy.
Then, by condition (iii) of Definition 2.1, we get y ∈ (Nx)−1a or y ∈ x−1Na, and so
xy ⊆ xx−1Na. Since N is a normal subpolygroup, we obtain xy ⊆ xNx−1a ⊆ Na.
Therefore for every z ∈ xy, we have z ∈ Na which implies a ∈ Nz. This complete
the proof.

Corollary 2.3. For all x, y ∈ P , we have NP (NP (x)NP (y)) = NP (x)NP (y).

Definition 2.5. [3] An equivalence relation ρ on a polygroup P is called a conjuga-
tion on P if

(i) xρy implies x−1ρy−1;
(ii) z ∈ xy and z′ρz implies z′ ∈ x′y′ for some x′ρx and y′ρy.
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Lemma 2.5. [3] ρ is a conjugation of P if and only if

(i) ρ(x)−1 = {y−1 | y ∈ ρ(x)} = ρ(x−1);
(ii) ρ(ρ(x)y) = ρ(x)ρ(y).

Corollary 2.4. The equivalence relation NP is a conjugation on P .

Proposition 2.1. < [P : N ],�, NP (e),−I > is a polygroup, where NP (a)−I =
NP (a−1).

Proof. For all a, b, c ∈ P , we have

(NP (a)�NP (b))�NP (c) = {NP (x) | x ∈ NP (a)NP (b)} �NP (c)
= {NP (y) | y ∈ NP (x)NP (c), x ∈ NP (a)NP (b)}
= {NP (y) | y ∈ NP (NP (a)NP (b))NP (c)}
= {NP (y) | y ∈ (NP (a)NP (b))NP (c)},

NP (a)� (NP (b)�NP (c)) = NP (a)� {NP (x) | x ∈ NP (b)NP (c)}
= {NP (y) | y ∈ NP (a)NP (x), x ∈ NP (b)NP (c)}
= {NP (y) | y ∈ NP (a)NP (NP (b)NP (c))}
= {NP (y) | y ∈ NP (a)(NP (b)NP (c))}.

Since (NP (a)NP (b))NP (c) = NP (a)(NP (b)NP (c)), we get (NP (a)�NP (b))�NP (c) =
NP (a)� (NP (b)�NP (c)). Therefore, � is associative. It is easy to see that NP (e)
is the unit element in [P : N ], and NP (x−1) is the inverse of the element NP (x).
Now, we show that NP (c) ∈ NP (a)�NP (b) implies NP (a) ∈ NP (c)�NP (b−1) and
NP (b) ∈ NP (a−1)�NP (c).

We have NP (c) ∈ NP (a) � NP (b), and hence NP (c) = NP (x) for some x ∈
NP (a)NP (b). Therefore, there exist y ∈ NP (a) and z ∈ NP (b) such that x ∈ yz, so
y ∈ xz−1. This implies that NP (y) ∈ NP (x) � NP (z−1), and so NP (a) ∈ NP (c) �
NP (b−1). Similarly, we get NP (b) ∈ NP (a−1) � NP (c). Therefore [P : N ] is a
polygroup.

Corollary 2.5. If N is a normal subpolygroup of P , then < P/N,�, N,−I > is a
polygroup, where Nx�Ny = {Nz | z ∈ xy} and (Nx)−I = Nx−1.

Definition 2.6. Let < P1, ·, e1,−1> and < P2, ∗, e2,−I > be polygroups. A mapping
ϕ from P1 into P2 is said to be a strong homomorphism if for all a, b ∈ P1,

i) ϕ(e1) = e2;
(ii) ϕ(ab) = ϕ(a) ∗ ϕ(b).

Clearly, a strong homomorphism ϕ is an isomorphism if ϕ is one to one and onto.
We write P1

∼= P2 if P1 is isomorphic to P2.
Because P1 is a polygroup, e ∈ aa−1 for all a ∈ P1, then we have ϕ(e1) ∈

ϕ(a) ∗ ϕ(a−1) or e2 ∈ ϕ(a) ∗ ϕ(a−1) which implies ϕ(a−1) ∈ ϕ(a)−1 ∗ e2, therefore
ϕ(a−1) = ϕ(a)−1 for all a ∈ P1. Moreover, if ϕ is a strong homomorphism from P1

into P2, then the kernel of ϕ is the set Kerϕ = {x ∈ P1 | ϕ(x) = e2}. It is trivial
that Kerϕ is a subpolygroup of P1 but in general is not normal in P1.

Corollary 2.6. Let ϕ be a strong homomorphism from P1 into P2. Then ϕ is
injective if and only if Kerϕ = {e1}.
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Proof. Let y, z ∈ P1 be such that ϕ(y) = ϕ(z). Then ϕ(y) ∗ϕ(y−1) = ϕ(z) ∗ϕ(y−1).
It follows that ϕ(e1) ∈ ϕ(yy−1) = ϕ(zy−1), and so there exists x ∈ yz−1 such
that e2 = ϕ(e1) = ϕ(x). Thus, if Kerϕ = {e1}, x = e1, whence y = z. Now,
let x ∈ Kerϕ. Then ϕ(x) = e2 = ϕ(e1). Thus, if ϕ is injective, we conclude that
x = e1.

We are now in a position to state and review the fundamental theorems in poly-
group theory.

Theorem 2.1 (First Isomorphism Theorem). Let ϕ be a strong homomorphism
from P1 into P2 with kernel K such that K is a normal subpolygroup of P1. Then
P1/K ∼= Imϕ .

Proof. We define ψ : P1/K −→ Imϕ by setting ψ(Kx) = ϕ(x) for all x ∈ P1. It is
easy to see that ψ is an isomorphism.

Theorem 2.2 (Second Isomorphism Theorem). If K and N are subpolygroups of a
polygroup P , with N normal in P , then K/N ∩K ∼= NK/N .

Proof. Since N is a normal subpolygroup of P , NK = KN . Consequently NK is a
subpolygroup of P . Further N = Ne ⊆ NK given that N is a normal subpolygroup
of NK; consequently NK/N is defined. Define ϕ : K −→ NK/N by ϕ(k) = Nk. ϕ
is a strong homomorphism. Consider any Na ∈ NK/N , a ∈ NK. Now, a ∈ NK
given a ∈ nk for some n ∈ N, k ∈ K. Thus, by Lemma 2.4, Na = Nnk = Nk =
ϕ(k). This shows that ϕ is also onto. If we can establish that Kerϕ = N ∩K, since
N ∩K is a normal subpolygroup of K, we shall get that K/N ∩K ∼= NK/N . For
any k ∈ K, k ∈ Kerϕ ⇐⇒ ϕ(k) = N ⇐⇒ Nk = N ⇐⇒ k ∈ N ⇐⇒ k ∈ N ∩K
(since k ∈ K), i.e., k ∈ Kerϕ ⇐⇒ k ∈ N ∩K. This yields Kerϕ = N ∩K. Hence
that results follows.

Theorem 2.3 (Third Isomorphism Theorem). If K and N are normal subpolygroups
of a polygroup P such that N ⊆ K, then K/N is a normal subpolygroup of P/N and
(P/N)/(K/N) ∼= P/K.

Proof. We leave it to reader to verify that K/N is a normal subpolygroup of P/N .
Further ϕ : P/N −→ P/K defined by ϕ(Nx) = Kx is a strong homomorphism of
P/N onto P/K such that Kerϕ = K/N .

Let < P1, ·, e1,−1> and < P2, ∗, e2,−I > be two polygroups. Then on P1 × P2

we can define a hyperproduct as follows: (x1, y1)o(x2, y2) = {(x, y) | x ∈ x1x2, y ∈
y1 ∗ y2}. We recall this as the direct hyperproduct of P1 and P2. Clearly, P1 × P2

equipped with the usual direct hyperproduct becomes a polygroup.

Corollary 2.7. If N1, N2 are normal subpolygroups of P1, P2 respectively, then N1×
N2 is a normal subpolygroup of P1×P2 and (P1×P2)/(N1×N2) ∼= P1/N1×P2/N2.

Let P be a polygroup. We define the relation β∗ as the smallest equivalence
relation on P such that the quotient P/β∗, the set of all equivalence classes, is a
group. In this case β∗ is called the fundamental equivalence relation on P and
P/β∗ is called the fundamental group. The product ⊗ in P/β∗ is defined as follows:
β∗(x) ⊗ β∗(y) = β∗(z) for all z ∈ β∗(x)β∗(y). This relation is studied by Corsini
[6] concerning hypergroups, see also [16, 17]. Let UP be the set of all finite products
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of elements of P . We define the relation β as follows: xβy if and only if {x, y} ⊆
u for some u ∈ UP . We have β∗ = β for hypergroups. Since polygroups are
certain subclasses of hypergroups, we have β∗ = β [6, Theorem 81]. The kernel of
the canonical map ϕ : P −→ P/β∗ is called the core of P and is denoted by ωP .
Here we also denote by ωP the unit of P/β∗. It is easy to prove that the following
statements: ωP = β∗(e) and β∗(x)−1 = β∗(x−1) for all x ∈ P .

Theorem 2.4. [9, Theorem 5.9] Let β∗1 , β
∗
2 and β∗ be fundamental equivalence re-

lations on polygroups P1, P2 and P1 ×P2 respectively, then (P1 ×P2)/β∗ ∼= P1/β
∗
1 ×

P2/β
∗
2 .

Corollary 2.8. If N1, N2 are normal subpolygroups of P1, P2 respectively, and β∗1 , β
∗
2

and β∗ fundamental equivalence relations on P1/N1, P2/N2 and (P1×P2)/(N1×N2)
respectively, then

((P1 × P2)/(N1 ×N2))/β∗ ∼= (P1/N1)/β∗1 × (P2/N2)/β∗2 .

Definition 2.7. Let f be a strong homomorphism from P1 into P2 and let β∗1 , β∗2
be fundamental relations on P1, P2 respectively. Then we define

Ker f = {β∗1(x) | x ∈ P1, β
∗
2(f(x)) = ωP2}.

Lemma 2.6. Ker f is a normal subgroup of the fundamental group P1/β
∗
1 .

Proof. Assume that β∗1(x), β∗1(y) ∈ Ker f then for every z ∈ xy−1 we have β∗1(z) =
β∗1(x) ⊗ β∗1(y−1). On the other hand, we have

β∗2(f(z)) = β∗2(f(x)f(y−1)) = β∗2(f(x))⊗ β∗2(f(y−1)) = ωP2 ⊗ ωP2 = ωP2 .

Therefore β∗1(z) ∈ Ker f . Now, let β∗1(a) ∈ P1/β
∗
1 and β∗1(x) ∈ Ker f then for every

z ∈ axa−1 we have β∗1(z) = β∗1(a)⊗ β∗1(x)⊗ β∗1(a−1). On the other hand, we have

β∗2(f(z)) = β∗2(f(a)f(x)f(a−1))

= β∗2(f(a))⊗ β∗2(f(x))⊗ β∗2(f(a−1))

= β∗2(f(a))⊗ ωP2 ⊗ β∗2(f(a−1))

= β∗2(f(aa−1)) = β∗2(f(e1)) = β∗2(e2) = ωP2 .

Hence, we get β∗1(z) ∈ Ker f . This completes the proof.

Theorem 2.5. Let P be a polygroup, M,N two normal subpolygroups of P with N ⊆
M and φ : P/N −→ P/M canonical map. Suppose that β∗M , β∗N are the fundamen-
tal equivalence relations on P/M, P/N , respectively. Then ((P/N)/β∗N )/Kerφ ∼=
(P/M)/β∗M .

Proof. We define the map ψ : (P/N)/β∗N −→ (P/M)/β∗M by ψ : β∗N (Nx) 7−→
β∗M (Mx) (for all x ∈ P ). We must check that ψ is well-defined, that is, that if x, y ∈
P and β∗N (Nx) = β∗N (Ny) then β∗M (Mx) = β∗M (My). Now β∗N (Nx) = β∗N (Ny) if
and only if {Nx,Ny} ⊆ u for some u ∈ UP/N . By Lemma 2.4 and Corollary 2.5,
we have u = Nx1 � Nx2 � . . . � Nxn = {Nz | z ∈

∏n
i=1 xi}. Therefore for some

z1 ∈
∏n

i=1 xi, z2 ∈
∏n

i=1 xi we have Nx = Nz1 and Ny = Nz2. So there exist
a ∈ xz−1

1 ∩N and b ∈ yz−1
2 ∩N , then x ∈ az1 and y ∈ bz2. Hence Mx ∈Ma�Mz1

and My ∈ Mb � Mz2. Since a, b ∈ N ⊆ M , then Ma = M , Mb = M . Since
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M �Mz1 = Mz1 and M �Mz2 = Mz2, we have Mx = Mz1 and My = Mz2. From
{Mz1,Mz2} ⊆ {Mz | z ∈

∏n
i=1 xi}, we get {Mx,My} ⊆ {Mz | z ∈

∏n
i=1 xi} =

Mx1 �Mx2 � . . . �Mxn. Therefore, β∗M (Mx) = β∗M (My). This follows that ψ is
well-defined. Moreover, ψ is a strong homomorphism, for if x, y ∈ P1 then

ψ(β∗N (Nx)⊗ β∗N (Ny)) = ψ(β∗N (Nxy)) = β∗M (Mxy)

= β∗M (Mx)⊗ β∗M (My)

= ψ(β∗N (Nx))⊗ ψ(β∗M (My)),

and ψ(ωP/N ) = ψ(β∗N (N)) = β∗M (M) = ωP/M . Clearly, ψ is onto. Now, we show
that Kerψ = Kerφ. We have

Kerψ = {β∗N (Nx) | ψ(β∗N (Nx)) = ωP/N}
= {β∗N (Nx) | β∗M (Mx) = ωP/N}
= {β∗N (Nx) | β∗M (φ(Nx)) = ωP/N}
= Kerφ.
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