On the Distance Paired-Domination of Circulant Graphs

${ }^{1}$ Haoli Wang, ${ }^{2}$ Xirong Xu, ${ }^{3}$ Yuansheng Yang, ${ }^{4}$ Guoqing Wang and ${ }^{5}$ Kai Lü
1,2,3,5 Department of Computer Science, Dalian University of Technology, Dalian 116024, P. R. China
${ }^{4}$ Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, P. R. China
${ }^{1}$ bjpeuwanghaoli@163.com, ${ }^{2}$ xirongxu@dlut.edu.cn, ${ }^{3}$ yangys@dlut.edu.cn, ${ }^{4}$ gqwang1979@yahoo.com.cn, ${ }^{5}$ lvkai2@sohu.com

Abstract

Let $G=(V, E)$ be a graph without isolated vertices. A set $D \subseteq V$ is a d-distance paired-dominating set of G if D is a d-distance dominating set of G and the induced subgraph $\langle D\rangle$ has a perfect matching. The minimum cardinality of a d-distance paired-dominating set for graph G is the d-distance paired-domination number, denoted by $\gamma_{p}^{d}(G)$. In this paper, we study the d distance paired-domination number of circulant graphs $C(n ;\{1, k\})$ for $2 \leq k \leq$ 4. We prove that for $k=2, n \geq 5$ and $d \geq 1$, $$
\gamma_{p}^{d}(C(n ;\{1, k\}))=2\left\lceil\frac{n}{2 k d+3}\right\rceil
$$

for $k=3, n \geq 7$ and $d \geq 1$,

$$
\gamma_{p}^{d}(C(n ;\{1, k\}))=2\left\lceil\frac{n}{2 k d+2}\right\rceil
$$

and for $k=4$ and $n \geq 9$,
(i) if $d=1$, then

$$
\gamma_{p}(C(n ;\{1, k\}))= \begin{cases}2\left\lceil\frac{3 n}{23}\right\rceil+2, & \text { if } n \equiv 15,22(\bmod 23) \\ 2\left\lceil\frac{3 n}{23}\right\rceil, & \text { otherwise }\end{cases}
$$

(ii) if $d \geq 2$, then

$$
\gamma_{p}^{d}(C(n ;\{1, k\}))= \begin{cases}2\left\lceil\frac{2 n}{4 k d+1}\right\rceil+2, & \text { if } n \equiv 2 k d, 4 k d-1,4 k d \\ & (\bmod 4 k d+1) \\ 2\left\lceil\frac{2 n}{4 k d+1}\right\rceil, & \text { otherwise }\end{cases}
$$

2010 Mathematics Subject Classification: 05C69, 05C12
Keywords and phrases: Paired-domination number, d-distance paired-domination number, circulant graph.

[^0]
1. Introduction

All graphs considered in this paper are finite and simple. Let $G=(V(G), E(G))$ be a graph without isolated vertices. The open neighborhood and the closed neighborhood of a vertex $v \in V(G)$ are denoted by $N(v)=\{u \in V(G): v u \in E(G)\}$ and $N[v]=N(v) \cup\{v\}$, respectively. For a vertex set $D \subseteq V(G), N(D)=\underset{v \in D}{\cup} N(v)$ and $N[D]=\underset{v \in D}{\cup} N[v]$. For $D \subseteq V(G)$, let $\langle D\rangle$ be the subgraph induced by D.

A set $D \subseteq V(G)$ is a dominating set if every vertex in $V(G)-D$ is adjacent to at least one vertex in D. A set $D \subseteq V(G)$ is a paired-dominating set of G if it is dominating and the induced subgraph $\langle D\rangle$ has a perfect matching. The paireddomination number $\gamma_{p}(G)$ is the cardinality of a smallest paired-dominating set of G. This type of domination was introduced by Haynes and Slater in $[9,10]$ and is well studied, for example, in [1-7, 11-13, 15].

For two vertices x and y, let $d(x, y)$ denote the distance between x and y in G. A set $D \subseteq V(G)$ is a d-distance dominating set of G if every vertex in $V(G)-D$ is within distance d of at least one vertex in D. The d-distance domination number $\gamma^{d}(G)$ of G is the minimum cardinality among all d-distance dominating sets of G. For a more detailed treatment of domination-related parameters and for terminology not defined here, the reader is referred to [8].

The d-distance paired-domination was introduced by Joanna Raczek [14] as a generalization of paired-domination. For a positive integer d, a set $D \subseteq V(G)$ is a d-distance paired-dominating set if every vertex in $V(G)-D$ is within distance d of a vertex in D and the induced subgraph $\langle D\rangle$ has a perfect matching. The d distance paired-domination number, denoted by $\gamma_{p}^{d}(G)$, is the minimum cardinality of a d-distance paired-dominating set.

In the same paper, Joanna Raczek investigated properties of the d-distance paireddomination number of a graph. He also gave an upper bound and a lower bound on the d-distance paired-domination number of a non-trivial tree T in terms of the size of T and the number of leaves in T and characterized the extremal trees.

The circulant graph $C(n ; S)$ is the graph with the vertex set $V(C(n ; S))=\left\{v_{i} \mid 0 \leq\right.$ $i \leq n-1\}$ and the edge set $E(C(n ; S))=\left\{v_{i} v_{j} \mid 0 \leq i, j \leq n-1,(i-j) \bmod \right.$ $n \in S\}, S \subseteq\left\{1,2, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor\right\}$.

In this paper, we determine the exact d-distance paired-domination number of the circulant graphs $C(n ;\{1, k\})$ for $2 \leq k \leq 4$ and $d \geq 1$. We prove that for $k=2$, $n \geq 5$ and $d \geq 1$,

$$
\gamma_{p}^{d}(C(n ;\{1, k\}))=2\left\lceil\frac{n}{2 k d+3}\right\rceil
$$

for $k=3, n \geq 7$ and $d \geq 1$,

$$
\gamma_{p}^{d}(C(n ;\{1, k\}))=2\left\lceil\frac{n}{2 k d+2}\right\rceil
$$

and for $k=4$ and $n \geq 9$,
(i) if $d=1$, then

$$
\gamma_{p}(C(n ;\{1, k\}))= \begin{cases}2\left\lceil\frac{3 n}{23}\right\rceil+2, & \text { if } n \equiv 15,22(\bmod 23) \\ 2\left\lceil\frac{3 n}{23}\right\rceil, & \text { otherwise }\end{cases}
$$

(ii) if $d \geq 2$, then
$\gamma_{p}^{d}(C(n ;\{1, k\}))= \begin{cases}2\left\lceil\frac{2 n}{4 k d+1}\right\rceil+2, & \text { if } n \equiv 2 k d, 4 k d-1,4 k d(\bmod 4 k d+1) \\ 2\left\lceil\frac{2 n}{4 k d+1}\right\rceil, & \text { otherwise. }\end{cases}$
In this paper, let $D=\left\{x_{i}, y_{i}: i=1,2, \ldots, q\right\}$ be an arbitrary d-distance paireddominating set of $C(n ;\{1, k\})$, where $\left\{x_{i} y_{i}: i=1,2, \ldots, q\right\}$ is a perfect matching of $\langle D\rangle$, and let

$$
D_{p}=\left\{\left(x_{i}, y_{i}\right): i=1,2, \ldots, q\right\}
$$

For each pair $\left(x_{j}, y_{j}\right) \in D_{p}$ with $j \in\{1,2, \ldots, q\}$, for convenience, we denote $x_{j}=v_{i_{j}}$, and $y_{j}=v_{i_{j}+1}$ or $y_{j}=v_{i_{j}+k}$, i.e., $\left(v_{i_{j}}, v_{i_{j}+1}\right) \in D_{p}$ or $\left(v_{i_{j}}, v_{i_{j}+k}\right) \in D_{p}$, where $0=i_{1} \leq i_{2} \leq \cdots \leq i_{q}<n$.

We also denote

$$
\delta_{j}=\left(i_{j+1}-i_{j}\right) \quad \bmod n
$$

for $j=1,2, \ldots, q$, where the subscripts are modulo q.
For example, we consider the case for $C(12 ;\{1,4\})$. Let $d=4, D=\left\{v_{1}, v_{2}, v_{3}, v_{5}\right.$, $\left.v_{8}, v_{9}\right\}$, and let $D_{p}=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right\}$ where $\left(x_{1}, y_{1}\right)=\left(v_{1}, v_{5}\right),\left(x_{2}, y_{2}\right)=$ $\left(v_{2}, v_{3}\right)$ and $\left(x_{3}, y_{3}\right)=\left(v_{8}, v_{9}\right)$. That is, $i_{1}=1, i_{2}=2, i_{3}=8$. We check that $\delta_{1}=(2-1) \bmod 12=1, \delta_{2}=(8-2) \bmod 12=6$ and $\delta_{3}=(1-8) \bmod 12=5$.

Clearly,

$$
n=\delta_{1}+\cdots+\delta_{q} .
$$

Throughout the paper, the subscripts are taken modulo n when it is unambiguous.

2. d-distance paired-domination number of $C(n ;\{1,2\})$

In this section, we shall determine the exact d-distance paired-domination number of $C(n ;\{1, k\})$ for $k=2$ and $d \geq 1$.

For the circulant graphs $C(n ;\{1, k\})$, if there exists $\ell \in\{1,2, \ldots, q\}$ such that $\delta_{\ell} \geq(2 d+1) k+2$ for $k \geq 2$ and $d \geq 1$, then $v_{i_{\ell}+(d+1) k+1}$ would not be dominated by D. Hence, we have:
Observation 2.1. Suppose $k \geq 2$ and $d \geq 1$. Then $1 \leq \delta_{j} \leq(2 d+1) k+1$ for every $j \in\{1,2, \ldots, q\}$.
Theorem 2.1. For $k \geq 2, n \geq 2 k+1$ and $d \geq 1$, $\gamma_{p}^{d}(C(n ;\{1, k\})) \geq 2\left\lceil\frac{n}{(2 d+1) k+1}\right\rceil$.
Proof. By Observation 2.1, we have $n=\delta_{1}+\cdots+\delta_{q} \leq q \times((2 d+1) k+1)$, and thus, $q \geq\left\lceil\frac{n}{(2 d+1) k+1}\right\rceil$, which implies $\gamma_{p}^{d}(C(n ;\{1, k\})) \geq 2\left\lceil\frac{n}{(2 d+1) k+1}\right\rceil$.
Theorem 2.2. For $k=2, n \geq 2 k+1$ and $d \geq 1, \gamma_{p}^{d}(C(n ;\{1, k\}))=2\left\lceil\frac{n}{2 k d+3}\right\rceil$.
Proof. Let D be a d-distance paired-dominating set of $C(n ;\{1, k\})$ for $k=2$. Let $m=\left\lfloor\frac{n}{2 k d+3}\right\rfloor, t=n \bmod (2 k d+3)$ and

$$
D=\left\{\begin{array}{l}
\left\{v_{(2 k d+3) i}, v_{(2 k d+3) i+2}: 0 \leq i \leq m-1\right\}, \text { if } t=0 \\
\left\{v_{(2 k d+3) i}, v_{(2 k d+3) i+2}: 0 \leq i \leq m-1\right\} \cup\left\{v_{(2 k d+3) m-1}, v_{(2 k d+3) m}\right\} \\
\quad \text { if } t=1 ; \\
\left\{v_{(2 k d+3) i}, v_{(2 k d+3) i+2}: 0 \leq i \leq m-1\right\} \cup\left\{v_{(2 k d+3) m}, v_{(2 k d+3) m+1}\right\} \\
\quad \text { if } t=2 ; \\
\left\{v_{(2 k d+3) i}, v_{(2 k d+3) i+2}: 0 \leq i \leq m\right\}, \text { otherwise. }
\end{array}\right.
$$

It is not hard to verify that D is a d-distance paired dominating set of $C(n ;\{1, k\})$ for $k=2$ with $|D|=2\left\lceil\frac{n}{2 k d+3}\right\rceil$. Hence, $\gamma_{p}^{d}(C(n ;\{1, k\})) \leq 2\left\lceil\frac{n}{2 k d+3}\right\rceil$ for $k=2$ and $d \geq 1$. On the other hand, by Theorem 2.2, we have that $\gamma_{p}^{d}(C(n ;\{1, k\})) \geq 2\left\lceil\frac{n}{2 k d+3}\right\rceil$ for $k=2$ and $d \geq 1$. The result immediately holds.

In Figure 1, we show the d-distance paired-dominating sets of $C(n ;\{1,2\})$ for $d=1$ and $7 \leq n \leq 14$, and for $d=2$ and $11 \leq n \leq 22$, where the vertices of d-distance paired dominating sets are in dark.
$G_{n, k}$ stands for $C(n ;\{1, k\})$ in all figures of this paper.

Figure 1. The d-distance paired dominating sets of $C(n ;\{1,2\})$ for $d=1$ and $7 \leq n \leq 14$, and for $d=2$ and $11 \leq n \leq 22$.

3. d-distance paired-domination number of $C(n ;\{1,3\})$

In this section, we shall determine the exact d-distance paired-domination number of $C(n ;\{1, k\})$ for $k=3$ and $d \geq 1$.
Lemma 3.1. For $k=3, n \geq 2 k+1$ and $d \geq 1, \gamma_{p}^{d}(C(n ;\{1, k\})) \leq 2\left\lceil\frac{n}{2 k d+2}\right\rceil$.
Proof. Let D be a d-distance paired-dominating set of $C(n ;\{1, k\})$ for $k=3$. Let $m=\left\lfloor\frac{n}{2 k d+2}\right\rfloor, t=n \bmod (2 k d+2)$ and

$$
D=\left\{\begin{array}{l}
\left\{v_{(2 k d+2) i}, v_{(2 k d+2) i+1}: 0 \leq i \leq m-1\right\}, \text { if } t=0 ; \\
\left\{v_{(2 k d+2) i}, v_{(2 k d+2) i+1}: 0 \leq i \leq m-1\right\} \cup\left\{v_{(2 k d+2) m-1}, v_{(2 k d+2) m}\right\}, \text { if } t=1 ; \\
\left\{v_{(2 k d+2) i}, v_{(2 k d+2) i+1}: 0 \leq i \leq m\right\}, \text { otherwise. }
\end{array}\right.
$$

It is not hard to verify that D is a d-distance paired dominating set of $C(n ;\{1, k\})$ for $k=3$ with $|D|=2\left\lceil\frac{n}{2 k d+2}\right\rceil$. Hence, $\gamma_{p}^{d}(C(n ;\{1, k\})) \leq 2\left\lceil\frac{n}{2 k d+2}\right\rceil$ for $k=3$ and $d \geq 1$.

In Figure 2, we show the d-distance paired-dominating sets of $C(n ;\{1,3\})$ for $d=1$ and $8 \leq n \leq 16$, and for $d=2$ and $14 \leq n \leq 28$, where the vertices of d-distance paired dominating sets are in dark.

Figure 2. The d-distance paired dominating sets of $C(n ;\{1,3\})$ for $d=1$ and $8 \leq n \leq 16$, and for $d=2$ and $14 \leq n \leq 28$.

Lemma 3.2. For $k=3, n \geq 2 k+1$ and $d \geq 1, \gamma_{p}^{d}(C(n ;\{1, k\})) \geq 2\left\lceil\frac{n}{2 k d+2}\right\rceil$.
Proof. Let $D=\left\{x_{i}, y_{i}: i=1,2, \ldots, q\right\}$ be a d-distance paired dominating set of $C(n ;\{1, k\})$ for $k=3$ with the minimum cardinality. By Observation 2.1, we have that

$$
\begin{equation*}
1 \leq \delta_{j} \leq 2 k d+4 \tag{3.1}
\end{equation*}
$$

for every $j \in\{1,2, \ldots, q\}$.
Suppose that there exists $\ell \in\{1,2, \ldots, q\}$ such that $\delta_{\ell} \geq 2 k d+3$. Then $v_{i_{\ell}+k d+2}$ would not be dominated by $\left(x_{\ell}, y_{\ell}\right)$ and $\left(x_{\ell+1}, y_{\ell+1}\right)$. To dominate $v_{i_{\ell}+k d+2}$, we have $v_{i_{\ell}+2} \in D$. It follows that $v_{i_{\ell}-1} \in D$, which implies $\left(x_{\ell-1}, y_{\ell-1}\right)=\left(v_{i_{\ell}-1}, v_{i_{\ell}+2}\right)$, and thus

$$
\begin{equation*}
\delta_{\ell-1}=1 \tag{3.2}
\end{equation*}
$$

Let

$$
\begin{aligned}
& S_{1}=\left\{i: 1 \leq i \leq q, 2 k d+3 \leq \delta_{i} \leq 2 k d+4\right\}, \\
& S_{2}=\left\{i: 1 \leq i \leq q, 2 \leq \delta_{i} \leq 2 k d+2\right\}, \\
& S_{3}=\left\{i: 1 \leq i \leq q, \delta_{i}=1\right\} .
\end{aligned}
$$

By (3.1) and (3.2), we have that $\{1,2, \ldots, q\}=S_{1} \cup S_{2} \cup S_{3}$, and there exists an injection $\phi: S_{1} \rightarrow S_{3}$ defined by $\phi(i)=i-1$ for any $i \in S_{1}$, i.e., $\left|S_{1}\right| \leq\left|S_{3}\right|$. It
follows that

$$
\begin{aligned}
n & =\delta_{1}+\cdots+\delta_{q} \\
& =\sum_{i \in S_{1}} \delta_{i}+\sum_{i \in S_{2}} \delta_{i}+\sum_{i \in S_{3}} \delta_{i} \\
& \leq(2 k d+4)\left|S_{1}\right|+(2 k d+2)\left|S_{2}\right|+\left|S_{3}\right| \\
& =(2 k d+2)\left(\left|S_{1}\right|+\left|S_{2}\right|+\left|S_{3}\right|\right)+2\left(\left|S_{1}\right|-\left|S_{3}\right|\right)-(2 k d-1)\left|S_{3}\right| \\
& \leq(2 k d+2) q,
\end{aligned}
$$

which implies $q \geq\left\lceil\frac{n}{2 k d+2}\right\rceil$, and thus $\gamma_{p}^{d}(C(n ;\{1, k\})) \geq 2\left\lceil\frac{n}{2 k d+2}\right\rceil$ for $k=3$ and $d \geq 1$.

As an immediate consequence of Lemmas 3.1 and 3.2, we have the following:
Theorem 3.1. For $k=3, n \geq 2 k+1$ and $d \geq 1, \gamma_{p}^{d}(C(n ;\{1, k\}))=2\left\lceil\frac{n}{2 k d+2}\right\rceil$.

4. d-distance paired-domination number of $C(n ;\{1,4\})$

In this section, we shall determine the d-distance paired domination number of $C(n ;\{1, k\})$ for $k=4$ and $d \geq 1$.

We shall first consider the case for $d=1$. At this time, the d-distance paireddomination number γ_{p}^{d} is just the paired-domination number γ_{p}.

Lemma 4.1. For $n \geq 9$,

$$
\gamma_{p}(C(n ;\{1,4\})) \leq \begin{cases}2\left\lceil\frac{3 n}{23}\right\rceil+2, & \text { if } n \equiv 15,22(\bmod 23) \\ 2\left\lceil\frac{3 n}{23}\right\rceil, & \text { otherwise } .\end{cases}
$$

Proof. It suffices to give a paired-dominating set D of $C(n ;\{1,4\})$ with the cardinality equaling to the exact values mentioned in this lemma.

Let $m_{1}=\left\lfloor\frac{n}{23}\right\rfloor$ and $t=n \bmod 23$. Then $n=23 m_{1}+t$.
For $2 k+1 \leq n \leq 22$, let

$$
D= \begin{cases}\left\{v_{0}, v_{1}, v_{7}, v_{8}\right\}, & \text { if } 9 \leq n \leq 14 \text { and } n \neq 12 ; \\ \left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}, & \text { if } n=12 ; \\ \left\{v_{0}, v_{1}, v_{7}, v_{8}, v_{13}, v_{14}\right\}, & \text { if } n=15 ; \\ \left\{v_{0}, v_{1}, v_{7}, v_{8}, v_{14}, v_{15}\right\}, & \text { if } 16 \leq n \leq 21 \text { and } n \neq 19 \\ \left\{v_{0}, v_{1}, v_{7}, v_{11}, v_{13}, v_{17}\right\}, & \text { if } n=19 ; \\ \left\{v_{0}, v_{1}, v_{7}, v_{8}, v_{14}, v_{15}, v_{20}, v_{21}\right\}, & \text { if } n=22 .\end{cases}
$$

For $n \geq 23$ and $t \neq 5$, let $m_{2}=\left\lfloor\frac{t}{7}\right\rfloor$,

$$
\begin{aligned}
& D_{01}=\left\{v_{23 i}, v_{23 i+1}, v_{23 i+7}, v_{23 i+11}, v_{23 i+13}, v_{23 i+17}: 0 \leq i \leq m_{1}-1\right\}, \\
& D_{02}=\left\{v_{23 m_{1}+7 i}, v_{23 m_{1}+7 i+1}: 0 \leq i \leq m_{2}-1\right\}
\end{aligned}
$$

and

$$
D= \begin{cases}D_{01}, & \text { if } t=0 ; \\ D_{01} \cup\left\{v_{23 m_{1}-1}, v_{23 m_{1}}\right\}, & \text { if } t=1 ; \\ D_{01} \cup\left\{v_{23 m_{1}}, v_{23 m_{1}+1}\right\}, & \text { if } 2 \leq t \leq 7 \text { and } t \neq 5 \\ D_{01} \cup D_{02} \cup\left\{v_{23 m_{1}+7 m_{2}-1}, v_{23 m_{1}+7 m_{2}}\right\}, & \text { if } t=8,15,22 ; \\ D_{01} \cup D_{02} \cup\left\{v_{23 m_{1}+7 m_{2}}, v_{23 m_{1}+7 m_{2}+1}\right\}, & \text { if } 9 \leq t \leq 21 \text { and } t \neq 12,15,19 \\ D_{01} \cup D_{02} \cup\left\{v_{23 m_{1}+7 m_{2}}, v_{23 m_{1}+7 m_{2}+4}\right\}, & \text { if } t=12,19\end{cases}
$$

For $t=5$, let $m_{3}=\frac{n-51}{23}$ where $n>51$,

$$
\begin{aligned}
D_{03} & =\left\{v_{23 i}, v_{23 i+4}, v_{23 i+10}, v_{23 i+11}, v_{23 i+17}, v_{23 i+21}: 0 \leq i \leq m_{3}-1\right\}, \\
D_{04} & =\left\{v_{23 m_{3}+10+7 i}, v_{23 m_{3}+11+7 i}: 0 \leq i \leq 4\right\}
\end{aligned}
$$

and

$$
D= \begin{cases}\left\{v_{7 i}, v_{7 i+1}: 0 \leq i \leq 3\right\}, & \text { if } n=28 \\ \left\{v_{7 i}, v_{7 i+1}: 0 \leq i \leq 4\right\} \cup\left\{v_{35}, v_{39}, v_{41}, v_{45}\right\}, & \text { if } n=51 \\ D_{03} \cup D_{04} \cup\left\{v_{23 m_{3}}, v_{23 m_{3}+4}, v_{n-6}, v_{n-2}\right\}, & \text { if } n>51\end{cases}
$$

It is not hard to verify that D is a paired-dominating set of $C(n ;\{1,4\})$ with the cardinality equaling to the exact values mentioned in this lemma.

In Figure 3 and Figure 4, we show the paired-dominating sets of $C(n ;\{1,4\})$ for $9 \leq n \leq 22$ and $23 \leq n \leq 46$, respectively, where the vertices of paired-dominating sets are in dark.

Figure 3. The paired-dominating sets of $C(n ;\{1,4\})$ for $9 \leq n \leq 22$.
For convenience, let

$$
V^{\prime}(i, t)=\left\{v_{i+j} \in V(C(n ;\{1,4\})): 0 \leq j \leq t-1\right\}
$$

where $i \in\{0,1, \ldots, n-1\}$ and $t \in\{1,2, \ldots, n\}$.
For each vertex $v \in V(G)$, we define a function rdd counting the times that v is re-dominated by vertex pairs $\left\{x_{i}, y_{i}\right\}$ in D as follows:

$$
\operatorname{rdd}(v)=\left|\left\{i: 1 \leq i \leq q, v \in N\left[\left\{x_{i}, y_{i}\right\}\right]\right\}\right|-1 .
$$

For a vertex set $S \subseteq V(G)$, let

$$
\operatorname{rdd}(S)=\sum_{v \in S} \operatorname{rdd}(v)
$$

Figure 4. The paired-dominating sets of $C(n ;\{1,4\})$ for $23 \leq n \leq 46$.

Since x is not adjacent to y for any two vertices $x, y \in N(v)$ where $v \in V(C(n ;\{1,4\}))$, by the definition of rdd, we have:
Observation 4.1. $\operatorname{rdd}(v)=|N(v) \cap D|-1$ for every vertex $v \in V(C(n ;\{1,4\}))$.
Lemma 4.2. Suppose $n \geq 23$. Then $\operatorname{rdd}\left(V^{\prime}(i, 23)\right) \geq 1$ for every $i \in\{0,1, \ldots, n-$ $1\}$.

Proof. Suppose to the contrary that there exists $\ell \in\{0,1, \ldots, n-1\}$ such that

$$
\begin{equation*}
\operatorname{rdd}\left(V^{\prime}(\ell, 23)\right)=0 \tag{4.1}
\end{equation*}
$$

Suppose that there exists $s \in\{\ell, \ell+1, \ldots, \ell+21\}$ such that $\left(v_{s}, v_{s+1}\right) \in D_{p}$. For $s \in\{\ell, \ell+1, \ldots, \ell+10\}$, by (4.1), we have $v_{s-1}, v_{s+2}, v_{s+3}, v_{s+4}, v_{s+5}, v_{s+6}$, $v_{s+8}, v_{s+9} \notin D$. To dominate v_{s+3}, we have $v_{s+7} \in D$. It follows that $v_{s+10} \notin D$. Since $\langle D\rangle$ contains a perfect matching, we have $v_{s+11} \in D$. It follows that $v_{s+13} \notin D$ (see Figure $5(\mathrm{I})$ for $s=\ell$). Thus, v_{s+9} would not be dominated by D, a contradiction. For $s \in\{\ell+11, \ell+12, \ldots, \ell+21\}$, by symmetry, we derive a contradiction. Hence, there does not exist $s \in\{\ell, \ell+1, \ldots, \ell+21\}$ such that $\left(v_{s}, v_{s+1}\right) \in D_{p}$.

To dominate $v_{\ell+9}$, we have that there exists $s \in\{\ell+1, \ldots, \ell+13\}$ such that $\left(v_{s}, v_{s+4}\right) \in D_{p}$. By (4.1), we have $v_{s-2}, v_{s+1}, v_{s+2}, v_{s+3}, v_{s+6} \notin D$ (see Figure 5(II) for $s=\ell+1$). It follows that v_{s+2} would not be dominated by D, a contradiction. The lemma follows.

Figure 5. The graphs for the proof of Lemma 4.2.

Lemma 4.3. $\gamma_{p}(C(n ;\{1,4\})) \geq 2\left\lceil\frac{3 n}{23}\right\rceil$ for $n \geq 9$.
Proof. Let $D=\left\{x_{i}, y_{i}: i=1,2, \ldots, q\right\}$ be a minimum paired-dominating set of $C(n ;\{1,4\})$ where $\left\{x_{i} y_{i}: i=1,2, \ldots, q\right\}$ is a perfect matching of $\langle D\rangle$. Since each pair $\left\{x_{i}, y_{i}\right\}$ dominates exactly 8 vertices, we have $8 q-n \geq 0$. It follows that $q \geq\left\lceil\frac{n}{8}\right\rceil$.

For $9 \leq n \leq 22$ and $n \neq 16$, since $\left\lceil\frac{n}{8}\right\rceil=\left\lceil\frac{3 n}{23}\right\rceil$, we have $\gamma_{p}(C(n ;\{1,4\})) \geq 2\left\lceil\frac{3 n}{23}\right\rceil$.
For $n=16$, it is easy to verify that two pairs of vertices would not dominate all vertices in $C(n ;\{1,4\})$. Hence, $q \geq 3=\left\lceil\frac{3 n}{23}\right\rceil$, which implies $\gamma_{p}(C(n ;\{1,4\})) \geq$ $2\left\lceil\frac{3 n}{23}\right\rceil$.

For $n \geq 23$, by Lemma 4.2, we have $8 q \geq n+\left\lceil\frac{n}{23}\right\rceil=\left\lceil\frac{24 n}{23}\right\rceil$. It follows that $q \geq\left\lceil\frac{1}{8} \times\left\lceil\frac{24 n}{23}\right\rceil\right\rceil \geq\left\lceil\frac{1}{8} \times \frac{24 n}{23}\right\rceil=\left\lceil\frac{3 n}{23}\right\rceil$, which implies $\gamma_{p}(C(n ;\{1,4\})) \geq 2\left\lceil\frac{3 n}{23}\right\rceil$.

For convenience, we define

$$
\Re=\sum_{i=0}^{n-1}\left(\operatorname{rdd}\left(V^{\prime}(i, 23)\right)-1\right)
$$

Lemma 4.4. If there exists $\ell \in\{0,1, \ldots, n-1\}$ such that $\operatorname{rdd}\left(v_{\ell}\right) \geq 2$, then $\Re>24$.
Proof. By Observation 4.1, we have that $\left|N\left(v_{\ell}\right) \cap D\right|=\operatorname{rdd}\left(v_{\ell}\right)+1 \geq 3$. Since $\mid N\left(v_{\ell}\right) \cap$ $D\left|\leq\left|N\left(v_{\ell}\right)\right|=4\right.$, we have $\left\{v_{\ell+1}, v_{\ell+4}\right\} \subset D$ or $\left\{v_{\ell-1}, v_{\ell-4}\right\} \subset D$, say $\left\{v_{\ell+1}, v_{\ell+4}\right\} \subset$ D. It follows that $\operatorname{rdd}\left(v_{\ell+5}\right) \geq 1$, and thus $\Re \geq \sum_{\ell-17 \leq i \leq \ell}\left(\operatorname{rdd}\left(V^{\prime}(i, 23)\right)-1\right) \geq$ $18 \times\left(\operatorname{rdd}\left(v_{\ell}\right)+\operatorname{rdd}\left(v_{\ell+5}\right)-1\right) \geq 18 \times(2+1-1)>24$. The lemma follows.

In what follows, we admit that $\operatorname{rdd}\left(v_{i}\right) \in\{0,1\}$ for every $i \in\{0,1, \ldots, n-1\}$. Let $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{t}}$ be all the vertices re-dominated once, where $t=\operatorname{rdd}(V(C(n ;\{1,4\})))$ and $0 \leq i_{1}<i_{2}<\cdots<i_{t} \leq n-1$. We define

$$
\Theta_{j}=i_{j+1}-i_{j}
$$

for $j=1,2, \ldots, t$, where the subscripts are modulo t. Obviously, $\Theta_{1}+\cdots+\Theta_{t}=n$.
Lemma 4.5. If $\Re \leq 24$, then $\Theta_{j}+\Theta_{j+1} \geq 22$ for every $j \in\{1,2, \ldots, t\}$ where $t=\operatorname{rdd}(V(C(n ;\{1,4\})))$.

Proof. Choose arbitrary $\ell \in\{1,2, \ldots, t\}$. By the definition of \Re, we have $\Re=$ $\sum_{i=1}^{t}\left(23-\Theta_{i}\right) \geq\left(23-\Theta_{\ell}\right)+\left(23-\Theta_{\ell+1}\right)=46-\left(\Theta_{\ell}+\Theta_{\ell+1}\right)$. Since $\Re \leq 24$, we have $46-\left(\Theta_{\ell}+\Theta_{\ell+1}\right) \leq 24$. It follows that $\Theta_{\ell}+\Theta_{\ell+1} \geq 22$. The lemma follows.
Lemma 4.6. For $n>23$, if there exists $\ell \in\{0,1, \ldots, n-1\}$ such that $v_{\ell} \in D$ and $\operatorname{rdd}\left(v_{\ell}\right)=1$, then $\Re>24$.

Proof. Assume to the contrary that $\Re \leq 24$. By Lemma 4.4, we have that $\operatorname{rdd}\left(v_{i}\right) \in$ $\{0,1\}$ for every $i \in\{0,1, \ldots, n-1\}$. By Observation 4.1, we have $\left|N\left(v_{\ell}\right) \cap D\right|=$ $\operatorname{rdd}\left(v_{\ell}\right)+1=2$. Let $N\left(v_{\ell}\right) \cap D=\left\{w_{1}, w_{2}\right\}$. By symmetry, we have $\left\{w_{1}, w_{2}\right\} \in$ $\left\{\left\{v_{\ell-1}, v_{\ell+1}\right\},\left\{v_{\ell+1}, v_{\ell+4}\right\},\left\{v_{\ell+1}, v_{\ell-4}\right\},\left\{v_{\ell-4}, v_{\ell+4}\right\}\right\}$. Since D contains a perfect matching, we infer that

$$
\operatorname{rdd}\left(w_{1}\right)=1 \text { or } \operatorname{rdd}\left(w_{2}\right)=1 .
$$

That is, there exists $j \in\{1,2, \ldots, t\}$ such that $\Theta_{j} \leq 4$. By Lemma 4.5, we have that

$$
\begin{equation*}
\Theta_{j-1} \geq 18 \text { and } \Theta_{j+1} \geq 18 \tag{4.2}
\end{equation*}
$$

From (4.2), we have $\left\{w_{1}, w_{2}\right\} \notin\left\{\left\{v_{\ell+1}, v_{\ell+4}\right\},\left\{v_{\ell+1}, v_{\ell-4}\right\}\right\}$. If $\left\{w_{1}, w_{2}\right\}=$ $\left\{v_{\ell-1}, v_{\ell+1}\right\}$, by (4.2), we have $V^{\prime}(\ell-5,11) \cap D=\left\{v_{\ell-1}, v_{\ell}, v_{\ell+1}\right\}$ (see Figure $6(\mathrm{I})$), which is contradicted with the fact that D contains a perfect matching. If $\left\{w_{1}, w_{2}\right\}=\left\{v_{\ell-4}, v_{\ell+4}\right\}$, by (4.2), we have $v_{\ell-2}, v_{\ell+2}, v_{\ell+3}, v_{\ell+6} \notin D$. Since $v_{\ell+1} \notin D$, we have that $v_{\ell+2}$ would not be dominated by D (see Figure 6(II)), a contradiction.

Figure 6. The graphs for the proof of Lemma 4.6.
As an immediate consequence of Lemmas 4.4 and 4.6, we have the following:
Corollary 4.1. Suppose $(x, y) \in D_{p}$ and $\Re \leq 24$. Then $N(x) \cap D=\{y\}$.
Lemma 4.7. Suppose $n>23$ and $\Re \leq 24$. If there exists $\ell \in\{0,1, \ldots, n-1\}$ such that $v_{\ell} \notin D$ and $\operatorname{rdd}\left(v_{\ell}\right)=1$, then one of the following conditions holds.
(a) $V^{\prime}(\ell-5,11) \cap D=\left\{v_{\ell-5}, v_{\ell-1}, v_{\ell+1}, v_{\ell+5}\right\}$;
(b) $V^{\prime}(\ell-4,9) \cap D=\left\{v_{\ell-4}, v_{\ell-3}, v_{\ell+3}, v_{\ell+4}\right\}$.

Proof. By Lemma 4.4, we have that $\operatorname{rdd}\left(v_{i}\right) \in\{0,1\}$ for every $i \in\{0,1, \ldots, n-1\}$. By Observation 4.1, we have $\left|N\left(v_{\ell}\right) \cap D\right|=\operatorname{rdd}\left(v_{\ell}\right)+1=2$. By symmetry, we distinguish four cases.

Case 1. $N\left(v_{\ell}\right) \cap D=\left\{v_{\ell-1}, v_{\ell+1}\right\}$.
By Lemma 4.6, we have $\left|\left\{v_{\ell-5}, v_{\ell-2}, v_{\ell+3}\right\} \cap D\right|=\left|\left\{v_{\ell-3}, v_{\ell+2}, v_{\ell+5}\right\} \cap D\right|=1$. If $v_{\ell-2} \in D$, then $\operatorname{rdd}\left(v_{\ell-3}\right)=\operatorname{rdd}\left(v_{\ell+2}\right)=1$ (see Figure 7(I) where the vertices that re-dominated once are in gray). By Lemma 4.5, we derive a contradiction. Hence $v_{\ell-2} \notin D$. By symmetry, we have $v_{\ell+2} \notin D$. If $v_{\ell+3} \in D$, then $\operatorname{rdd}\left(v_{\ell+2}\right)=1$. Let
$i_{j}=\ell$. By Lemma 4.5, we have that $\Theta_{j}=2, \Theta_{j-1} \geq 20$ and $\Theta_{j+1} \geq 20$. It follows that $v_{\ell-3}, v_{\ell+5} \notin D$ (see Figure $7(\mathrm{II})$). Since $v_{\ell}, v_{\ell+2} \notin D$, we have that D does not contain a perfect matching, a contradiction. Hence $v_{\ell+3} \notin D$. By symmetry, we have $v_{\ell-3} \notin D$. Therefore, we conclude that $v_{\ell-5}, v_{\ell+5} \in D$ (see Figure 7(III)). Since $v_{\ell-4}, v_{\ell+4} \notin D$, we have $V^{\prime}(\ell-5,11) \cap D=\left\{v_{\ell-5}, v_{\ell-1}, v_{\ell+1}, v_{\ell+5}\right\}$.

Figure 7. The graphs for proof of Lemma 4.7.
Case 2. $N\left(v_{\ell}\right) \cap D=\left\{v_{\ell+1}, v_{\ell+4}\right\}$.
Then $\operatorname{rdd}\left(v_{\ell+5}\right)=1$. Let $i_{j}=\ell$. By Lemma 4.5, we have that $\Theta_{j}=5, \Theta_{j-1} \geq 17$ and $\Theta_{j+1} \geq 17$. It follows that $v_{\ell-2}, v_{\ell+2}, v_{\ell+3}, v_{\ell+5} \notin D$. Since D contains a perfect matching, we have $v_{\ell-3} \in D$. It follows that $v_{\ell-5} \notin D$ (see Figure 7(IV)). Thus, $v_{\ell-1}$ would not be dominated by D, a contradiction.

Case 3. $N\left(v_{\ell}\right) \cap D=\left\{v_{\ell+1}, v_{\ell-4}\right\}$.
Then $\operatorname{rdd}\left(v_{\ell-3}\right)=1$. Let $i_{j}=\ell-3$. By Lemma 4.5, we have that $\Theta_{j}=3$, $\Theta_{j-1} \geq 19$ and $\Theta_{j+1} \geq 19$. It follows that $v_{\ell-6}, v_{\ell-3}, v_{\ell-2}, v_{\ell+3} \notin D$. To dominate $\left\{v_{\ell-2}, v_{\ell-1}\right\}$, we have $v_{\ell+2}, v_{\ell-5} \in D$. It follows that $v_{\ell+4}, v_{\ell+5}, v_{\ell+6}, v_{\ell+7} \notin D$. To dominate $v_{\ell+4}$, we have $v_{\ell+8} \in D$. It follows that $v_{\ell+9}, v_{\ell+10}, v_{\ell+11} \notin D$. Since D contains a perfect matching, we have $v_{\ell+12} \in D$. It follows that $v_{\ell+14} \notin D$ (see Figure $7(\mathrm{~V})$). Thus, $v_{\ell+10}$ would not be dominated by D, a contradiction.

Case 4. $N\left(v_{\ell}\right) \cap D=\left\{v_{\ell-4}, v_{\ell+4}\right\}$.
By Lemma 4.6, we have $\left|\left\{v_{\ell-8}, v_{\ell-5}, v_{\ell-3}\right\} \cap D\right|=\left|\left\{v_{\ell+3}, v_{\ell+5}, v_{\ell+8}\right\} \cap D\right|=1$.
Suppose $v_{\ell-8} \in D$. By Lemma 4.5, we have $v_{\ell-6} \notin D$. By Corollary 4.1, we have $v_{\ell-7}, v_{\ell-5}, v_{\ell-3} \notin D$. If $v_{\ell+2} \notin D$, then either $v_{\ell-2}$ would not be dominated by D or D would not contain a perfect matching. Hence $v_{\ell+2} \in D$. It follows that $\operatorname{rdd}\left(v_{\ell+3}\right)=1$. Let $i_{j}=\ell$. By Lemma 4.5, we have that $\Theta_{j}=3, \Theta_{j-1} \geq 19$ and $\Theta_{j+1} \geq 19$. It follows that $v_{\ell-10}, v_{\ell-2} \notin D$ (see Figure 7(VI)), and thus $v_{\ell-6}$ would not be dominated by D, a contradiction. Hence $v_{\ell-8} \notin D$. By symmetry, we have $v_{\ell+8} \notin D$.

Suppose $v_{\ell-5} \in D$. By Corollary 4.1, we have $v_{\ell-6}, v_{\ell-3} \notin D$. By Lemma 4.5, we have $v_{\ell-2} \notin D$. Since $v_{\ell-1} \notin D$, to dominate $v_{\ell-2}$, we have $v_{\ell+2} \in D$. It follows that $\operatorname{rdd}\left(v_{\ell+3}\right)=1$. Let $i_{j}=\ell$. By Lemma 4.5, we have that $\Theta_{j}=3$,
$\Theta_{j-1} \geq 19$ and $\Theta_{j+1} \geq 19$. It follows that $v_{\ell+3}, v_{\ell+6} \notin D$ (see Figure 7(VII)). Since $v_{\ell+1}, v_{\ell-2} \notin D$, we have that D does not contain a perfect matching, a contradiction. Hence $v_{\ell-5} \notin D$. By symmetry, we have $v_{\ell+5} \notin D$.

Therefore, we conclude that $v_{\ell-3}, v_{\ell+3} \in D$ (see Figure 7(VIII)). By Corollary 4.1, we have $v_{\ell-2}, v_{\ell+2} \notin D$, i.e., $V^{\prime}(\ell-4,9) \cap D=\left\{v_{\ell-4}, v_{\ell-3}, v_{\ell+3}, v_{\ell+4}\right\}$.

This completes the proof of Lemma 4.7.
Lemma 4.8. Let $t=\operatorname{rdd}(V(C(n ;\{1,4\})))$. If $\Re \leq 24$, then the following conditions hold.
(a) $\Theta_{i} \in\{7,15,23\}$ for every $i \in\{1,2, \ldots, t\}$;
(b) $\left|\left\{1 \leq i \leq t: \Theta_{i}=15\right\}\right|$ is even.

Proof. (a) Let $A_{1}=\left\{0 \leq i \leq n-1: \operatorname{rdd}\left(v_{i}\right)=1, V^{\prime}(i-5,11) \cap D=\left\{v_{i-5}, v_{i-1}, v_{i+1}\right.\right.$, $\left.\left.v_{i+5}\right\}\right\}$ and $A_{2}=\left\{0 \leq i \leq n-1: \operatorname{rdd}\left(v_{i}\right)=1, V^{\prime}(i-4,9) \cap D=\left\{v_{i-4}, v_{i-3}, v_{i+3}, v_{i+4}\right\}\right\}$. By Lemma 4.7, we have $A_{1} \cap A_{2}=\emptyset$ and

$$
\begin{equation*}
A_{1} \cup A_{2}=\left\{0 \leq i \leq n-1: \operatorname{rdd}\left(v_{i}\right)=1\right\} \tag{4.3}
\end{equation*}
$$

By Lemma 4.2, we have $\Theta_{i} \leq 23$ for every $i \in\{1,2, \ldots, t\}$. Let Θ be an arbitrary integer of $\left\{\Theta_{1}, \ldots, \Theta_{t}\right\}$. That is, there exists $\ell \in\{0,1, \ldots, n-1\}$ such that $\operatorname{rdd}\left(v_{\ell}\right)=\operatorname{rdd}\left(v_{\ell+\Theta}\right)=1$ and $\operatorname{rdd}\left(v_{\ell+j}\right)=0$ for every $j \in\{1,2, \ldots, \Theta-1\}$. To prove (a), it suffices to show $\Theta \in\{7,15,23\}$.

Case 1. $\ell \in A_{1}$.
By Corollary 4.1, we have $v_{\ell+6}, v_{\ell+9} \notin D$. By Lemma 4.5, we have $v_{\ell+7}, v_{\ell+8}, v_{\ell+10}$ $\notin D$. To dominate $\left\{v_{\ell+7}, v_{\ell+8}\right\}$, we have $v_{\ell+11}, v_{\ell+12} \in D$. It follows from Corollary 4.1 that $v_{\ell+13}, v_{\ell+15}, v_{\ell+16} \notin D$. By Lemma 4.5 , we have $v_{\ell+14}, v_{\ell+17} \notin D$. To dominate $v_{\ell+14}$, we have $v_{\ell+18} \in D$. Since D contains a perfect matching, it follows from Corollary 4.1 that $\left|\left\{v_{\ell+19}, v_{\ell+22}\right\} \cap D\right|=1$.

If $v_{\ell+19} \in D$, then $\operatorname{rdd}\left(v_{\ell+15}\right)=1$ and $\ell+15 \in A_{2}$ (see Figure $8(\mathrm{I})$ where the vertices that re-dominated once are in gray). Thus, $\Theta=15$. If $v_{\ell+22} \in D$, by (4.3), we have $v_{\ell+24}, v_{\ell+28} \in D$ and $\operatorname{rdd}\left(v_{\ell+23}\right)=1$, i.e., $\ell+23 \in A_{1}$ (see Figure 8(II)). Thus, $\Theta=23$.

Case 2. $\ell \in A_{2}$.
By Corollary 4.1, we have $v_{\ell+5}, v_{\ell+7}, v_{\ell+8} \notin D$. By Lemma 4.5, we have $v_{\ell+6}, v_{\ell+9}$ $\notin D$. To dominate $v_{\ell+6}$, we have $v_{\ell+10} \in D$. Since D contains a perfect matching, it follows from Corollary 4.1 that $\left|\left\{v_{\ell+11}, v_{\ell+14}\right\} \cap D\right|=1$.

If $v_{\ell+11} \in D$, then $\operatorname{rdd}\left(v_{\ell+7}\right)=1$ and $\ell+7 \in A_{2}$ (see Figure $8($ III $)$). Thus, $\Theta=7$. If $v_{\ell+14} \in D$, by (4.3), we have $v_{\ell+16}, v_{\ell+20} \in D$ and $\operatorname{rdd}\left(v_{\ell+15}\right)=1$, i.e., $\ell+15 \in A_{1}$ (see Figure 8(IV)). Thus, $\Theta=15$.

From the above discuss, we see that $\Theta_{i} \in\{7,15,23\}$ for every $i \in\{1,2, \ldots, t\}$ if $\Re \leq 24$.
(b) Let $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{t}}$ be all the vertices that re-dominated once, where $0 \leq i_{1}<$ $i_{2}<\cdots<i_{t} \leq n-1$. Then $\Theta_{j}=i_{j+1}-i_{j}$ for $j=1,2, \ldots, t$. By the arguments of (a), we conclude that $\Theta_{j}=15$ if and only if either $i_{j} \in A_{1}$ and $i_{j+1} \in A_{2}$, or $i_{j} \in A_{2}$ and $i_{j+1} \in A_{1}$. Note that $i_{t+1}=i_{1}$. We infer that $\left|\left\{1 \leq i \leq t: \Theta_{i}=15\right\}\right|$ is even.

Figure 8. The graphs for proof of Lemma 4.8.

Lemma 4.9. $\gamma_{p}(C(n ;\{1,4\})) \geq 2\left\lceil\frac{3 n}{23}\right\rceil+2$ for $n \equiv 15,22(\bmod 23)$.
Proof. Suppose to the contrary that $\gamma_{p}(C(n ;\{1,4\}))<2\left\lceil\frac{3 n}{23}\right\rceil+2$, i.e., there exists a paired dominating set $D=\left\{x_{i}, y_{i}: i=1,2, \ldots, q\right\}$ such that

$$
\begin{equation*}
q=\left\lceil\frac{3 n}{23}\right\rceil . \tag{4.4}
\end{equation*}
$$

For $n=15$ (22), it is not hard to verify that two (three) pairs of vertices would not dominate all vertices in $C(n ;\{1,4\})$. Hence, we need only consider the case for $n>23$.

Since each pair $\left\{x_{i}, y_{i}\right\}$ in $C(n ;\{1,4\})$ dominates exactly 8 vertices, we have $8 q-$ $n=\operatorname{rdd}(V(C(n ;\{1,4\})))$. By the definition of \Re, we have that $23 \times(8 q-n)=23 \times$ $\operatorname{rdd}(V(C(n ;\{1,4\})))=23 \times \sum_{v \in V(C(n ;\{1,4\}))} \operatorname{rdd}(v)=\sum_{0 \leq i \leq n-1} \operatorname{rdd}\left(V^{\prime}(i, 23)\right)=$ $n+\Re$, and thus $q=\frac{3 n+\Re / 8}{23}$. By (4.4), we conclude that $\Re=8$ for $n \equiv 15(\bmod 23)$ and $\Re=24$ for $n \equiv 22(\bmod 23)$.

By Lemma 4.4, we have that $\operatorname{rdd}\left(v_{i}\right) \in\{0,1\}$ for every $i \in\{0,1, \ldots, n-1\}$. Let $t=\operatorname{rdd}(V(C(n ;\{1, k\})))$. By Lemma 4.8, we have that $\Theta_{i} \in\{7,15,23\}$ for every $i \in\{1,2, \ldots, t\}$ if $\Re \leq 24$. Let $N_{7}=\left|\left\{1 \leq i \leq t: \Theta_{i}=7\right\}\right|$ and $N_{15}=\mid\{1 \leq i \leq t$: $\left.\Theta_{i}=15\right\} \mid$. Then $\Re=(23-23) \times\left(t-N_{7}-N_{15}\right)+(23-7) \times N_{7}+(23-15) \times N_{15}=$ $16 N_{7}+8 N_{15}$.

For $\Re=8$, we have $\left(N_{7}, N_{15}\right)=(0,1)$. For $\Re=24$, we have $\left(N_{7}, N_{15}\right)=$ $\{(1,1),(0,3)\}$. In either case, we have that N_{15} is odd, which is contradicted with Lemma 4.8 (b).

From Lemmas 4.1, 4.3 and 4.9, we have the following:
Theorem 4.1. For $n \geq 9$,

$$
\gamma_{p}(C(n ;\{1,4\}))= \begin{cases}2\left\lceil\frac{3 n}{23}\right\rceil+2, & \text { if } n \equiv 15,22(\bmod 23) \\ 2\left\lceil\frac{3 n}{23}\right\rceil, & \text { otherwise }\end{cases}
$$

In the rest of this section, we shall consider the case for $d \geq 2$.
For the readers' convenience, we shall show the cases for the vertices dominated by a specific vertex pair $(x, y) \in D_{p}$ in Figure 9, where the vertex pair (x, y) are in dark and the vertices dominated by the vertex pair (x, y) are in gray.

Figure 9. The cases for the vertices dominated by a specific vertex pair.

Lemma 4.10. For $k=4, n \geq 2 k+1$ and $d \geq 2$,

$$
\gamma_{p}^{d}(C(n ;\{1, k\})) \leq \begin{cases}2\left\lceil\frac{2 n}{4 k d+1}\right\rceil+2, & \text { if } n \equiv 2 k d, 4 k d-1,4 k d(\bmod 4 k d+1) \\ 2\left\lceil\frac{2 n}{4 k d+1}\right\rceil, & \text { otherwise. }\end{cases}
$$

Proof. It suffices to give a d-distance paired-dominating set D of $C(n ;\{1, k\})$ for $k=4$ and $d \geq 2$ with the cardinality equaling to the exact values mentioned in this lemma.

For $9 \leq n \leq 4 k d$, let

$$
D= \begin{cases}\left\{v_{0}, v_{4}\right\}, & \text { if } 9 \leq n \leq 2 k d-1 ; \\ \left\{v_{0}, v_{1}, v_{2 k d-2}, v_{2 k d-1}\right\}, & \text { if } n=2 k d ; \\ \left\{v_{0}, v_{1}, v_{2 k d-1}, v_{2 k d}\right\}, & \text { if } 2 k d+1 \leq n \leq 2 k d+3 ; \\ \left\{v_{0}, v_{1}, v_{2 k d-1}, v_{2 k d+3}\right\}, & \text { if } 2 k d+4 \leq n \leq 4 k d-2 \\ \left\{v_{0}, v_{1}, v_{2 k d-1}, v_{2 k d+3}, v_{n-2}, v_{n-1}\right\}, & \text { if } n=4 k d-1,4 k d\end{cases}
$$

For $n \geq 4 k d+1$, let $\alpha=4 k d+1, \beta=2 k d-1, m_{1}=\left\lfloor\frac{n}{\alpha}\right\rfloor$ and $t=n \bmod \alpha$. Let

$$
\begin{aligned}
& D_{01}=\left\{v_{\alpha i}, v_{\alpha i+1}, v_{\alpha i+\beta}, v_{\alpha i+\beta+4}: 0 \leq i \leq m_{1}-1\right\}, \\
& D_{02}=\left\{v_{\alpha m_{1}}, v_{\alpha m_{1}+1}, v_{\alpha m_{1}+\beta}, v_{\alpha m_{1}+\beta+4}\right\},
\end{aligned}
$$

and

$$
D= \begin{cases}D_{01}, & \text { if } t=0 ; \\ D_{01} \cup\left\{v_{\alpha m_{1}-1}, v_{\alpha m_{1}}\right\}, & \text { if } t=1 ; \\ D_{01} \cup\left\{v_{\alpha m_{1}}, v_{\alpha m_{1}+1}\right\}, & \text { if } 2 \leq t \leq 2 k d-1 \\ & \text { and } t \neq 2 k d-3 ; \\ D_{01} \cup\left\{v_{\alpha m_{1}-5}, v_{\alpha m_{1}-1}\right\}, & \text { if } t=2 k d-3 ; \\ D_{01} \cup\left\{v_{\alpha m_{1}}, v_{\alpha m_{1}+1}, v_{\alpha m_{1}+\beta-1}, v_{\alpha m_{1}+\beta}\right\}, & \text { if } t=2 k d ; \\ D_{01} \cup\left\{v_{\alpha m_{1}}, v_{\alpha m_{1}+1}, v_{\alpha m_{1}+\beta}, v_{\alpha m_{1}+\beta+1}\right\}, & \text { if } 2 k d+1 \leq t \leq 2 k d+3 ; \\ D_{01} \cup D_{02}, & \text { if } 2 k d+4 \leq t \leq 4 k d-2 ; \\ D_{01} \cup D_{02} \cup\left\{v_{n-2}, v_{n-1}\right\}, & \text { if } t=4 k d-1,4 k d .\end{cases}
$$

It is not hard to verify that D is a d-distance paired dominating set of $C(n ;\{1, k\})$ for $k=4$ and $d \geq 2$ with the cardinality equaling to the exact values mentioned in this lemma.

For convenience, we give a map $\varphi:\{1,2, \ldots, q\} \rightarrow\{1,4\}$ defined by $\varphi(s)=1$ for $\left(x_{s}, y_{s}\right)=\left(v_{i_{s}}, v_{i_{s}+1}\right)$ and $\varphi(s)=4$ for $\left(x_{s}, y_{s}\right)=\left(v_{i_{s}}, v_{i_{s}+4}\right)$.

Lemma 4.11. Suppose $k=4, d \geq 2$ and $\ell \in\{1,2, \ldots, q\}$.
(a) If $\delta_{\ell-1} \geq 2 k d+3$, then $\delta_{\ell} \leq 2$.
(b) If $\varphi(\ell)=1$, then either $\delta_{\ell-1} \leq 5$ or $\delta_{\ell} \leq 2 k d-1$.
(c) If $\varphi(\ell)=4$, then either $\delta_{\ell-1} \leq 2$ or $\delta_{\ell} \leq 2 k d+2$.
(d) If $\varphi(\ell)=\varphi(\ell+1)=4$ and $2 k d \leq \delta_{\ell} \leq 2 k d+2$, then either $\delta_{\ell-1} \leq 2$ or $\delta_{\ell+1} \leq 2$.
Proof. (a) Suppose $\delta_{\ell-1} \geq 2 k d+3$. If $\delta_{\ell} \geq 3$, then $v_{i_{\ell}-k d+2}$ would not be dominated by D, a contradiction. Hence $\delta_{\ell} \leq 2$.
(b) Suppose $\varphi(\ell)=1$. If $\delta_{\ell-1} \geq 6$ and $\delta_{\ell} \geq 2 k d$, then $v_{i_{\ell}+k d-1}$ would not be dominated by D, a contradiction. Hence either $\delta_{\ell-1} \leq 5$ or $\delta_{\ell} \leq 2 k d-1$.
(c) Suppose $\varphi(\ell)=4$. If $\delta_{\ell-1} \geq 3$ and $\delta_{\ell} \geq 2 k d+3$, then $v_{i_{\ell}+k d+2}$ would not be dominated by D, a contradiction. Hence either $\delta_{\ell-1} \leq 2$ or $\delta_{\ell} \leq 2 k d+2$.
(d) Suppose $\varphi(\ell)=\varphi(\ell+1)=4$ and $2 k d \leq \delta_{\ell} \leq 2 k d+2$. If $\delta_{\ell-1} \geq 3$ and $\delta_{\ell+1} \geq 3$, then at least one of $\left\{v_{i_{\ell}+k d+2}, v_{i_{\ell}+k d+3}\right\}$ would not be dominated by D, a contradiction. Hence either $\delta_{\ell-1} \leq 2$ or $\delta_{\ell+1} \leq 2$.

We denote $\Omega_{i}=\delta_{i}+\delta_{i+1}$ for $i=1,2, \ldots, q$, where the subscripts are taken modulo q.

Lemma 4.12. Suppose $k=4$ and $d \geq 2$. Let $\ell \in\{1,2, \ldots, q\}$. Then either $\Omega_{\ell} \leq 4 k d+1$, or $\frac{\Omega_{\ell-1}+\Omega_{\ell}}{2}<4 k d+1$ and $\delta_{\ell-1} \leq 5$.
Proof. Suppose

$$
\begin{equation*}
\Omega_{\ell} \geq 4 k d+2 \tag{4.5}
\end{equation*}
$$

By Observation 2.1, we have that $\delta_{i} \leq 2 k d+5$ for every $i \in\{1,2, \ldots, q\}$. If $\delta_{\ell} \leq 2 k d-4$ or $\delta_{\ell+1} \leq 2 k d-4$, then $\Omega_{\ell}=\bar{\delta}_{\ell}+\delta_{\ell+1} \leq(2 k d+5)+(2 k d-4)=4 k d+1$, a contradiction with (4.5). Therefore,

$$
\begin{equation*}
\delta_{\ell} \geq 2 k d-3 \geq 13 \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{\ell+1} \geq 2 k d-3 \geq 13 \tag{4.7}
\end{equation*}
$$

It follows from (4.7) and Lemma 4.11 (a) that

$$
\delta_{\ell} \leq 2 k d+2
$$

Case 1. $\varphi(\ell+1)=1$.
By (4.6) and Lemma 4.11 (b), we have $\delta_{\ell+1} \leq 2 k d-1$. It follows that $\Omega_{\ell}=$ $\delta_{\ell}+\delta_{\ell+1} \leq(2 k d+2)+(2 k d-1)=4 k d+1$, a contradiction with (4.5).

Case 2. $\varphi(\ell+1)=4$.
By (4.6) and Lemma 4.11 (c), we have $\delta_{\ell+1} \leq 2 k d+2$.
Suppose $\varphi(\ell)=1$. By Lemma 4.11 (b), we have that either $\delta_{\ell-1} \leq 5$ or $\delta_{\ell} \leq$ $2 k d-1$. If $\delta_{\ell} \leq 2 k d-1$, then $\Omega_{\ell}=\delta_{\ell}+\delta_{\ell+1} \leq(2 k d-1)+(2 k d+2)=4 k d+1$, a contradiction with (4.5). Hence $\delta_{\ell}>2 k d-1$, i.e.,

$$
\delta_{\ell-1} \leq 5
$$

It follows that

$$
\begin{aligned}
\frac{\Omega_{\ell-1}+\Omega_{\ell}}{2} & =\frac{\left(\delta_{\ell-1}+\delta_{\ell}\right)+\left(\delta_{\ell}+\delta_{\ell+1}\right)}{2} \\
& \leq \frac{5+(2 k d+2)+(2 k d+2)+(2 k d+2)}{2}<4 k d+1 .
\end{aligned}
$$

Suppose $\varphi(\ell)=4$. If $\delta_{\ell} \leq 2 k d-1$ or $\delta_{\ell+1} \leq 2 k d-1$, then $\Omega_{\ell}=\delta_{\ell}+\delta_{\ell+1} \leq$ $(2 k d-1)+(2 k d+2)=4 k d+1$, a contradiction with (4.5). Hence $\delta_{\ell} \geq 2 k d$ and $\delta_{\ell+1} \geq 2 k d$. By Lemma 4.11 (d), we have that

$$
\delta_{\ell-1} \leq 2
$$

and thus

$$
\begin{aligned}
\frac{\Omega_{\ell-1}+\Omega_{\ell}}{2} & =\frac{\left(\delta_{\ell-1}+\delta_{\ell}\right)+\left(\delta_{\ell}+\delta_{\ell+1}\right)}{2} \\
& \leq \frac{2+(2 k d+2)+(2 k d+2)+(2 k d+2)}{2}<4 k d+1
\end{aligned}
$$

This completes the proof of Lemma 4.12.
Lemma 4.13. For $k=4, n \geq 2 k+1$ and $d \geq 2$, $\gamma_{p}^{d}(C(n ;\{1, k\})) \geq 2\left\lceil\frac{2 n}{4 k d+1}\right\rceil$.
Proof. Let $S_{1}=\left\{1 \leq i \leq q: \Omega_{i} \leq 4 k d+1\right\}$ and $S_{2}=\left\{1 \leq i \leq q: \Omega_{i} \geq 4 k d+2\right\}$. Then $S_{1} \cup S_{2}=\{1,2, \ldots, q\}$. By Lemma 4.12, there exists an injection $\phi: S_{2} \rightarrow S_{1}$ defined by $\phi(i)=i-1$, where $i \in S_{2}$. Then $\Omega_{i}+\Omega_{\phi(i)}<2(4 k d+1)$ for any $i \in S_{2}$. It follows that

$$
\begin{aligned}
2 n & =\sum_{i=1}^{q} \Omega_{i} \\
& =\sum_{i \in S_{1}} \Omega_{i}+\sum_{i \in S_{2}} \Omega_{i} \\
& =\sum_{i \in S_{1} \backslash \phi\left(S_{2}\right)} \Omega_{i}+\sum_{i \in S_{2}} \Omega_{i}+\sum_{i \in \phi\left(S_{2}\right)} \Omega_{i} \\
& =\sum_{i \in S_{1} \backslash \phi\left(S_{2}\right)} \Omega_{i}+\sum_{i \in S_{2}}\left(\Omega_{i}+\Omega_{\phi(i)}\right) \\
& \leq\left(\left|S_{1}\right|-\left|S_{2}\right|\right) \times(4 k d+1)+\left|S_{2}\right| \times 2(4 k d+1) \\
& =\left(\left|S_{1}\right|+\left|S_{2}\right|\right) \times(4 k d+1) \\
& =q \times(4 k d+1),
\end{aligned}
$$

which implies $q \geq\left\lceil\frac{2 n}{4 k d+1}\right\rceil$, and thus $\gamma_{p}^{d}(C(n ;\{1, k\})) \geq 2\left\lceil\frac{2 n}{4 k d+1}\right\rceil$ for $k=4, n \geq$ $2 k+1$ and $d \geq 2$.

Lemma 4.14. For $k=4$, $n \geq 2 k+1$ and $d \geq 2$, suppose $\delta_{i} \geq 6$ for every $i \in\{1,2, \ldots, q\}$. Let $s \in\{1,2, \ldots, q\}$.
(a) If $(\varphi(s), \varphi(s+1))=(1,1)$, then $\delta_{s} \leq 2 k d-1$ and $\delta_{s} \neq 2 k d-3$.
(b) If $(\varphi(s), \varphi(s+1))=(1,4)$, then $\delta_{s} \leq 2 k d-1$ and $\delta_{s} \notin\{2 k d-3,2 k d-2\}$.
(c) If $(\varphi(s), \varphi(s+1))=(4,1)$, then $\delta_{s} \leq 2 k d+2$ and $\delta_{s} \notin\{2 k d, 2 k d+1\}$.
(d) If $(\varphi(s), \varphi(s+1))=(4,4)$, then $\delta_{s} \leq 2 k d-1$.

Proof. (a) Suppose $(\varphi(s), \varphi(s+1))=(1,1)$. If $\delta_{s} \geq 2 k d$ or $\delta_{s}=2 k d-3$, then $v_{i_{s}+k d-1}$ would not be dominated by D, a contradiction. Hence $\delta_{s} \leq 2 k d-1$ and $\delta_{s} \neq 2 k d-3$.
(b) Suppose $(\varphi(s), \varphi(s+1))=(1,4)$. If $\delta_{s} \geq 2 k d$ or $\delta_{s} \in\{2 k d-3,2 k d-2\}$, then $v_{i_{s}+k d-1}$ would not be dominated by D, a contradiction. Hence $\delta_{s} \leq 2 k d-1$ and $\delta_{s} \notin\{2 k d-3,2 k d-2\}$.
(c) Suppose $(\varphi(s), \varphi(s+1))=(4,1)$. If $\delta_{s} \geq 2 k d+3$ or $\delta_{s}=2 k d$, then $v_{i_{s}+k d+2}$ would not be dominated by D, a contradiction. If $\delta_{s}=2 k d+1$, then $v_{i_{s}+k d+3}$ would not be dominated by D, a contradiction. Hence $\delta_{s} \leq 2 k d+2$ and $\delta_{s} \notin\{2 k d, 2 k d+1\}$.
(d) Suppose $(\varphi(s), \varphi(s+1))=(4,4)$. If $\delta_{s} \geq 2 k d$, then at least one of $\left\{v_{i_{s}+k d+2}\right.$, $\left.v_{i_{s}+k d+3}\right\}$ would not be dominated by D, a contradiction. Hence $\delta_{s} \leq 2 k d-1$.

From Lemma 4.14, we can easily derive the following result.
Lemma 4.15. For $k=4$, $n \geq 2 k+1$ and $d \geq 2$, suppose $\delta_{i} \geq 6$ for every $i \in\{1,2, \ldots, q\}$. Let $s \in\{1,2, \ldots, q\}$.
(a) If $(\varphi(s), \varphi(s+1), \varphi(s+2)) \in\{(1,1,1),(1,4,4),(4,4,4)\}$, then $\Omega_{s} \leq 4 k d-2$.
(b) If $(\varphi(s), \varphi(s+1), \varphi(s+2))=(1,1,4)$, then $\Omega_{s} \leq 4 k d-2$ and $\Omega_{s} \neq 4 k d-4$.
(c) If $(\varphi(s), \varphi(s+1), \varphi(s+2)) \in\{(1,4,1),(4,1,4)\}$, then $\Omega_{s} \notin\{4 k d, 4 k d-1\}$.
(d) If $(\varphi(s), \varphi(s+1), \varphi(s+2))=(4,1,1)$, then $\Omega_{s} \neq 4 k d-1$.

Lemma 4.16. Suppose $k=4, n \geq 2 k+1$ and $d \geq 2$. Then $\gamma_{p}^{d}(C(n ;\{1, k\})) \geq$ $2\left\lceil\frac{2 n}{4 k d+1}\right\rceil+2$ for $n \equiv 2 k d, 4 k d-1,4 k d(\bmod 4 k d+1)$.
Proof. Suppose to the contrary that $\gamma_{p}^{d}(C(n ;\{1, k\}))<2\left\lceil\frac{2 n}{4 k d+1}\right\rceil+2$, i.e., there exists a d-distance paired dominating set $D=\left\{x_{i}, y_{i}: i=1,2, \ldots, q\right\}$ such that

$$
\begin{equation*}
q=\left\lceil\frac{2 n}{4 k d+1}\right\rceil \tag{4.8}
\end{equation*}
$$

Let $x \in \mathbb{Z}$ be such that

$$
\begin{equation*}
2 n=\sum_{i=1}^{q} \Omega_{i}=q \times(4 k d+1)-x \tag{4.9}
\end{equation*}
$$

It follows from (4.8) and (4.9) that

$$
\begin{equation*}
\left\lceil\frac{2 n}{4 k d+1}\right\rceil=q=\frac{2 n+x}{4 k d+1} \tag{4.10}
\end{equation*}
$$

Since $2 n \equiv 4 k d, 4 k d-1,4 k d-3(\bmod 4 k d+1)$, by (4.10), we have

$$
\begin{equation*}
x=1,2,4 \tag{4.11}
\end{equation*}
$$

for $n \equiv 2 k d, 4 k d, 4 k d-1(\bmod 4 k d+1)$, respectively.
Let $S_{1}=\left\{1 \leq i \leq q: \Omega_{i} \leq 4 k d+1\right\}$ and $S_{2}=\left\{1 \leq i \leq q: \Omega_{i} \geq 4 k d+2\right\}$. Then $S_{1} \cup S_{2}=\{1,2, \ldots, q\}$. By Lemma 4.12, there exists an injection $\phi: S_{2} \rightarrow S_{1}$ defined by $\phi(i)=i-1$, where $i \in S_{2}$. Then $\Omega_{i}+\Omega_{\phi(i)}<2(4 k d+1)$ for any $i \in S_{2}$.

If there exists $\ell \in\{1,2, \ldots, q\}$ such that $\Omega_{\ell} \geq 4 k d+2$, by Lemma 4.12 , we have $\delta_{\ell-1} \leq 5$. It follows from Observation 2.1 that $\Omega_{\ell-1}=\delta_{\ell-1}+\delta_{\ell} \leq 5+(2 k d+5) \leq$ $(4 k d+1)-7$ and $\Omega_{\ell-2}=\delta_{\ell-2}+\delta_{\ell-1} \leq(2 k d+5)+5 \leq(4 k d+1)-7$, which implies $\ell-2 \in S_{1} \backslash \phi\left(S_{2}\right)$. It follows that

$$
\begin{aligned}
\sum_{i=1}^{q} \Omega_{i} & =\sum_{i \in S_{1}} \Omega_{i}+\sum_{i \in S_{2}} \Omega_{i} \\
& =\sum_{i \in S_{1} \backslash\left(\phi\left(S_{2}\right) \cup\{\ell-2\}\right)} \Omega_{i}+\Omega_{\ell-2}+\sum_{i \in \phi\left(S_{2}\right)} \Omega_{i}+\sum_{i \in S_{2}} \Omega_{i} \\
& =\sum_{i \in S_{1} \backslash\left(\phi\left(S_{2}\right) \cup\{\ell-2\}\right)} \Omega_{i}+\Omega_{\ell-2}+\sum_{i \in S_{2}}\left(\Omega_{i}+\Omega_{\phi(i)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left(\left|S_{1}\right|-\left|S_{2}\right|-1\right) \times(4 k d+1)+((4 k d+1)-7)+\left|S_{2}\right| \times 2(4 k d+1) \\
& =\left(\left|S_{1}\right|+\left|S_{2}\right|\right) \times(4 k d+1)-7=q \times(4 k d+1)-7
\end{aligned}
$$

By (4.9), we have $x \geq 7$, which is a contradiction with (4.11). Hence

$$
\begin{equation*}
\Omega_{i} \leq 4 k d+1 \tag{4.12}
\end{equation*}
$$

for every $i \in\{1,2, \ldots, q\}$ when $n \equiv 2 k d, 4 k d, 4 k d-1(\bmod 4 k d+1)$.
For $n=2 k d$, i.e., $q=1$, we may assume $\left(x_{1}, y_{1}\right) \in\left\{\left(v_{0}, v_{1}\right),\left(v_{0}, v_{4}\right)\right\}$. Then $v_{k d+2}$ would not be dominated by D, a contradiction.

For $n=4 k d-1,4 k d$, i.e., $q=2$, by Observation 2.1, we have $\delta_{j} \leq 2 k d+5$ for $j=1,2$. It follows that $\delta_{j} \geq(4 k d-1)-(2 k d+5)=2 k d-6>6$ for $j=1,2$. If $(\varphi(1), \varphi(2)) \in\{(1,1),(4,4)\}$, by Lemma 4.14 (a) and (d), we have $n=\delta_{1}+\delta_{2} \leq$ $(2 k d-1)+(2 k d-1)=4 k d-2$, a contradiction. If $(\varphi(1), \varphi(2)) \in\{(1,4),(4,1)\}$, by Lemma 4.14 (b) and (c), we have $n=\delta_{1}+\delta_{2} \neq 4 k d, 4 k d-1$, a contradiction. Therefore, it remains to consider the case for $n \notin\{2 k d, 4 k d-1,4 k d\}$, i.e., $q \geq 3$.

Case 1. $n \equiv 2 k d, 4 k d(\bmod 4 k d+1)$.
Then $x=1,2$. It follows from (4.9) and (4.12) that $4 k d-1 \leq \Omega_{i} \leq 4 k d+1$ for every $i \in\{1,2, \ldots, q\}$, and there exists $\ell \in\{1,2, \ldots, q\}$ such that $\Omega_{\ell}<4 k d+1$. By Observation 2.1, we have that $\delta_{i}=\Omega_{i}-\delta_{i+1} \geq(4 k d-1)-(2 k d+5)=2 k d-6>6$ for every $i \in\{1,2, \ldots, q\}$. By Lemma 4.15 (a) and (b), we conclude that for any $i \in\{1,2, \ldots, q\}, \varphi(i) \neq \varphi(i+1)$. Since $q \geq 3$, by Lemma 4.15 (c), we derive a contradiction.

Case 2. $n \equiv 4 k d-1(\bmod 4 k d+1)$.
Then $x=4$. It follows from (4.9) and (4.12) that $4 k d-3 \leq \Omega_{i} \leq 4 k d+1$ for every $i \in\{1,2, \ldots, q\}$, and there exists $\ell \in\{1,2, \ldots, q\}$ such that $\Omega_{\ell}<4 k d+1$.

By Observation 2.1, we have that $\delta_{i}=\Omega_{i}-\delta_{i+1} \geq(4 k d-1)-(2 k d+5)=2 k d-6>$ 6 for every $i \in\{1,2, \ldots, q\}$. If $\Omega_{i} \geq 4 k d-1$ for every $i \in\{1,2, \ldots, q\}$, by Lemma 4.15 (a) and (b), we conclude that for any $i \in\{1,2, \ldots, q\}, \varphi(i) \neq \varphi(i+1)$. Since $q \geq 3$, by Lemma 4.15 (c), we have that $\Omega_{i}=4 k d+1$ for every $i \in\{1,2, \ldots, q\}$, which is a contradiction. Hence, there exists $s \in\{1,2, \ldots, q\}$ such that $\Omega_{s} \in\{4 k d-2,4 k d-3\}$.

Case 2.1 Suppose $\Omega_{s}=4 k d-3$.
By (4.9) and (4.12), we have that $\Omega_{s}=4 k d+1$ for every $i \in\{1,2, \ldots, q\} \backslash\{s\}$. It follows that either $\delta_{s} \leq 2 k d-2$ or $\delta_{s+1} \leq 2 k d-2$. If $\delta_{s} \leq 2 k d-2$, by Lemma 4.14, then $\Omega_{s-1}=\delta_{s-1}+\delta_{s} \leq(2 k d+2)+(2 k d-2)=4 k d$, a contradiction. If $\delta_{s+1} \leq 2 k d-2$, by Lemma 4.14 , then $\Omega_{s+1}=\delta_{s+1}+\delta_{s+2} \leq(2 k d-2)+(2 k d+2)=4 k d$, a contradiction.

Case 2.2 Suppose $\Omega_{s}=4 k d-2$.
By (4.9) and (4.12), there exists $t \in\{1,2, \ldots, q\} \backslash\{s\}$ such that $\Omega_{t}=4 k d$ and $\Omega_{i}=4 k d+1$ for every $i \in\{1,2, \ldots, q\} \backslash\{s, t\}$. By Lemma 4.15, we conclude that $(\varphi(t), \varphi(t+1), \varphi(t+2)) \in\{(4,1,1),(4,4,1)\}$.

Suppose $(\varphi(t), \varphi(t+1), \varphi(t+2))=(4,1,1)$. By Lemma 4.14 (a) and (c), we have that $\delta_{t}=2 k d+2$ and $\delta_{t+1}=2 k d-2$. By Lemma 4.14 (a) and (b), we have that $\Omega_{t+1}=\delta_{t+1}+\delta_{t+2} \leq(2 k d-2)+(2 k d-1)=4 k d-3$, a contradiction.

Suppose $(\varphi(t), \varphi(t+1), \varphi(t+2))=(4,4,1)$. By Lemma 4.14 (a) and (c), we have that $\delta_{t+1}=2 k d+2$ and $\delta_{t}=2 k d-2$. By Lemma 4.14 (b) and (d), we have that $\Omega_{t-1}=\delta_{t-1}+\delta_{t} \leq(2 k d-1)+(2 k d-2)=4 k d-3$, a contradiction.

From Lemmas 4.10, 4.13 and 4.16, we have the following
Theorem 4.2. For $k=4, n \geq 2 k+1$ and $d \geq 2$,
$\gamma_{p}^{d}(C(n ;\{1, k\}))= \begin{cases}2\left\lceil\frac{2 n}{4 k d+1}\right\rceil+2, & \text { if } n \equiv 2 k d, 4 k d-1,4 k d(\bmod 4 k d+1) \\ 2\left\lceil\frac{2 n}{4 k d+1}\right\rceil, & \text { otherwise. }\end{cases}$

Acknowledgement. The research is supported by Chinese Natural Science Foundations (60973014), National Science Foundation of China (11001035), Specialized Research Fund for the Doctoral Program of Higher Education (200801411073) and Research Foundation of Dalian University of Technology (DLUT).

References

[1] B. Brešar, M. A. Henning and D. F. Rall, Paired-domination of Cartesian products of graphs, Util. Math. 73 (2007), 255-265.
[2] T. C. E. Cheng, L. Y. Kang and C. T. Ng, Paired domination on interval and circular-arc graphs, Discrete Appl. Math. 155 (2007), no. 16, 2077-2086.
[3] L. Chen, C. Lu and Z. Zeng, Labelling algorithms for paired-domination problems in block and interval graphs, J. Comb. Optim. (2008), in press (doi:10.1007/s10878-008-9177-6).
[4] L. Chen, C. Lu and Z. Zeng, Hardness results and approximation algorithms for (weighted) paired-domination in graphs, Theoret. Comput. Sci. (2009), in press (doi:10.1016/j.tcs.2009.08.004)
[5] L. Chen, C. Lu and Z. Zeng, Distance paired-domination problems on subclasses of chordal graphs, Theoret. Comput. Sci. 410 (2009), no. 47-49, 5072-5081.
[6] P. Dorbec and S. Gravier, Paired-domination in P_{5}-free graphs, Graphs Combin. 24 (2008), no. 4, 303-308.
[7] P. Dorbec, S. Gravier and M. A. Henning, Paired-domination in generalized claw-free graphs, J. Comb. Optim. 14 (2007), no. 1, 1-7.
[8] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, 208, Dekker, New York, 1998.
[9] T. W. Haynes and P. J. Slater, Paired-domination and the paired-domatic number, Congr. Numer. 109 (1995), 65-72.
[10] T. W. Haynes and P. J. Slater, Paired-domination in graphs, Networks 32 (1998), no. 3, 199-206.
[11] L. Kang, M. Y. Sohn and T. C. E. Cheng, Paired-domination in inflated graphs, Theoret. Comput. Sci. 320 (2004), no. 2-3, 485-494.
[12] K. E. Proffitt, T. W. Haynes and P. J. Slater, Paired-domination in grid graphs, Congr. Numer. 150 (2001), 161-172.
[13] H. Qiao, L. Y. Kang, M. Cardei and D. Z. Du, Paired-domination of trees, J. Global Optim. 25 (2003), no. 1, 43-54.
[14] J. Raczek, Distance paired domination numbers of graphs, Discrete Math. 308 (2008), no. 12, 2473-2483.
[15] E. Shan, L. Kang and M. A. Henning, A characterization of trees with equal total domination and paired-domination numbers, Australas. J. Combin. 30 (2004), 31-39.

[^0]: Communicated by Xueliang Li.
 Received: July 8, 2009; Revised: October 20, 2009.

