On the Distance Paired-Domination of Circulant Graphs

 $^{1}\mathrm{Haoli}$ Wang, $^{2}\mathrm{Xirong}$ Xu, $^{3}\mathrm{Yuansheng}$ Yang, $^{4}\mathrm{Guoqing}$ Wang and $^{5}\mathrm{Kai}$ Lü

^{1,2,3,5}Department of Computer Science, Dalian University of Technology, Dalian 116024, P. R. China ⁴Center for Combinatorics, LPMC-TJKLC, Nankai University,

T: :: 200071 D D Cl.

Tianjin 300071, P. R. China

 $\label{eq:alpha} ^1 bjpeuwanghaoli@163.com, \ ^2 xirongxu@dlut.edu.cn, \ ^3 yangys@dlut.edu.cn, \ ^4 gqwang1979@yahoo.com.cn, \ ^5 lvkai2@sohu.com$

Abstract. Let G = (V, E) be a graph without isolated vertices. A set $D \subseteq V$ is a *d*-distance paired-dominating set of G if D is a *d*-distance dominating set of G and the induced subgraph $\langle D \rangle$ has a perfect matching. The minimum cardinality of a *d*-distance paired-dominating set for graph G is the *d*-distance paired-domination number, denoted by $\gamma_p^d(G)$. In this paper, we study the *d*-distance paired-domination number of circulant graphs $C(n; \{1, k\})$ for $2 \leq k \leq 4$. We prove that for $k = 2, n \geq 5$ and $d \geq 1$,

$$\gamma_p^d(C(n;\{1,k\})) = 2 \left\lceil \frac{n}{2kd+3} \right\rceil,$$

for $k = 3, n \ge 7$ and $d \ge 1$,

$$\gamma_p^d(C(n; \{1, k\})) = 2 \left\lceil \frac{n}{2kd + 2} \right\rceil,$$

and for k = 4 and $n \ge 9$, (i) if d = 1, then

$$\gamma_p(C(n;\{1,k\})) = \begin{cases} 2\lceil \frac{3n}{23}\rceil + 2, & \text{if } n \equiv 15, 22 \pmod{23}; \\ 2\lceil \frac{3n}{23}\rceil, & \text{otherwise} \end{cases}$$

(ii) if $d \ge 2$, then

$$\gamma_p^d(C(n; \{1, k\})) = \begin{cases} 2\lceil \frac{2n}{4kd+1} \rceil + 2, & \text{if } n \equiv 2kd, 4kd - 1, 4kd \\ (\mod 4kd + 1) \\ 2\lceil \frac{2n}{4kd+1} \rceil, & \text{otherwise.} \end{cases}$$

2010 Mathematics Subject Classification: 05C69, 05C12

Keywords and phrases: Paired-domination number, d-distance paired-domination number, circulant graph.

Communicated by Xueliang Li.

Received: July 8, 2009; Revised: October 20, 2009.

1. Introduction

All graphs considered in this paper are finite and simple. Let G = (V(G), E(G)) be a graph without isolated vertices. The open neighborhood and the closed neighborhood of a vertex $v \in V(G)$ are denoted by $N(v) = \{u \in V(G) : vu \in E(G)\}$ and $N[v] = N(v) \cup \{v\}$, respectively. For a vertex set $D \subseteq V(G)$, $N(D) = \bigcup_{v \in D} N(v)$ and $N[D] = \bigcup_{v \in D} N[v]$. For $D \subseteq V(G)$, let $\langle D \rangle$ be the subgraph induced by D.

A set $D \subseteq V(G)$ is a dominating set if every vertex in V(G) - D is adjacent to at least one vertex in D. A set $D \subseteq V(G)$ is a paired-dominating set of G if it is dominating and the induced subgraph $\langle D \rangle$ has a perfect matching. The paireddomination number $\gamma_p(G)$ is the cardinality of a smallest paired-dominating set of G. This type of domination was introduced by Haynes and Slater in [9, 10] and is well studied, for example, in [1–7, 11–13, 15].

For two vertices x and y, let d(x, y) denote the distance between x and y in G. A set $D \subseteq V(G)$ is a *d*-distance dominating set of G if every vertex in V(G) - Dis within distance d of at least one vertex in D. The *d*-distance domination number $\gamma^d(G)$ of G is the minimum cardinality among all *d*-distance dominating sets of G. For a more detailed treatment of domination-related parameters and for terminology not defined here, the reader is referred to [8].

The *d*-distance paired-domination was introduced by Joanna Raczek [14] as a generalization of paired-domination. For a positive integer *d*, a set $D \subseteq V(G)$ is a *d*-distance paired-dominating set if every vertex in V(G) - D is within distance *d* of a vertex in *D* and the induced subgraph $\langle D \rangle$ has a perfect matching. The *d*-distance paired-domination number, denoted by $\gamma_p^d(G)$, is the minimum cardinality of a *d*-distance paired-dominating set.

In the same paper, Joanna Raczek investigated properties of the d-distance paireddomination number of a graph. He also gave an upper bound and a lower bound on the d-distance paired-domination number of a non-trivial tree T in terms of the size of T and the number of leaves in T and characterized the extremal trees.

The circulant graph C(n; S) is the graph with the vertex set $V(C(n; S)) = \{v_i | 0 \le i \le n-1\}$ and the edge set $E(C(n; S)) = \{v_i v_j | 0 \le i, j \le n-1, (i-j) \mod n \in S\}, S \subseteq \{1, 2, \dots, \lfloor \frac{n-1}{2} \rfloor\}.$

In this paper, we determine the exact d-distance paired-domination number of the circulant graphs $C(n; \{1, k\})$ for $2 \le k \le 4$ and $d \ge 1$. We prove that for k = 2, $n \ge 5$ and $d \ge 1$,

$$\gamma_p^d(C(n;\{1,k\})) = 2\left\lceil \frac{n}{2kd+3} \right\rceil,\,$$

for k = 3, $n \ge 7$ and $d \ge 1$,

$$\gamma_p^d(C(n;\{1,k\})) = 2\left\lceil \frac{n}{2kd+2} \right\rceil,$$

and for k = 4 and $n \ge 9$,

(i) if d = 1, then

$$\gamma_p(C(n; \{1, k\})) = \begin{cases} 2\lceil \frac{3n}{23} \rceil + 2, & \text{if } n \equiv 15, 22 \pmod{23}; \\ 2\lceil \frac{3n}{23} \rceil, & \text{otherwise} \end{cases}$$

(ii) if $d \ge 2$, then

$$\gamma_p^d(C(n;\{1,k\})) = \begin{cases} 2\lceil \frac{2n}{4kd+1}\rceil + 2, & \text{if } n \equiv 2kd, 4kd-1, 4kd \pmod{4kd+1} \\ 2\lceil \frac{2n}{4kd+1}\rceil, & \text{otherwise.} \end{cases}$$

In this paper, let $D = \{x_i, y_i : i = 1, 2, ..., q\}$ be an arbitrary *d*-distance paireddominating set of $C(n; \{1, k\})$, where $\{x_i y_i : i = 1, 2, ..., q\}$ is a perfect matching of $\langle D \rangle$, and let

$$D_p = \{(x_i, y_i) : i = 1, 2, \dots, q\}$$

For each pair $(x_j, y_j) \in D_p$ with $j \in \{1, 2, \ldots, q\}$, for convenience, we denote $x_j = v_{i_j}$, and $y_j = v_{i_j+1}$ or $y_j = v_{i_j+k}$, i.e., $(v_{i_j}, v_{i_j+1}) \in D_p$ or $(v_{i_j}, v_{i_j+k}) \in D_p$, where $0 = i_1 \leq i_2 \leq \cdots \leq i_q < n$.

We also denote

$$\delta_j = (i_{j+1} - i_j) \mod n$$

for $j = 1, 2, \ldots, q$, where the subscripts are modulo q.

For example, we consider the case for $C(12; \{1, 4\})$. Let d = 4, $D = \{v_1, v_2, v_3, v_5, v_8, v_9\}$, and let $D_p = \{(x_1, y_1), (x_2, y_2), (x_3, y_3)\}$ where $(x_1, y_1) = (v_1, v_5), (x_2, y_2) = (v_2, v_3)$ and $(x_3, y_3) = (v_8, v_9)$. That is, $i_1 = 1, i_2 = 2, i_3 = 8$. We check that $\delta_1 = (2-1) \mod 12 = 1, \delta_2 = (8-2) \mod 12 = 6$ and $\delta_3 = (1-8) \mod 12 = 5$. Clearly,

$$n = \delta_1 + \dots + \delta_q$$

Throughout the paper, the subscripts are taken modulo n when it is unambiguous.

2. *d*-distance paired-domination number of $C(n; \{1, 2\})$

In this section, we shall determine the exact d-distance paired-domination number of $C(n; \{1, k\})$ for k = 2 and $d \ge 1$.

For the circulant graphs $C(n; \{1, k\})$, if there exists $\ell \in \{1, 2, \ldots, q\}$ such that $\delta_{\ell} \geq (2d+1)k+2$ for $k \geq 2$ and $d \geq 1$, then $v_{i_{\ell}+(d+1)k+1}$ would not be dominated by D. Hence, we have:

Observation 2.1. Suppose $k \ge 2$ and $d \ge 1$. Then $1 \le \delta_j \le (2d+1)k+1$ for every $j \in \{1, 2, \ldots, q\}$.

Theorem 2.1. For $k \ge 2$, $n \ge 2k + 1$ and $d \ge 1$, $\gamma_p^d(C(n; \{1, k\})) \ge 2\lceil \frac{n}{(2d+1)k+1} \rceil$.

Proof. By Observation 2.1, we have $n = \delta_1 + \dots + \delta_q \leq q \times ((2d+1)k+1)$, and thus, $q \geq \lceil \frac{n}{(2d+1)k+1} \rceil$, which implies $\gamma_p^d(C(n; \{1, k\})) \geq 2\lceil \frac{n}{(2d+1)k+1} \rceil$.

Theorem 2.2. For k = 2, $n \ge 2k + 1$ and $d \ge 1$, $\gamma_p^d(C(n; \{1, k\})) = 2\lceil \frac{n}{2kd+3} \rceil$.

Proof. Let D be a d-distance paired-dominating set of $C(n; \{1, k\})$ for k = 2. Let $m = \lfloor \frac{n}{2kd+3} \rfloor$, $t = n \mod (2kd+3)$ and

$$D = \begin{cases} \{v_{(2kd+3)i}, v_{(2kd+3)i+2} : 0 \le i \le m-1\}, \text{ if } t = 0; \\ \{v_{(2kd+3)i}, v_{(2kd+3)i+2} : 0 \le i \le m-1\} \cup \{v_{(2kd+3)m-1}, v_{(2kd+3)m}\}, \\ \text{ if } t = 1; \\ \{v_{(2kd+3)i}, v_{(2kd+3)i+2} : 0 \le i \le m-1\} \cup \{v_{(2kd+3)m}, v_{(2kd+3)m+1}\}, \\ \text{ if } t = 2; \\ \{v_{(2kd+3)i}, v_{(2kd+3)i+2} : 0 \le i \le m\}, \text{ otherwise.} \end{cases}$$

It is not hard to verify that D is a d-distance paired dominating set of $C(n; \{1, k\})$ for k = 2 with $|D| = 2\lceil \frac{n}{2kd+3} \rceil$. Hence, $\gamma_p^d(C(n; \{1, k\})) \leq 2\lceil \frac{n}{2kd+3} \rceil$ for k = 2 and $d \geq 1$. On the other hand, by Theorem 2.2, we have that $\gamma_p^d(C(n; \{1, k\})) \geq 2\lceil \frac{n}{2kd+3} \rceil$ for k = 2 and $d \geq 1$. The result immediately holds.

In Figure 1, we show the *d*-distance paired-dominating sets of $C(n; \{1, 2\})$ for d = 1 and $7 \le n \le 14$, and for d = 2 and $11 \le n \le 22$, where the vertices of *d*-distance paired dominating sets are in dark.

 $G_{n,k}$ stands for $C(n; \{1, k\})$ in all figures of this paper.

Figure 1. The *d*-distance paired dominating sets of $C(n; \{1, 2\})$ for d = 1 and $7 \le n \le 14$, and for d = 2 and $11 \le n \le 22$.

3. *d*-distance paired-domination number of $C(n; \{1,3\})$

In this section, we shall determine the exact d-distance paired-domination number of $C(n; \{1, k\})$ for k = 3 and $d \ge 1$.

Lemma 3.1. For k = 3, $n \ge 2k + 1$ and $d \ge 1$, $\gamma_p^d(C(n; \{1, k\})) \le 2\lceil \frac{n}{2kd+2} \rceil$.

Proof. Let D be a d-distance paired-dominating set of $C(n; \{1, k\})$ for k = 3. Let $m = \lfloor \frac{n}{2kd+2} \rfloor$, $t = n \mod (2kd+2)$ and

$$D = \begin{cases} \{v_{(2kd+2)i}, v_{(2kd+2)i+1} : 0 \le i \le m-1\}, \text{ if } t = 0; \\ \{v_{(2kd+2)i}, v_{(2kd+2)i+1} : 0 \le i \le m-1\} \cup \{v_{(2kd+2)m-1}, v_{(2kd+2)m}\}, \text{ if } t = 1; \\ \{v_{(2kd+2)i}, v_{(2kd+2)i+1} : 0 \le i \le m\}, \text{ otherwise.} \end{cases}$$

It is not hard to verify that D is a d-distance paired dominating set of $C(n; \{1, k\})$ for k = 3 with $|D| = 2\lceil \frac{n}{2kd+2} \rceil$. Hence, $\gamma_p^d(C(n; \{1, k\})) \leq 2\lceil \frac{n}{2kd+2} \rceil$ for k = 3 and $d \geq 1$.

In Figure 2, we show the *d*-distance paired-dominating sets of $C(n; \{1,3\})$ for d = 1 and $8 \le n \le 16$, and for d = 2 and $14 \le n \le 28$, where the vertices of *d*-distance paired dominating sets are in dark.

On the Distance Paired-Domination of Circulant Graphs

Figure 2. The *d*-distance paired dominating sets of $C(n; \{1, 3\})$ for d = 1 and $8 \le n \le 16$, and for d = 2 and $14 \le n \le 28$.

Lemma 3.2. For k = 3, $n \ge 2k + 1$ and $d \ge 1$, $\gamma_p^d(C(n; \{1, k\})) \ge 2\lceil \frac{n}{2kd+2} \rceil$.

Proof. Let $D = \{x_i, y_i : i = 1, 2, ..., q\}$ be a *d*-distance paired dominating set of $C(n; \{1, k\})$ for k = 3 with the minimum cardinality. By Observation 2.1, we have that

$$(3.1) 1 \le \delta_j \le 2kd + 4$$

for every $j \in \{1, 2, ..., q\}$.

Suppose that there exists $\ell \in \{1, 2, ..., q\}$ such that $\delta_{\ell} \geq 2kd + 3$. Then $v_{i_{\ell}+kd+2}$ would not be dominated by (x_{ℓ}, y_{ℓ}) and $(x_{\ell+1}, y_{\ell+1})$. To dominate $v_{i_{\ell}+kd+2}$, we have $v_{i_{\ell}+2} \in D$. It follows that $v_{i_{\ell}-1} \in D$, which implies $(x_{\ell-1}, y_{\ell-1}) = (v_{i_{\ell}-1}, v_{i_{\ell}+2})$, and thus

$$\delta_{\ell-1} = 1.$$

Let

$$S_{1} = \{i : 1 \le i \le q, 2kd + 3 \le \delta_{i} \le 2kd + 4\},\$$

$$S_{2} = \{i : 1 \le i \le q, 2 \le \delta_{i} \le 2kd + 2\},\$$

$$S_{3} = \{i : 1 \le i \le q, \delta_{i} = 1\}.$$

By (3.1) and (3.2), we have that $\{1, 2, \ldots, q\} = S_1 \cup S_2 \cup S_3$, and there exists an injection $\phi : S_1 \to S_3$ defined by $\phi(i) = i - 1$ for any $i \in S_1$, i.e., $|S_1| \leq |S_3|$. It

follows that

$$\begin{split} n &= \delta_1 + \dots + \delta_q \\ &= \sum_{i \in S_1} \delta_i + \sum_{i \in S_2} \delta_i + \sum_{i \in S_3} \delta_i \\ &\leq (2kd+4)|S_1| + (2kd+2)|S_2| + |S_3| \\ &= (2kd+2)(|S_1| + |S_2| + |S_3|) + 2(|S_1| - |S_3|) - (2kd-1)|S_3 \\ &\leq (2kd+2)q, \end{split}$$

which implies $q \ge \lceil \frac{n}{2kd+2} \rceil$, and thus $\gamma_p^d(C(n; \{1, k\})) \ge 2\lceil \frac{n}{2kd+2} \rceil$ for k = 3 and $d \ge 1$.

As an immediate consequence of Lemmas 3.1 and 3.2, we have the following:

Theorem 3.1. For k = 3, $n \ge 2k + 1$ and $d \ge 1$, $\gamma_p^d(C(n; \{1, k\})) = 2\lceil \frac{n}{2kd+2} \rceil$.

4. *d*-distance paired-domination number of $C(n; \{1, 4\})$

In this section, we shall determine the *d*-distance paired domination number of $C(n; \{1, k\})$ for k = 4 and $d \ge 1$.

We shall first consider the case for d = 1. At this time, the *d*-distance paired-domination number γ_p^d is just the paired-domination number γ_p .

Lemma 4.1. For $n \ge 9$,

$$\gamma_p(C(n; \{1, 4\})) \le \begin{cases} 2\lceil \frac{3n}{23} \rceil + 2, & if \ n \equiv 15, 22 \pmod{23}; \\ 2\lceil \frac{3n}{23} \rceil, & otherwise. \end{cases}$$

Proof. It suffices to give a paired-dominating set D of $C(n; \{1, 4\})$ with the cardinality equaling to the exact values mentioned in this lemma.

Let $m_1 = \lfloor \frac{n}{23} \rfloor$ and $t = n \mod 23$. Then $n = 23m_1 + t$. For $2k + 1 \le n \le 22$, let

$$D = \begin{cases} \{v_0, v_1, v_7, v_8\}, & \text{if } 9 \le n \le 14 \text{ and } n \ne 12; \\ \{v_0, v_1, v_2, v_3\}, & \text{if } n = 12; \\ \{v_0, v_1, v_7, v_8, v_{13}, v_{14}\}, & \text{if } n = 15; \\ \{v_0, v_1, v_7, v_8, v_{14}, v_{15}\}, & \text{if } 16 \le n \le 21 \text{ and } n \ne 19; \\ \{v_0, v_1, v_7, v_{11}, v_{13}, v_{17}\}, & \text{if } n = 19; \\ \{v_0, v_1, v_7, v_8, v_{14}, v_{15}, v_{20}, v_{21}\}, & \text{if } n = 22. \end{cases}$$

For $n \geq 23$ and $t \neq 5$, let $m_2 = \lfloor \frac{t}{7} \rfloor$,

$$D_{01} = \{ v_{23i}, v_{23i+1}, v_{23i+7}, v_{23i+11}, v_{23i+13}, v_{23i+17} : 0 \le i \le m_1 - 1 \}, D_{02} = \{ v_{23m_1+7i}, v_{23m_1+7i+1} : 0 \le i \le m_2 - 1 \}$$

and

$$D = \begin{cases} D_{01}, & \text{if } t = 0; \\ D_{01} \cup \{v_{23m_1-1}, v_{23m_1}\}, & \text{if } t = 1; \\ D_{01} \cup \{v_{23m_1}, v_{23m_1+1}\}, & \text{if } 2 \le t \le 7 \text{ and } t \ne 5; \\ D_{01} \cup D_{02} \cup \{v_{23m_1+7m_2-1}, v_{23m_1+7m_2}\}, & \text{if } t = 8, 15, 22; \\ D_{01} \cup D_{02} \cup \{v_{23m_1+7m_2}, v_{23m_1+7m_2+1}\}, & \text{if } 9 \le t \le 21 \text{ and } t \ne 12, 15, 19; \\ D_{01} \cup D_{02} \cup \{v_{23m_1+7m_2}, v_{23m_1+7m_2+4}\}, & \text{if } t = 12, 19. \end{cases}$$

For $t = 5$, let $m_3 = \frac{n-51}{23}$ where $n > 51$,
 $D_{03} = \{v_{23i}, v_{23i+4}, v_{23i+10}, v_{23i+11}, v_{23i+17}, v_{23i+21} : 0 \le i \le m_3 - 1\}, D_{04} = \{v_{23m_3+10+7i}, v_{23m_3+11+7i} : 0 \le i \le 4\}$

and

.

$$D = \begin{cases} \{v_{7i}, v_{7i+1} : 0 \le i \le 3\}, & \text{if } n = 28; \\ \{v_{7i}, v_{7i+1} : 0 \le i \le 4\} \cup \{v_{35}, v_{39}, v_{41}, v_{45}\}, & \text{if } n = 51; \\ D_{03} \cup D_{04} \cup \{v_{23m_3}, v_{23m_3+4}, v_{n-6}, v_{n-2}\}, & \text{if } n > 51. \end{cases}$$

It is not hard to verify that D is a paired-dominating set of $C(n; \{1, 4\})$ with the cardinality equaling to the exact values mentioned in this lemma.

In Figure 3 and Figure 4, we show the paired-dominating sets of $C(n; \{1, 4\})$ for $9 \le n \le 22$ and $23 \le n \le 46$, respectively, where the vertices of paired-dominating sets are in dark.

Figure 3. The paired-dominating sets of $C(n; \{1, 4\})$ for $9 \le n \le 22$.

For convenience, let

$$V'(i,t) = \{v_{i+j} \in V(C(n;\{1,4\})) : 0 \le j \le t-1\},\$$

where $i \in \{0, 1, \dots, n-1\}$ and $t \in \{1, 2, \dots, n\}$.

For each vertex $v \in V(G)$, we define a function rdd counting the times that v is re-dominated by vertex pairs $\{x_i, y_i\}$ in D as follows:

$$rdd(v) = |\{i : 1 \le i \le q, v \in N[\{x_i, y_i\}]\}| - 1.$$

For a vertex set $S \subseteq V(G)$, let

$$\operatorname{rdd}(S) = \sum_{v \in S} \operatorname{rdd}(v).$$

Figure 4. The paired-dominating sets of $C(n; \{1, 4\})$ for $23 \le n \le 46$.

Since x is not adjacent to y for any two vertices $x, y \in N(v)$ where $v \in V(C(n; \{1, 4\}))$, by the definition of rdd, we have:

Observation 4.1. $rdd(v) = |N(v) \cap D| - 1$ for every vertex $v \in V(C(n; \{1, 4\}))$.

Lemma 4.2. Suppose $n \ge 23$. Then $rdd(V'(i, 23)) \ge 1$ for every $i \in \{0, 1, ..., n-1\}$.

Proof. Suppose to the contrary that there exists $\ell \in \{0, 1, \ldots, n-1\}$ such that

(4.1)
$$rdd(V(\ell, 23)) = 0.$$

Suppose that there exists $s \in \{\ell, \ell+1, \ldots, \ell+21\}$ such that $(v_s, v_{s+1}) \in D_p$. For $s \in \{\ell, \ell+1, \ldots, \ell+10\}$, by (4.1), we have $v_{s-1}, v_{s+2}, v_{s+3}, v_{s+4}, v_{s+5}, v_{s+6}, v_{s+8}, v_{s+9} \notin D$. To dominate v_{s+3} , we have $v_{s+7} \in D$. It follows that $v_{s+10} \notin D$. Since $\langle D \rangle$ contains a perfect matching, we have $v_{s+11} \in D$. It follows that $v_{s+13} \notin D$ (see Figure 5(I) for $s = \ell$). Thus, v_{s+9} would not be dominated by D, a contradiction. For $s \in \{\ell+11, \ell+12, \ldots, \ell+21\}$, by symmetry, we derive a contradiction. Hence, there does not exist $s \in \{\ell, \ell+1, \ldots, \ell+21\}$ such that $(v_s, v_{s+1}) \in D_p$. To dominate $v_{\ell+9}$, we have that there exists $s \in \{\ell + 1, \ldots, \ell + 13\}$ such that $(v_s, v_{s+4}) \in D_p$. By (4.1), we have $v_{s-2}, v_{s+1}, v_{s+2}, v_{s+3}, v_{s+6} \notin D$ (see Figure 5(II) for $s = \ell + 1$). It follows that v_{s+2} would not be dominated by D, a contradiction. The lemma follows.

						$v_{\ell+14}$		$v_{\ell+18}$	$v_{\ell+20}$			$\sum_{v_{\ell+26}}$
	$v_{\ell+2}$	(I $v_{\ell+4}$ $v_{\ell+6}$ (II)	$(v_s, v_{s+4}) = (v_s, v_{s+4})$	$\{ C \mid D \cup V \\ v_{\ell+10} \\ v_{\ell} \\ c \mid D \cup V \\ v_{\ell} \\ c \mid D \\ v_{$	$V(\ell, 2;$ $v_{\ell+12}$ $V'(\ell, 23)$	3) for s $v_{\ell+14}$ for s =	$= \ell$ $v_{\ell+16}$ $i \ell + 1$	$v_{\ell+18}$	$v_{\ell+20}$	$v_{\ell+22}$	$v_{\ell+24}$	$\sum_{v_{\ell+26}}$

Figure 5. The graphs for the proof of Lemma 4.2.

Lemma 4.3. $\gamma_p(C(n; \{1, 4\})) \ge 2\lceil \frac{3n}{23} \rceil$ for $n \ge 9$.

Proof. Let $D = \{x_i, y_i : i = 1, 2, ..., q\}$ be a minimum paired-dominating set of $C(n; \{1, 4\})$ where $\{x_i y_i : i = 1, 2, ..., q\}$ is a perfect matching of $\langle D \rangle$. Since each pair $\{x_i, y_i\}$ dominates exactly 8 vertices, we have $8q - n \ge 0$. It follows that $q \ge \lceil \frac{n}{8} \rceil$.

For $9 \le n \le 22$ and $n \ne 16$, since $\lceil \frac{n}{8} \rceil = \lceil \frac{3n}{23} \rceil$, we have $\gamma_p(C(n; \{1, 4\})) \ge 2\lceil \frac{3n}{23} \rceil$. For n = 16, it is easy to verify that two pairs of vertices would not dominate all vertices in $C(n; \{1, 4\})$. Hence, $q \ge 3 = \lceil \frac{3n}{23} \rceil$, which implies $\gamma_p(C(n; \{1, 4\})) \ge 2\lceil \frac{3n}{23} \rceil$.

For $n \geq 23$, by Lemma 4.2, we have $8q \geq n + \lceil \frac{n}{23} \rceil = \lceil \frac{24n}{23} \rceil$. It follows that $q \geq \lceil \frac{1}{8} \times \lceil \frac{24n}{23} \rceil \rceil \geq \lceil \frac{1}{8} \times \frac{24n}{23} \rceil = \lceil \frac{3n}{23} \rceil$, which implies $\gamma_p(C(n; \{1, 4\})) \geq 2\lceil \frac{3n}{23} \rceil$.

For convenience, we define

$$\Re = \sum_{i=0}^{n-1} (\operatorname{rdd}(V'(i,23)) - 1).$$

Lemma 4.4. If there exists $\ell \in \{0, 1, \dots, n-1\}$ such that $rdd(v_\ell) \ge 2$, then $\Re > 24$.

Proof. By Observation 4.1, we have that $|N(v_{\ell}) \cap D| = \operatorname{rdd}(v_{\ell}) + 1 \geq 3$. Since $|N(v_{\ell}) \cap D| \leq |N(v_{\ell})| = 4$, we have $\{v_{\ell+1}, v_{\ell+4}\} \subset D$ or $\{v_{\ell-1}, v_{\ell-4}\} \subset D$, say $\{v_{\ell+1}, v_{\ell+4}\} \subset D$. It follows that $\operatorname{rdd}(v_{\ell+5}) \geq 1$, and thus $\Re \geq \sum_{\ell-17 \leq i \leq \ell} (\operatorname{rdd}(V'(i, 23)) - 1) \geq 0$.

 $18 \times (rdd(v_{\ell}) + rdd(v_{\ell+5}) - 1) \ge 18 \times (2 + 1 - 1) > 24$. The lemma follows.

In what follows, we admit that $rdd(v_i) \in \{0,1\}$ for every $i \in \{0,1,\ldots,n-1\}$. Let $v_{i_1}, v_{i_2}, \ldots, v_{i_t}$ be all the vertices re-dominated once, where $t = rdd(V(C(n; \{1,4\})))$ and $0 \le i_1 < i_2 < \cdots < i_t \le n-1$. We define

$$\Theta_j = i_{j+1} - i_j$$

for $j = 1, 2, \ldots, t$, where the subscripts are modulo t. Obviously, $\Theta_1 + \cdots + \Theta_t = n$.

Lemma 4.5. If $\Re \leq 24$, then $\Theta_j + \Theta_{j+1} \geq 22$ for every $j \in \{1, 2, ..., t\}$ where $t = rdd(V(C(n; \{1, 4\}))).$

Proof. Choose arbitrary $\ell \in \{1, 2, \ldots, t\}$. By the definition of \Re , we have $\Re =$ $\sum_{i=1}^{t} (23 - \Theta_i) \ge (23 - \Theta_\ell) + (23 - \Theta_{\ell+1}) = 46 - (\Theta_\ell + \Theta_{\ell+1}).$ Since $\Re \le 24$, we have $46 - (\Theta_{\ell} + \Theta_{\ell+1}) \leq 24$. It follows that $\Theta_{\ell} + \Theta_{\ell+1} \geq 22$. The lemma follows.

Lemma 4.6. For n > 23, if there exists $\ell \in \{0, 1, \dots, n-1\}$ such that $v_{\ell} \in D$ and $rdd(v_{\ell}) = 1$, then $\Re > 24$.

Proof. Assume to the contrary that $\Re < 24$. By Lemma 4.4, we have that $rdd(v_i) \in$ $\{0,1\}$ for every $i \in \{0,1,\ldots,n-1\}$. By Observation 4.1, we have $|N(v_\ell) \cap D| =$ $\operatorname{rdd}(v_{\ell}) + 1 = 2$. Let $N(v_{\ell}) \cap D = \{w_1, w_2\}$. By symmetry, we have $\{w_1, w_2\} \in \{w_1, w_2\}$ $\{\{v_{\ell-1}, v_{\ell+1}\}, \{v_{\ell+1}, v_{\ell+4}\}, \{v_{\ell+1}, v_{\ell-4}\}, \{v_{\ell-4}, v_{\ell+4}\}\}$. Since D contains a perfect matching, we infer that

$$rdd(w_1) = 1 \text{ or } rdd(w_2) = 1.$$

That is, there exists $j \in \{1, 2, ..., t\}$ such that $\Theta_j \leq 4$. By Lemma 4.5, we have that $\Theta_{i-1} \ge 18$ and $\Theta_{i+1} \ge 18$. (4.2)

From (4.2), we have $\{w_1, w_2\} \notin \{\{v_{\ell+1}, v_{\ell+4}\}, \{v_{\ell+1}, v_{\ell-4}\}\}$. If $\{w_1, w_2\} =$ $\{v_{\ell-1}, v_{\ell+1}\}$, by (4.2), we have $V'(\ell-5, 11) \cap D = \{v_{\ell-1}, v_{\ell}, v_{\ell+1}\}$ (see Figure 6(I), which is contradicted with the fact that D contains a perfect matching. If $\{w_1, w_2\} = \{v_{\ell-4}, v_{\ell+4}\}$, by (4.2), we have $v_{\ell-2}, v_{\ell+2}, v_{\ell+3}, v_{\ell+6} \notin D$. Since $v_{\ell+1} \notin D$, we have that $v_{\ell+2}$ would not be dominated by D (see Figure 6(II)), a contradiction.

>	\leq	××	\sim		\geq	\leq	0	\leq	\leq	××	\simeq	>	>	××
$v_{\ell-6}$	$v_{\ell-4}$	$v_{\ell-2}$	v_{ℓ}	$v_{\ell+2}$	$v_{\ell+4}$	$v_{\ell+6}$		$v_{\ell-6}$	$v_{\ell-4}$	$v_{\ell-2}$	v_ℓ	$v_{\ell+2}$	$v_{\ell+4}$	$v_{\ell+6}$
			(I)								(II)			

Figure 6. The graphs for the proof of Lemma 4.6.

As an immediate consequence of Lemmas 4.4 and 4.6, we have the following:

Corollary 4.1. Suppose $(x, y) \in D_p$ and $\Re \leq 24$. Then $N(x) \cap D = \{y\}$.

Lemma 4.7. Suppose n > 23 and $\Re \le 24$. If there exists $\ell \in \{0, 1, \ldots, n-1\}$ such that $v_{\ell} \notin D$ and $\operatorname{rdd}(v_{\ell}) = 1$, then one of the following conditions holds.

- (a) $V'(\ell-5,11) \cap D = \{v_{\ell-5}, v_{\ell-1}, v_{\ell+1}, v_{\ell+5}\};$ (b) $V'(\ell-4,9) \cap D = \{v_{\ell-4}, v_{\ell-3}, v_{\ell+3}, v_{\ell+4}\}.$

Proof. By Lemma 4.4, we have that $rdd(v_i) \in \{0, 1\}$ for every $i \in \{0, 1, \ldots, n-1\}$. By Observation 4.1, we have $|N(v_\ell) \cap D| = \operatorname{rdd}(v_\ell) + 1 = 2$. By symmetry, we distinguish four cases.

Case 1. $N(v_{\ell}) \cap D = \{v_{\ell-1}, v_{\ell+1}\}.$

By Lemma 4.6, we have $|\{v_{\ell-5}, v_{\ell-2}, v_{\ell+3}\} \cap D| = |\{v_{\ell-3}, v_{\ell+2}, v_{\ell+5}\} \cap D| = 1$. If $v_{\ell-2} \in D$, then $rdd(v_{\ell-3}) = rdd(v_{\ell+2}) = 1$ (see Figure 7(I) where the vertices that re-dominated once are in gray). By Lemma 4.5, we derive a contradiction. Hence $v_{\ell-2} \notin D$. By symmetry, we have $v_{\ell+2} \notin D$. If $v_{\ell+3} \in D$, then $rdd(v_{\ell+2}) = 1$. Let

 $i_j = \ell$. By Lemma 4.5, we have that $\Theta_j = 2$, $\Theta_{j-1} \ge 20$ and $\Theta_{j+1} \ge 20$. It follows that $v_{\ell-3}, v_{\ell+5} \notin D$ (see Figure 7(II)). Since $v_{\ell}, v_{\ell+2} \notin D$, we have that D does not contain a perfect matching, a contradiction. Hence $v_{\ell+3} \notin D$. By symmetry, we have $v_{\ell-3} \notin D$. Therefore, we conclude that $v_{\ell-5}, v_{\ell+5} \in D$ (see Figure 7(III)). Since $v_{\ell-4}, v_{\ell+4} \notin D$, we have $V'(\ell-5,11) \cap D = \{v_{\ell-5}, v_{\ell-1}, v_{\ell+1}, v_{\ell+5}\}$.

X	<u>>></u>	~	\geq	\propto	>>>	7	:	>>>	<u> </u>	<u>>></u>	\propto	\propto	7 7	\$
$v_{\ell-6}$	$v_{\ell-4}$	$v_{\ell-2}$	v_ℓ	$v_{\ell+2}$	$v_{\ell+4}$	$v_{\ell+6}$		$v_{\ell-6}$	$v_{\ell-4}$	$v_{\ell-2}$	v_ℓ	$v_{\ell+2}$	$v_{\ell+4}$	$v_{\ell+6}$
			(I)								(II)			
\gg	>>	>>>	\ge	\gg	>>>	Z	c	>	>>>	\gg	\ge	\gg	>	s,
$v_{\ell-6}$	$v_{\ell-4}$	$v_{\ell-2}$	v_{ℓ}	$v_{\ell+2}$	$v_{\ell+4}$	$v_{\ell+6}$		$v_{\ell-6}$	$v_{\ell-4}$	$v_{\ell-2}$	v_{ℓ}	$v_{\ell+2}$	$v_{\ell+4}$	$v_{\ell+6}$
			(111)								(1V)			
c	\geq	\geq	$\geq >$	$\geq \sim$	\geq	<u>~~</u> ~	~~	\geq	\geq	\geq	\geq	\geq	\geq	
	$v_{\ell-6}$	$v_{\ell-4}$	$v_{\ell-2}$	v_{ℓ}	$v_{\ell+2}$	$v_{\ell+4}$	$v_{\ell+6}$	$v_{\ell+8}$	$v_{\ell+10}$	$v_{\ell+12}$	$v_{\ell+14}$	$v_{\ell+16}$	$v_{\ell+18}$	
							(•)						~~~	
\sim	\geq	\approx	\geq	\leq	\geq	\cong	· · ·	\geq	ž	$\geq \geq$	$\geq \geq$	ž	\geq	≥ s ≥≎
$v_{\ell-9}$	$v_{\ell-7}$	$v_{\ell-5}$	$v_{\ell-3}$	$v_{\ell-1}$	$v_{\ell+1}$	$v_{\ell+3}$		$v_{\ell-6}$	$v_{\ell-4}$	$v_{\ell-2}$	v_{ℓ}	$v_{\ell+2}$	$v_{\ell+4}$	$v_{\ell+6}$
			$(\mathbf{v}\mathbf{I})$	~~~		~~~	~~~~				(11)			
			0	\gtrsim	>>>	\gtrsim	\times	\ge	\rightarrow	$\geq \approx$	>			
				$v_{\ell-6}$	$v_{\ell-4}$	$v_{\ell-2}$		$v_{\ell+2}$	$v_{\ell+4}$	$v_{\ell+6}$				
							(VIII)							

Figure 7. The graphs for proof of Lemma 4.7.

Case 2. $N(v_{\ell}) \cap D = \{v_{\ell+1}, v_{\ell+4}\}.$

Then $\operatorname{rdd}(v_{\ell+5}) = 1$. Let $i_j = \ell$. By Lemma 4.5, we have that $\Theta_j = 5$, $\Theta_{j-1} \ge 17$ and $\Theta_{j+1} \ge 17$. It follows that $v_{\ell-2}, v_{\ell+2}, v_{\ell+3}, v_{\ell+5} \notin D$. Since D contains a perfect matching, we have $v_{\ell-3} \in D$. It follows that $v_{\ell-5} \notin D$ (see Figure 7(IV)). Thus, $v_{\ell-1}$ would not be dominated by D, a contradiction.

Case 3. $N(v_{\ell}) \cap D = \{v_{\ell+1}, v_{\ell-4}\}.$

Then $\operatorname{rdd}(v_{\ell-3}) = 1$. Let $i_j = \ell - 3$. By Lemma 4.5, we have that $\Theta_j = 3$, $\Theta_{j-1} \geq 19$ and $\Theta_{j+1} \geq 19$. It follows that $v_{\ell-6}, v_{\ell-3}, v_{\ell-2}, v_{\ell+3} \notin D$. To dominate $\{v_{\ell-2}, v_{\ell-1}\}$, we have $v_{\ell+2}, v_{\ell-5} \in D$. It follows that $v_{\ell+4}, v_{\ell+5}, v_{\ell+6}, v_{\ell+7} \notin D$. To dominate $v_{\ell+4}$, we have $v_{\ell+8} \in D$. It follows that $v_{\ell+9}, v_{\ell+10}, v_{\ell+11} \notin D$. Since D contains a perfect matching, we have $v_{\ell+12} \in D$. It follows that $v_{\ell+14} \notin D$ (see Figure 7(V)). Thus, $v_{\ell+10}$ would not be dominated by D, a contradiction.

Case 4. $N(v_{\ell}) \cap D = \{v_{\ell-4}, v_{\ell+4}\}.$

By Lemma 4.6, we have $|\{v_{\ell-8}, v_{\ell-5}, v_{\ell-3}\} \cap D| = |\{v_{\ell+3}, v_{\ell+5}, v_{\ell+8}\} \cap D| = 1.$

Suppose $v_{\ell-8} \in D$. By Lemma 4.5, we have $v_{\ell-6} \notin D$. By Corollary 4.1, we have $v_{\ell-7}, v_{\ell-5}, v_{\ell-3} \notin D$. If $v_{\ell+2} \notin D$, then either $v_{\ell-2}$ would not be dominated by D or D would not contain a perfect matching. Hence $v_{\ell+2} \in D$. It follows that $rdd(v_{\ell+3}) = 1$. Let $i_j = \ell$. By Lemma 4.5, we have that $\Theta_j = 3$, $\Theta_{j-1} \geq 19$ and $\Theta_{j+1} \geq 19$. It follows that $v_{\ell-10}, v_{\ell-2} \notin D$ (see Figure 7(VI)), and thus $v_{\ell-6}$ would not be dominated by D, a contradiction. Hence $v_{\ell-8} \notin D$. By symmetry, we have $v_{\ell+8} \notin D$.

Suppose $v_{\ell-5} \in D$. By Corollary 4.1, we have $v_{\ell-6}, v_{\ell-3} \notin D$. By Lemma 4.5, we have $v_{\ell-2} \notin D$. Since $v_{\ell-1} \notin D$, to dominate $v_{\ell-2}$, we have $v_{\ell+2} \in D$. It follows that $rdd(v_{\ell+3}) = 1$. Let $i_j = \ell$. By Lemma 4.5, we have that $\Theta_j = 3$,

 $\Theta_{j-1} \geq 19$ and $\Theta_{j+1} \geq 19$. It follows that $v_{\ell+3}, v_{\ell+6} \notin D$ (see Figure 7(VII)). Since $v_{\ell+1}, v_{\ell-2} \notin D$, we have that D does not contain a perfect matching, a contradiction. Hence $v_{\ell-5} \notin D$. By symmetry, we have $v_{\ell+5} \notin D$.

Therefore, we conclude that $v_{\ell-3}, v_{\ell+3} \in D$ (see Figure 7(VIII)). By Corollary 4.1, we have $v_{\ell-2}, v_{\ell+2} \notin D$, i.e., $V'(\ell-4,9) \cap D = \{v_{\ell-4}, v_{\ell-3}, v_{\ell+3}, v_{\ell+4}\}$.

This completes the proof of Lemma 4.7.

Lemma 4.8. Let $t = rdd(V(C(n; \{1, 4\})))$. If $\Re \leq 24$, then the following conditions hold.

- (a) $\Theta_i \in \{7, 15, 23\}$ for every $i \in \{1, 2, \dots, t\}$;
- (b) $|\{1 \le i \le t : \Theta_i = 15\}|$ is even.

Proof. (a) Let $A_1 = \{0 \le i \le n-1 : \operatorname{rdd}(v_i) = 1, V'(i-5,11) \cap D = \{v_{i-5}, v_{i-1}, v_{i+1}, v_{i+5}\}$ and $A_2 = \{0 \le i \le n-1 : \operatorname{rdd}(v_i) = 1, V'(i-4,9) \cap D = \{v_{i-4}, v_{i-3}, v_{i+3}, v_{i+4}\}\}$. By Lemma 4.7, we have $A_1 \cap A_2 = \emptyset$ and

(4.3)
$$A_1 \cup A_2 = \{ 0 \le i \le n-1 : \mathrm{rdd}(v_i) = 1 \}$$

By Lemma 4.2, we have $\Theta_i \leq 23$ for every $i \in \{1, 2, \ldots, t\}$. Let Θ be an arbitrary integer of $\{\Theta_1, \ldots, \Theta_t\}$. That is, there exists $\ell \in \{0, 1, \ldots, n-1\}$ such that $rdd(v_\ell) = rdd(v_{\ell+\Theta}) = 1$ and $rdd(v_{\ell+j}) = 0$ for every $j \in \{1, 2, \ldots, \Theta - 1\}$. To prove (a), it suffices to show $\Theta \in \{7, 15, 23\}$.

Case 1. $\ell \in A_1$.

By Corollary 4.1, we have $v_{\ell+6}, v_{\ell+9} \notin D$. By Lemma 4.5, we have $v_{\ell+7}, v_{\ell+8}, v_{\ell+10} \notin D$. To dominate $\{v_{\ell+7}, v_{\ell+8}\}$, we have $v_{\ell+11}, v_{\ell+12} \in D$. It follows from Corollary 4.1 that $v_{\ell+13}, v_{\ell+15}, v_{\ell+16} \notin D$. By Lemma 4.5, we have $v_{\ell+14}, v_{\ell+17} \notin D$. To dominate $v_{\ell+14}$, we have $v_{\ell+18} \in D$. Since D contains a perfect matching, it follows from Corollary 4.1 that $|\{v_{\ell+19}, v_{\ell+22}\} \cap D| = 1$.

If $v_{\ell+19} \in D$, then $\operatorname{rdd}(v_{\ell+15}) = 1$ and $\ell + 15 \in A_2$ (see Figure 8(I) where the vertices that re-dominated once are in gray). Thus, $\Theta = 15$. If $v_{\ell+22} \in D$, by (4.3), we have $v_{\ell+24}, v_{\ell+28} \in D$ and $\operatorname{rdd}(v_{\ell+23}) = 1$, i.e., $\ell + 23 \in A_1$ (see Figure 8(II)). Thus, $\Theta = 23$.

Case 2. $\ell \in A_2$.

By Corollary 4.1, we have $v_{\ell+5}, v_{\ell+7}, v_{\ell+8} \notin D$. By Lemma 4.5, we have $v_{\ell+6}, v_{\ell+9} \notin D$. To dominate $v_{\ell+6}$, we have $v_{\ell+10} \in D$. Since D contains a perfect matching, it follows from Corollary 4.1 that $|\{v_{\ell+11}, v_{\ell+14}\} \cap D| = 1$.

If $v_{\ell+11} \in D$, then $rdd(v_{\ell+7}) = 1$ and $\ell+7 \in A_2$ (see Figure 8(III)). Thus, $\Theta = 7$. If $v_{\ell+14} \in D$, by (4.3), we have $v_{\ell+16}, v_{\ell+20} \in D$ and $rdd(v_{\ell+15}) = 1$, i.e., $\ell+15 \in A_1$ (see Figure 8(IV)). Thus, $\Theta = 15$.

From the above discuss, we see that $\Theta_i \in \{7, 15, 23\}$ for every $i \in \{1, 2, \dots, t\}$ if $\Re \leq 24$.

(b) Let $v_{i_1}, v_{i_2}, \ldots, v_{i_t}$ be all the vertices that re-dominated once, where $0 \leq i_1 < i_2 < \cdots < i_t \leq n-1$. Then $\Theta_j = i_{j+1} - i_j$ for $j = 1, 2, \ldots, t$. By the arguments of (a), we conclude that $\Theta_j = 15$ if and only if either $i_j \in A_1$ and $i_{j+1} \in A_2$, or $i_j \in A_2$ and $i_{j+1} \in A_1$. Note that $i_{t+1} = i_1$. We infer that $|\{1 \leq i \leq t : \Theta_i = 15\}|$ is even.

\geq	\gtrsim	2,2	\$	\geq	\$	~~	~~	$\geq >$	\gg		s -	$\geq >$		$\geq >$,s	s,	S
v_i	$\ell - 4$	$v_{\ell-2}$	ι) _l	$v_{\ell+2}$	$v_{\ell+4}$	$v_{\ell+6}$	$v_{\ell+8}$	$v_{\ell+10}$	$v_{\ell+12}$	$v_{\ell+14}$	$v_{\ell+16}$	$v_{\ell+18}$	$v_{\ell+20}$	$v_{\ell+22}$	$v_{\ell+24}$	
	(I) $v_{\ell+19} \in D$ and $rdd(v_{\ell+15}) = 1$																
\geq	\gtrsim	\approx	\sim	\approx	\$	~~	~~	\approx	\gg	\propto	\gg	\gg		\gg	X	>	5
v_i	$\ell - 4$	$v_{\ell-2}$	ı)l	$v_{\ell+2}$	$v_{\ell+4}$	$v_{\ell+6}$	$v_{\ell+8}$	$v_{\ell+10}$	$v_{\ell+12}$	$v_{\ell+14}$	$v_{\ell+16}$	$v_{\ell+18}$	$v_{\ell+20}$	$v_{\ell+22}$	$v_{\ell+24}$	
(II) $v_{\ell+22} \in D$ and $rdd(v_{\ell+23}) = 1$																	
\geq	\gg	<≫	Š	S S	≫⇒	\$	~~~	~~	××	~~	~~	~~	~~	Z,	33)	33	
$v_{\ell-4}$	$v_{\ell-}$	2	v_{ℓ}	$v_{\ell+2}$	$v_{\ell+1}$	$_4 v_{\ell+}$	$v_{\ell+}$	$-8 v_{\ell+1}$	$10 v_{\ell+1}$	$12 v_{\ell+1}$	$14 v_{\ell+1}$	$16 v_{\ell+}$	$18 v_{\ell+}$	$v_{\ell+} = v_{\ell+}$	$22 v_{\ell+1}$	$v_{\ell+1} = v_{\ell+1} = v_{\ell$	-26
(III) $v_{\ell+11} \in D$ and $rdd(v_{\ell+7}) = 1$																	
\geq	\gtrsim	\$≥	\sim	S	\sim	\$	\$	<u> </u>	Z,	Z,	\leq	Z,	Z,	s,	333 - C	3 3	
$v_{\ell-4}$	$v_{\ell-}$	2	v_ℓ	$v_{\ell+2}$	$v_{\ell+1}$	$_4 v_{\ell+}$	$v_{\ell+}$	$-8 v_{\ell+1}$	$10 v_{\ell+1}$	$12 v_{\ell+1}$	$14 v_{\ell+1}$	$16 v_{\ell+}$	$18 v_{\ell+}$	$v_{\ell+1} = v_{\ell+1} = v_{\ell$	$22 v_{\ell+1}$	$24 v_{\ell+1}$	-26

(IV) $v_{\ell+14} \in D$ and $rdd(v_{\ell+15}) = 1$

Figure 8. The graphs for proof of Lemma 4.8.

Lemma 4.9. $\gamma_p(C(n; \{1, 4\})) \ge 2 \lceil \frac{3n}{23} \rceil + 2$ for $n \equiv 15, 22 \pmod{23}$.

Proof. Suppose to the contrary that $\gamma_p(C(n; \{1, 4\})) < 2\lceil \frac{3n}{23} \rceil + 2$, i.e., there exists a paired dominating set $D = \{x_i, y_i : i = 1, 2, \dots, q\}$ such that

(4.4)
$$q = \left\lceil \frac{3n}{23} \right\rceil.$$

For n = 15 (22), it is not hard to verify that two (three) pairs of vertices would not dominate all vertices in $C(n; \{1, 4\})$. Hence, we need only consider the case for n > 23.

Since each pair $\{x_i, y_i\}$ in $C(n; \{1, 4\})$ dominates exactly 8 vertices, we have $8q - n = \operatorname{rdd}(V(C(n; \{1, 4\})))$. By the definition of \Re , we have that $23 \times (8q - n) = 23 \times \operatorname{rdd}(V(C(n; \{1, 4\}))) = 23 \times \sum_{v \in V(C(n; \{1, 4\}))} \operatorname{rdd}(v) = \sum_{0 \le i \le n-1} \operatorname{rdd}(V'(i, 23)) = n + \Re$, and thus $q = \frac{3n + \Re/8}{23}$. By (4.4), we conclude that $\Re = 8$ for $n \equiv 15 \pmod{23}$ and $\Re = 24$ for $n \equiv 22 \pmod{23}$.

By Lemma 4.4, we have that $rdd(v_i) \in \{0,1\}$ for every $i \in \{0,1,\ldots,n-1\}$. Let $t = rdd(V(C(n;\{1,k\})))$. By Lemma 4.8, we have that $\Theta_i \in \{7,15,23\}$ for every $i \in \{1,2,\ldots,t\}$ if $\Re \leq 24$. Let $N_7 = |\{1 \leq i \leq t : \Theta_i = 7\}|$ and $N_{15} = |\{1 \leq i \leq t : \Theta_i = 15\}|$. Then $\Re = (23-23) \times (t-N_7-N_{15}) + (23-7) \times N_7 + (23-15) \times N_{15} = 16N_7 + 8N_{15}$.

For $\Re = 8$, we have $(N_7, N_{15}) = (0, 1)$. For $\Re = 24$, we have $(N_7, N_{15}) = \{(1, 1), (0, 3)\}$. In either case, we have that N_{15} is odd, which is contradicted with Lemma 4.8 (b).

From Lemmas 4.1, 4.3 and 4.9, we have the following:

Theorem 4.1. For $n \ge 9$,

$$\gamma_p(C(n; \{1, 4\})) = \begin{cases} 2\lceil \frac{3n}{23} \rceil + 2, & if \ n \equiv 15, 22 \pmod{23}; \\ 2\lceil \frac{3n}{23} \rceil, & otherwise. \end{cases}$$

In the rest of this section, we shall consider the case for $d \ge 2$.

For the readers' convenience, we shall show the cases for the vertices dominated by a specific vertex pair $(x, y) \in D_p$ in Figure 9, where the vertex pair (x, y) are in dark and the vertices dominated by the vertex pair (x, y) are in gray.

Lemma 4.10. For k = 4, $n \ge 2k + 1$ and $d \ge 2$,

$$\gamma_p^d(C(n;\{1,k\})) \leq \begin{cases} 2\lceil \frac{2n}{4kd+1}\rceil + 2, & if \ n \equiv 2kd, 4kd-1, 4kd \ (\text{mod} \ 4kd+1) \\ 2\lceil \frac{2n}{4kd+1}\rceil, & otherwise. \end{cases}$$

Proof. It suffices to give a *d*-distance paired-dominating set D of $C(n; \{1, k\})$ for k = 4 and $d \ge 2$ with the cardinality equaling to the exact values mentioned in this lemma.

$$D = \begin{cases} \{v_0, v_4\}, & \text{if } 9 \le n \le 2kd - 1; \\ \{v_0, v_1, v_{2kd-2}, v_{2kd-1}\}, & \text{if } n = 2kd; \\ \{v_0, v_1, v_{2kd-1}, v_{2kd}\}, & \text{if } 2kd + 1 \le n \le 2kd + 3; \\ \{v_0, v_1, v_{2kd-1}, v_{2kd+3}\}, & \text{if } 2kd + 4 \le n \le 4kd - 2; \\ \{v_0, v_1, v_{2kd-1}, v_{2kd+3}, v_{n-2}, v_{n-1}\}, & \text{if } n = 4kd - 1, 4kd. \end{cases}$$

For $n \geq 4kd + 1$, let $\alpha = 4kd + 1$, $\beta = 2kd - 1$, $m_1 = \lfloor \frac{n}{\alpha} \rfloor$ and $t = n \mod \alpha$. Let

$$D_{01} = \{ v_{\alpha i}, v_{\alpha i+1}, v_{\alpha i+\beta}, v_{\alpha i+\beta+4} : 0 \le i \le m_1 - 1 \}$$

$$D_{02} = \{ v_{\alpha m_1}, v_{\alpha m_1+1}, v_{\alpha m_1+\beta}, v_{\alpha m_1+\beta+4} \},$$

and

$$D = \begin{cases} D_{01}, & \text{if } t = 0; \\ D_{01} \cup \{v_{\alpha m_1 - 1}, v_{\alpha m_1}\}, & \text{if } t = 1; \\ D_{01} \cup \{v_{\alpha m_1}, v_{\alpha m_1 + 1}\}, & \text{if } 2 \le t \le 2kd - 1 \\ & \text{and } t \ne 2kd - 3; \\ D_{01} \cup \{v_{\alpha m_1}, v_{\alpha m_1 + 1}, v_{\alpha m_1 + \beta - 1}, v_{\alpha m_1 + \beta}\}, & \text{if } t = 2kd; \\ D_{01} \cup \{v_{\alpha m_1}, v_{\alpha m_1 + 1}, v_{\alpha m_1 + \beta}, v_{\alpha m_1 + \beta}\}, & \text{if } t = 2kd; \\ D_{01} \cup \{v_{\alpha m_1}, v_{\alpha m_1 + 1}, v_{\alpha m_1 + \beta}, v_{\alpha m_1 + \beta} + 1\}, & \text{if } 2kd + 1 \le t \le 2kd + 3; \\ D_{01} \cup D_{02}, & \text{if } 2kd + 4 \le t \le 4kd - 2; \\ D_{01} \cup D_{02} \cup \{v_{n-2}, v_{n-1}\}, & \text{if } t = 4kd - 1, 4kd. \end{cases}$$

It is not hard to verify that D is a d-distance paired dominating set of $C(n; \{1, k\})$ for k = 4 and $d \ge 2$ with the cardinality equaling to the exact values mentioned in this lemma.

For convenience, we give a map $\varphi : \{1, 2, \dots, q\} \to \{1, 4\}$ defined by $\varphi(s) = 1$ for $(x_s, y_s) = (v_{i_s}, v_{i_s+1})$ and $\varphi(s) = 4$ for $(x_s, y_s) = (v_{i_s}, v_{i_s+4})$.

Lemma 4.11. Suppose k = 4, $d \ge 2$ and $\ell \in \{1, 2, ..., q\}$.

- (a) If $\delta_{\ell-1} \geq 2kd+3$, then $\delta_{\ell} \leq 2$.
- (b) If $\varphi(\ell) = 1$, then either $\delta_{\ell-1} \leq 5$ or $\delta_{\ell} \leq 2kd 1$.

- (c) If $\varphi(\ell) = 4$, then either $\delta_{\ell-1} \leq 2$ or $\delta_{\ell} \leq 2kd+2$.
- (d) If $\varphi(\ell) = \varphi(\ell+1) = 4$ and $2kd \leq \delta_{\ell} \leq 2kd+2$, then either $\delta_{\ell-1} \leq 2$ or $\delta_{\ell+1} \leq 2$.

Proof. (a) Suppose $\delta_{\ell-1} \geq 2kd+3$. If $\delta_{\ell} \geq 3$, then $v_{i_{\ell}-kd+2}$ would not be dominated by D, a contradiction. Hence $\delta_{\ell} \leq 2$.

(b) Suppose $\varphi(\ell) = 1$. If $\delta_{\ell-1} \ge 6$ and $\delta_{\ell} \ge 2kd$, then $v_{i_{\ell}+kd-1}$ would not be dominated by D, a contradiction. Hence either $\delta_{\ell-1} \le 5$ or $\delta_{\ell} \le 2kd - 1$.

(c) Suppose $\varphi(\ell) = 4$. If $\delta_{\ell-1} \ge 3$ and $\delta_{\ell} \ge 2kd + 3$, then $v_{i_{\ell}+kd+2}$ would not be dominated by D, a contradiction. Hence either $\delta_{\ell-1} \le 2$ or $\delta_{\ell} \le 2kd + 2$.

(d) Suppose $\varphi(\ell) = \varphi(\ell+1) = 4$ and $2kd \leq \delta_{\ell} \leq 2kd+2$. If $\delta_{\ell-1} \geq 3$ and $\delta_{\ell+1} \geq 3$, then at least one of $\{v_{i_{\ell}+kd+2}, v_{i_{\ell}+kd+3}\}$ would not be dominated by D, a contradiction. Hence either $\delta_{\ell-1} \leq 2$ or $\delta_{\ell+1} \leq 2$.

We denote $\Omega_i = \delta_i + \delta_{i+1}$ for i = 1, 2, ..., q, where the subscripts are taken modulo q.

Lemma 4.12. Suppose k = 4 and $d \geq 2$. Let $\ell \in \{1, 2, \ldots, q\}$. Then either $\Omega_{\ell} \leq 4kd + 1$, or $\frac{\Omega_{\ell-1} + \Omega_{\ell}}{2} < 4kd + 1$ and $\delta_{\ell-1} \leq 5$.

Proof. Suppose

(4.5)
$$\Omega_{\ell} \ge 4kd + 2.$$

By Observation 2.1, we have that $\delta_i \leq 2kd + 5$ for every $i \in \{1, 2, \dots, q\}$. If $\delta_\ell \leq 2kd - 4$ or $\delta_{\ell+1} \leq 2kd - 4$, then $\Omega_\ell = \delta_\ell + \delta_{\ell+1} \leq (2kd + 5) + (2kd - 4) = 4kd + 1$, a contradiction with (4.5). Therefore,

$$(4.6)\qquad\qquad \delta_\ell \ge 2kd - 3 \ge 13$$

and

(4.7)
$$\delta_{\ell+1} \ge 2kd - 3 \ge 13.$$

It follows from (4.7) and Lemma 4.11 (a) that

$$\delta_{\ell} \le 2kd + 2.$$

Case 1. $\varphi(\ell + 1) = 1$.

By (4.6) and Lemma 4.11 (b), we have $\delta_{\ell+1} \leq 2kd - 1$. It follows that $\Omega_{\ell} = \delta_{\ell} + \delta_{\ell+1} \leq (2kd+2) + (2kd-1) = 4kd+1$, a contradiction with (4.5).

Case 2. $\varphi(\ell + 1) = 4$.

By (4.6) and Lemma 4.11 (c), we have $\delta_{\ell+1} \leq 2kd + 2$.

Suppose $\varphi(\ell) = 1$. By Lemma 4.11 (b), we have that either $\delta_{\ell-1} \leq 5$ or $\delta_{\ell} \leq 2kd - 1$. If $\delta_{\ell} \leq 2kd - 1$, then $\Omega_{\ell} = \delta_{\ell} + \delta_{\ell+1} \leq (2kd - 1) + (2kd + 2) = 4kd + 1$, a contradiction with (4.5). Hence $\delta_{\ell} > 2kd - 1$, i.e.,

$$\delta_{\ell-1} \le 5.$$

It follows that

$$\frac{\Omega_{\ell-1} + \Omega_{\ell}}{2} = \frac{(\delta_{\ell-1} + \delta_{\ell}) + (\delta_{\ell} + \delta_{\ell+1})}{2} \\ \leq \frac{5 + (2kd+2) + (2kd+2) + (2kd+2)}{2} < 4kd+1.$$

Suppose $\varphi(\ell) = 4$. If $\delta_{\ell} \leq 2kd - 1$ or $\delta_{\ell+1} \leq 2kd - 1$, then $\Omega_{\ell} = \delta_{\ell} + \delta_{\ell+1} \leq (2kd - 1) + (2kd + 2) = 4kd + 1$, a contradiction with (4.5). Hence $\delta_{\ell} \geq 2kd$ and $\delta_{\ell+1} \geq 2kd$. By Lemma 4.11 (d), we have that

$$\delta_{\ell-1} \le 2,$$

and thus

$$\begin{aligned} \frac{\Omega_{\ell-1} + \Omega_{\ell}}{2} &= \frac{(\delta_{\ell-1} + \delta_{\ell}) + (\delta_{\ell} + \delta_{\ell+1})}{2} \\ &\leq \frac{2 + (2kd+2) + (2kd+2) + (2kd+2)}{2} < 4kd + 1. \end{aligned}$$

This completes the proof of Lemma 4.12.

Lemma 4.13. For k = 4, $n \ge 2k + 1$ and $d \ge 2$, $\gamma_p^d(C(n; \{1, k\})) \ge 2\lceil \frac{2n}{4kd+1} \rceil$.

Proof. Let $S_1 = \{1 \leq i \leq q : \Omega_i \leq 4kd + 1\}$ and $S_2 = \{1 \leq i \leq q : \Omega_i \geq 4kd + 2\}$. Then $S_1 \cup S_2 = \{1, 2, \dots, q\}$. By Lemma 4.12, there exists an injection $\phi : S_2 \to S_1$ defined by $\phi(i) = i - 1$, where $i \in S_2$. Then $\Omega_i + \Omega_{\phi(i)} < 2(4kd + 1)$ for any $i \in S_2$. It follows that

$$2n = \sum_{i=1}^{q} \Omega_i$$

= $\sum_{i \in S_1} \Omega_i + \sum_{i \in S_2} \Omega_i$
= $\sum_{i \in S_1 \setminus \phi(S_2)} \Omega_i + \sum_{i \in S_2} \Omega_i + \sum_{i \in \phi(S_2)} \Omega_i$
= $\sum_{i \in S_1 \setminus \phi(S_2)} \Omega_i + \sum_{i \in S_2} (\Omega_i + \Omega_{\phi(i)})$
 $\leq (|S_1| - |S_2|) \times (4kd + 1) + |S_2| \times 2(4kd + 1)$
= $(|S_1| + |S_2|) \times (4kd + 1)$
= $q \times (4kd + 1)$,

which implies $q \ge \lceil \frac{2n}{4kd+1} \rceil$, and thus $\gamma_p^d(C(n; \{1, k\})) \ge 2\lceil \frac{2n}{4kd+1} \rceil$ for $k = 4, n \ge 2k+1$ and $d \ge 2$.

Lemma 4.14. For k = 4, $n \ge 2k + 1$ and $d \ge 2$, suppose $\delta_i \ge 6$ for every $i \in \{1, 2, ..., q\}$. Let $s \in \{1, 2, ..., q\}$.

(a) If $(\varphi(s), \varphi(s+1)) = (1, 1)$, then $\delta_s \le 2kd - 1$ and $\delta_s \ne 2kd - 3$. (b) If $(\varphi(s), \varphi(s+1)) = (1, 4)$, then $\delta_s \le 2kd - 1$ and $\delta_s \notin \{2kd - 3, 2kd - 2\}$. (c) If $(\varphi(s), \varphi(s+1)) = (4, 1)$, then $\delta_s \le 2kd + 2$ and $\delta_s \notin \{2kd, 2kd + 1\}$. (d) If $(\varphi(s), \varphi(s+1)) = (4, 4)$, then $\delta_s \le 2kd - 1$.

Proof. (a) Suppose $(\varphi(s), \varphi(s+1)) = (1, 1)$. If $\delta_s \geq 2kd$ or $\delta_s = 2kd - 3$, then v_{i_s+kd-1} would not be dominated by D, a contradiction. Hence $\delta_s \leq 2kd - 1$ and $\delta_s \neq 2kd - 3$.

(b) Suppose $(\varphi(s), \varphi(s+1)) = (1, 4)$. If $\delta_s \ge 2kd$ or $\delta_s \in \{2kd-3, 2kd-2\}$, then v_{i_s+kd-1} would not be dominated by D, a contradiction. Hence $\delta_s \le 2kd-1$ and $\delta_s \notin \{2kd-3, 2kd-2\}$.

(c) Suppose $(\varphi(s), \varphi(s+1)) = (4, 1)$. If $\delta_s \geq 2kd + 3$ or $\delta_s = 2kd$, then v_{i_s+kd+2} would not be dominated by D, a contradiction. If $\delta_s = 2kd + 1$, then v_{i_s+kd+3} would not be dominated by D, a contradiction. Hence $\delta_s \leq 2kd+2$ and $\delta_s \notin \{2kd, 2kd+1\}$.

(d) Suppose $(\varphi(s), \varphi(s+1)) = (4, 4)$. If $\delta_s \ge 2kd$, then at least one of $\{v_{i_s+kd+2}, v_{i_s+kd+3}\}$ would not be dominated by D, a contradiction. Hence $\delta_s \le 2kd - 1$.

From Lemma 4.14, we can easily derive the following result.

Lemma 4.15. For k = 4, $n \ge 2k + 1$ and $d \ge 2$, suppose $\delta_i \ge 6$ for every $i \in \{1, 2, ..., q\}$. (a) If $(\varphi(s), \varphi(s+1), \varphi(s+2)) \in \{(1, 1, 1), (1, 4, 4), (4, 4, 4)\}$, then $\Omega_s \le 4kd - 2$. (b) If $(\varphi(s), \varphi(s+1), \varphi(s+2)) = (1, 1, 4)$, then $\Omega_s \le 4kd - 2$ and $\Omega_s \ne 4kd - 4$.

- (b) If $(\varphi(s), \varphi(s+1), \varphi(s+2)) = (1, 1, 1)$, then $\Omega_s \notin \{4kd, 4kd-1\}$. (c) If $(\varphi(s), \varphi(s+1), \varphi(s+2)) \in \{(1, 4, 1), (4, 1, 4)\}$, then $\Omega_s \notin \{4kd, 4kd-1\}$.
- (d) If $(\varphi(s), \varphi(s+1), \varphi(s+2)) = (4, 1, 1)$, then $\Omega_s \neq 4kd 1$.

Lemma 4.16. Suppose k = 4, $n \ge 2k + 1$ and $d \ge 2$. Then $\gamma_p^d(C(n; \{1, k\})) \ge 2\lceil \frac{2n}{4kd+1} \rceil + 2$ for $n \equiv 2kd, 4kd - 1, 4kd \pmod{4kd+1}$.

Proof. Suppose to the contrary that $\gamma_p^d(C(n; \{1, k\})) < 2\lceil \frac{2n}{4kd+1} \rceil + 2$, i.e., there exists a *d*-distance paired dominating set $D = \{x_i, y_i : i = 1, 2, ..., q\}$ such that

(4.8)
$$q = \lceil \frac{2n}{4kd+1} \rceil.$$

Let $x \in \mathbb{Z}$ be such that

(4.9)
$$2n = \sum_{i=1}^{q} \Omega_i = q \times (4kd+1) - x.$$

It follows from (4.8) and (4.9) that

(4.10)
$$\left\lceil \frac{2n}{4kd+1} \right\rceil = q = \frac{2n+x}{4kd+1}.$$

Since $2n \equiv 4kd, 4kd - 1, 4kd - 3 \pmod{4kd + 1}$, by (4.10), we have

$$(4.11) x = 1, 2, 4$$

for $n \equiv 2kd, 4kd, 4kd - 1 \pmod{4kd + 1}$, respectively.

Let $S_1 = \{1 \leq i \leq q : \Omega_i \leq 4kd+1\}$ and $S_2 = \{1 \leq i \leq q : \Omega_i \geq 4kd+2\}$. Then $S_1 \cup S_2 = \{1, 2, \dots, q\}$. By Lemma 4.12, there exists an injection $\phi : S_2 \to S_1$ defined by $\phi(i) = i - 1$, where $i \in S_2$. Then $\Omega_i + \Omega_{\phi(i)} < 2(4kd+1)$ for any $i \in S_2$.

If there exists $\ell \in \{1, 2, \ldots, q\}$ such that $\Omega_{\ell} \geq 4kd + 2$, by Lemma 4.12, we have $\delta_{\ell-1} \leq 5$. It follows from Observation 2.1 that $\Omega_{\ell-1} = \delta_{\ell-1} + \delta_{\ell} \leq 5 + (2kd+5) \leq (4kd+1) - 7$ and $\Omega_{\ell-2} = \delta_{\ell-2} + \delta_{\ell-1} \leq (2kd+5) + 5 \leq (4kd+1) - 7$, which implies $\ell - 2 \in S_1 \setminus \phi(S_2)$. It follows that

$$\sum_{i=1}^{q} \Omega_i = \sum_{i \in S_1} \Omega_i + \sum_{i \in S_2} \Omega_i$$
$$= \sum_{i \in S_1 \setminus (\phi(S_2) \cup \{\ell-2\})} \Omega_i + \Omega_{\ell-2} + \sum_{i \in \phi(S_2)} \Omega_i + \sum_{i \in S_2} \Omega_i$$
$$= \sum_{i \in S_1 \setminus (\phi(S_2) \cup \{\ell-2\})} \Omega_i + \Omega_{\ell-2} + \sum_{i \in S_2} (\Omega_i + \Omega_{\phi(i)})$$

$$\leq (|S_1| - |S_2| - 1) \times (4kd + 1) + ((4kd + 1) - 7) + |S_2| \times 2(4kd + 1))$$

= (|S_1| + |S_2|) \times (4kd + 1) - 7 = q \times (4kd + 1) - 7.

By (4.9), we have $x \ge 7$, which is a contradiction with (4.11). Hence

(4.12)
$$\Omega_i \le 4kd + 1$$

for every $i \in \{1, 2, ..., q\}$ when $n \equiv 2kd, 4kd, 4kd - 1 \pmod{4kd + 1}$.

For n = 2kd, i.e., q = 1, we may assume $(x_1, y_1) \in \{(v_0, v_1), (v_0, v_4)\}$. Then v_{kd+2} would not be dominated by D, a contradiction.

For n = 4kd - 1, 4kd, i.e., q = 2, by Observation 2.1, we have $\delta_j \leq 2kd + 5$ for j = 1, 2. It follows that $\delta_j \geq (4kd - 1) - (2kd + 5) = 2kd - 6 > 6$ for j = 1, 2. If $(\varphi(1), \varphi(2)) \in \{(1, 1), (4, 4)\}$, by Lemma 4.14 (a) and (d), we have $n = \delta_1 + \delta_2 \leq (2kd - 1) + (2kd - 1) = 4kd - 2$, a contradiction. If $(\varphi(1), \varphi(2)) \in \{(1, 4), (4, 1)\}$, by Lemma 4.14 (b) and (c), we have $n = \delta_1 + \delta_2 \neq 4kd, 4kd - 1$, a contradiction. Therefore, it remains to consider the case for $n \notin \{2kd, 4kd - 1, 4kd\}$, i.e., $q \geq 3$.

Case 1. $n \equiv 2kd, 4kd \pmod{4kd+1}$.

Then x = 1, 2. It follows from (4.9) and (4.12) that $4kd - 1 \leq \Omega_i \leq 4kd + 1$ for every $i \in \{1, 2, \ldots, q\}$, and there exists $\ell \in \{1, 2, \ldots, q\}$ such that $\Omega_\ell < 4kd + 1$. By Observation 2.1, we have that $\delta_i = \Omega_i - \delta_{i+1} \geq (4kd - 1) - (2kd + 5) = 2kd - 6 > 6$ for every $i \in \{1, 2, \ldots, q\}$. By Lemma 4.15 (a) and (b), we conclude that for any $i \in \{1, 2, \ldots, q\}, \ \varphi(i) \neq \varphi(i + 1)$. Since $q \geq 3$, by Lemma 4.15 (c), we derive a contradiction.

Case 2. $n \equiv 4kd - 1 \pmod{4kd + 1}$.

Then x = 4. It follows from (4.9) and (4.12) that $4kd - 3 \leq \Omega_i \leq 4kd + 1$ for every $i \in \{1, 2, \ldots, q\}$, and there exists $\ell \in \{1, 2, \ldots, q\}$ such that $\Omega_\ell < 4kd + 1$.

By Observation 2.1, we have that $\delta_i = \Omega_i - \delta_{i+1} \ge (4kd-1) - (2kd+5) = 2kd-6 > 6$ for every $i \in \{1, 2, \ldots, q\}$. If $\Omega_i \ge 4kd-1$ for every $i \in \{1, 2, \ldots, q\}$, by Lemma 4.15 (a) and (b), we conclude that for any $i \in \{1, 2, \ldots, q\}$, $\varphi(i) \ne \varphi(i+1)$. Since $q \ge 3$, by Lemma 4.15 (c), we have that $\Omega_i = 4kd+1$ for every $i \in \{1, 2, \ldots, q\}$, which is a contradiction. Hence, there exists $s \in \{1, 2, \ldots, q\}$ such that $\Omega_s \in \{4kd-2, 4kd-3\}$.

Case 2.1 Suppose $\Omega_s = 4kd - 3$.

By (4.9) and (4.12), we have that $\Omega_s = 4kd + 1$ for every $i \in \{1, 2, \ldots, q\} \setminus \{s\}$. It follows that either $\delta_s \leq 2kd - 2$ or $\delta_{s+1} \leq 2kd - 2$. If $\delta_s \leq 2kd - 2$, by Lemma 4.14, then $\Omega_{s-1} = \delta_{s-1} + \delta_s \leq (2kd+2) + (2kd-2) = 4kd$, a contradiction. If $\delta_{s+1} \leq 2kd - 2$, by Lemma 4.14, then $\Omega_{s+1} = \delta_{s+1} + \delta_{s+2} \leq (2kd-2) + (2kd+2) = 4kd$, a contradiction.

Case 2.2 Suppose $\Omega_s = 4kd - 2$.

By (4.9) and (4.12), there exists $t \in \{1, 2, \ldots, q\} \setminus \{s\}$ such that $\Omega_t = 4kd$ and $\Omega_i = 4kd + 1$ for every $i \in \{1, 2, \ldots, q\} \setminus \{s, t\}$. By Lemma 4.15, we conclude that $(\varphi(t), \varphi(t+1), \varphi(t+2)) \in \{(4, 1, 1), (4, 4, 1)\}.$

Suppose $(\varphi(t), \varphi(t+1), \varphi(t+2)) = (4, 1, 1)$. By Lemma 4.14 (a) and (c), we have that $\delta_t = 2kd + 2$ and $\delta_{t+1} = 2kd - 2$. By Lemma 4.14 (a) and (b), we have that $\Omega_{t+1} = \delta_{t+1} + \delta_{t+2} \leq (2kd - 2) + (2kd - 1) = 4kd - 3$, a contradiction.

Suppose $(\varphi(t), \varphi(t+1), \varphi(t+2)) = (4, 4, 1)$. By Lemma 4.14 (a) and (c), we have that $\delta_{t+1} = 2kd + 2$ and $\delta_t = 2kd - 2$. By Lemma 4.14 (b) and (d), we have that $\Omega_{t-1} = \delta_{t-1} + \delta_t \leq (2kd - 1) + (2kd - 2) = 4kd - 3$, a contradiction.

From Lemmas 4.10, 4.13 and 4.16, we have the following

Theorem 4.2. For
$$k = 4$$
, $n \ge 2k + 1$ and $d \ge 2$,

$$\gamma_p^d(C(n;\{1,k\})) = \begin{cases} 2\lceil \frac{2n}{4kd+1} \rceil + 2, & \text{if } n \equiv 2kd, 4kd-1, 4kd \pmod{4kd+1} \\ 2\lceil \frac{2n}{4kd+1} \rceil, & \text{otherwise.} \end{cases}$$

Acknowledgement. The research is supported by Chinese Natural Science Foundations (60973014), National Science Foundation of China (11001035), Specialized Research Fund for the Doctoral Program of Higher Education (200801411073) and Research Foundation of Dalian University of Technology (DLUT).

References

- B. Brešar, M. A. Henning and D. F. Rall, Paired-domination of Cartesian products of graphs, Util. Math. 73 (2007), 255–265.
- [2] T. C. E. Cheng, L. Y. Kang and C. T. Ng, Paired domination on interval and circular-arc graphs, *Discrete Appl. Math.* 155 (2007), no. 16, 2077–2086.
- [3] L. Chen, C. Lu and Z. Zeng, Labelling algorithms for paired-domination problems in block and interval graphs, J. Comb. Optim. (2008), in press (doi:10.1007/s10878-008-9177-6).
- [4] L. Chen, C. Lu and Z. Zeng, Hardness results and approximation algorithms for (weighted) paired-domination in graphs, *Theoret. Comput. Sci.* (2009), in press (doi:10.1016/j.tcs.2009.08.004)
- [5] L. Chen, C. Lu and Z. Zeng, Distance paired-domination problems on subclasses of chordal graphs, *Theoret. Comput. Sci.* 410 (2009), no. 47-49, 5072–5081.
- [6] P. Dorbec and S. Gravier, Paired-domination in P₅-free graphs, Graphs Combin. 24 (2008), no. 4, 303–308.
- [7] P. Dorbec, S. Gravier and M. A. Henning, Paired-domination in generalized claw-free graphs, J. Comb. Optim. 14 (2007), no. 1, 1–7.
- [8] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, 208, Dekker, New York, 1998.
- [9] T. W. Haynes and P. J. Slater, Paired-domination and the paired-domatic number, Congr. Numer. 109 (1995), 65–72.
- [10] T. W. Haynes and P. J. Slater, Paired-domination in graphs, Networks 32 (1998), no. 3, 199–206.
- [11] L. Kang, M. Y. Sohn and T. C. E. Cheng, Paired-domination in inflated graphs, *Theoret. Comput. Sci.* **320** (2004), no. 2-3, 485–494.
- [12] K. E. Proffitt, T. W. Haynes and P. J. Slater, Paired-domination in grid graphs, Congr. Numer. 150 (2001), 161–172.
- [13] H. Qiao, L. Y. Kang, M. Cardei and D. Z. Du, Paired-domination of trees, J. Global Optim. 25 (2003), no. 1, 43–54.
- [14] J. Raczek, Distance paired domination numbers of graphs, Discrete Math. 308 (2008), no. 12, 2473–2483.
- [15] E. Shan, L. Kang and M. A. Henning, A characterization of trees with equal total domination and paired-domination numbers, Australas. J. Combin. 30 (2004), 31–39.