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Abstract. Let G = (V, E) be a graph without isolated vertices. A set D CV
is a d-distance paired-dominating set of G if D is a d-distance dominating set
of G and the induced subgraph (D) has a perfect matching. The minimum
cardinality of a d-distance paired-dominating set for graph G is the d-distance
paired-domination number, denoted by ’yg(G). In this paper, we study the d-
distance paired-domination number of circulant graphs C(n;{1,k}) for 2 < k <
4. We prove that for k=2, n>5and d > 1,
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1. Introduction

All graphs considered in this paper are finite and simple. Let G = (V(G), E(G)) be
a graph without isolated vertices. The open neighborhood and the closed neighbor-
hood of a vertex v € V(G) are denoted by N(v) = {u € V(G) : vu € E(G)} and
N[v] = N(v) U{v}, respectively. For a vertex set D C V(G), N(D) = ngN(v) and

N[D] = ngN[v]. For D C V(G), let (D) be the subgraph induced by D.

A set D C V(G) is a dominating set if every vertex in V(G) — D is adjacent
to at least one vertex in D. A set D C V(G) is a paired-dominating set of G if it
is dominating and the induced subgraph (D) has a perfect matching. The paired-
domination number v,(G) is the cardinality of a smallest paired-dominating set of
G. This type of domination was introduced by Haynes and Slater in [9,10] and is
well studied, for example, in [1-7,11-13,15].

For two vertices « and y, let d(z,y) denote the distance between x and y in G.
A set D C V(G) is a d-distance dominating set of G if every vertex in V(G) — D
is within distance d of at least one vertex in D. The d-distance domination number
74(G) of G is the minimum cardinality among all d-distance dominating sets of G.
For a more detailed treatment of domination-related parameters and for terminology
not defined here, the reader is referred to [8].

The d-distance paired-domination was introduced by Joanna Raczek [14] as a
generalization of paired-domination. For a positive integer d, a set D C V(G) is
a d-distance paired-dominating set if every vertex in V(G) — D is within distance
d of a vertex in D and the induced subgraph (D) has a perfect matching. The d-
distance paired-domination number, denoted by ’yg(G), is the minimum cardinality
of a d-distance paired-dominating set.

In the same paper, Joanna Raczek investigated properties of the d-distance paired-
domination number of a graph. He also gave an upper bound and a lower bound on
the d-distance paired-domination number of a non-trivial tree T in terms of the size
of T and the number of leaves in T and characterized the extremal trees.

The circulant graph C(n; S) is the graph with the vertex set V(C'(n; S)) = {v;]0 <
i < n — 1} and the edge set E(C(n;S)) = {vv;|0 < 4,j < n—1,( —j) mod
nesy SC{l2,..., |5k}

In this paper, we determine the exact d-distance paired-domination number of
the circulant graphs C(n; {1,k}) for 2 < k <4 and d > 1. We prove that for k = 2,

n>5andd>1,
n
2
[2kd+3w
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fork=3,n>7and d > 1,
O (119 =2 | gt |

and for k=4 and n > 9,
(i) if d =1, then
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(i) if d > 2, then

. 2[ 251 +2, if n=2kd, 4kd — 1,4kd (mod 4kd + 1)
Y, (C(n; {1,k})) = o .
2l a1y otherwise.

In this paper, let D = {x;,y; : i = 1,2,...,q} be an arbitrary d-distance paired-
dominating set of C(n;{1,k}), where {z;y; : i =1,2,...,q} is a perfect matching of
(D), and let

DP = {(xhyl) vi= 1723"'7q}‘

For each pair (z;,y;) € D, with j € {1,2,...,¢}, for convenience, we denote
T = vy, and y; = Vi 41 OF Yj = Uy, 1k, i.€., (Vi;,0i;41) € Dy or (v, vi,1%) € Dp,
where 0 =17; <ip <--- < iy < 1.

We also denote

(Sj = (ij.;,.l - ij) mod n
for j =1,2,...,q, where the subscripts are modulo q.

For example, we consider the case for C(12;{1,4}). Let d = 4, D = {v1,v2,v3,v5,
vg, Vg }, and let D, = {(z1,41), (z2,y2), (x3,y3)} where (x1,11) = (v1,05), (X2,y2) =
(vg,v3) and (x3,y3) = (vs,vg). That is, i1 = 1,i5 = 2,i3 = 8. We check that
51=(2-1) mod 12=1,62=(8—2) mod 12=6and 3 = (1—8) mod 12 =75.

Clearly,

n=20 4 +0;
Throughout the paper, the subscripts are taken modulo n when it is unambiguous.

2. d-distance paired-domination number of C(n;{1,2})

In this section, we shall determine the exact d-distance paired-domination number
of C(n;{1,k}) for k=2 and d > 1.

For the circulant graphs C(n; {1, k}), if there exists ¢ € {1,2,...,q} such that
0¢ > (2d + 1)k +2 for k > 2 and d > 1, then v;,{ (441)x+1 would not be dominated
by D. Hence, we have:

Observation 2.1. Suppose k > 2 and d > 1. Then 1 < §; < (2d+ 1)k +1 for every
jed{1,2,...,q}.

Theorem 2.1. For k>2,n>2k+1 and d > 1, 43(C(n; {1,k})) > Q(WW

Proof. By Observation 2.1, we have n = 1 +-- -+ 94 < ¢ X ((2d+ 1)k +1), and thus,

Theorem 2.2. Fork=2,n>2k+1 and d>1, v} (C(n;{1,k})) = 2[ 55551

Proof. Let D be a d-distance paired-dominating set of C(n;{1,k}) for k = 2. Let
m = |z ], t =n mod (2kd + 3) and

{vrd+3)ir Viakdts)ite : 0 < i <m — 1}, if t = 0;
{vakd+3)is V(2kd+3)it2 0 <0 <m — 1} U{0(2rd43)m—15 V(2kd+3)m )

ift=1;
D = ’ .
{v2rd+3)ir Vzkdta)ite 1 0 <4 <m — 1} U {V(2kd+3)m> V(2kd+3)m+1 5
if t =2;

{v2rd+3)ir Vizkdt3)i+2 : 0 <@ < m}, otherwise.
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It is not hard to verify that D is a d-distance paired dominating set of C'(n; {1, k}) for
k =2 with |D| = 2[ 577551 Hence, YHC(n; {1,k})) < 2l grqs | fork=2andd > 1.
On the other hand, by Theorem 2.2, we have that v5(C(n; {1,k})) > 2[ 55551 for
k=2 and d > 1. The result immediately holds. |

In Figure 1, we show the d-distance paired-dominating sets of C(n;{1,2}) for
d=1and 7 <n <14, and for d = 2 and 11 < n < 22, where the vertices of
d- distance paired dominating sets are in dark.

G, stands for C'(n; {1, k}) in all figures of this paper.

01010.0.0.0.0

"/p Gr2 Ggo) =4 "/p Ghopz) =4 G G122>_4 Gis2
p(Gia2) =4 ’)p (Guipp) =2 ’7,, (Gi22) = G132 0142 =4 "/ (sz 0162 =4

(Gls 2)=4  7(Gup) =4 ’),,(Gzo 2) =4

Figure 1. The d-distance paired dominating sets of C(n;{1,2}) for d = 1 and
7<n <14, and for d =2 and 11 < n < 22.

3. d-distance paired-domination number of C(n;{1,3})

In this section, we shall determine the exact d-distance paired-domination number
of C(n;{1,k}) for k =3 and d > 1.

Lemma 3.1. Fork=3,n>2k+1 andd > 1, v4(C(n;{1,k})) < 2 gpa3 -

Proof. Let D be a d-distance paired-dominating set of C(n;{1,k}) for k = 3. Let
m = | g5z, t = n mod (2kd +2) and

{vkd+2)is V2kd+2)it1 1 0 < i <m — 1}, if t = 0;
D= {vrdt2)i> Vkdt2)it1 2 0 <0 <m — 1} U{V(2kd+2)ym—1, V(2kd+2)m ), if t = 1;
{V(2kd+2)is V(2kd+2)i+1 : 0 < i < m}, otherwise.
It is not hard to verify that D is a d-distance paired dominating set of C'(n; {1, k})
for k = 3 with |D| = 2[551. Hence, v(C(n;{1,k})) < 2[5 for k = 3 and
d>1. 1
In Figure 2, we show the d-distance paired-dominating sets of C(n;{1,3}) for
d=1and 8 <n <16, and for d = 2 and 14 < n < 28, where the vertices of
d-distance paired dominating sets are in dark.



On the Distance Paired-Domination of Circulant Graphs 5

”/p(Gx.:s) =2 "1p(G9.3) =4 'Y;;(Gl(),fi) =4

72(Gass) =4 72 (Gaa3) = 4 72(Gar3) = 4 72 (Gass) = 4

Figure 2. The d-distance paired dominating sets of C(n;{1,3}) for d = 1 and
8 <n <16, and for d =2 and 14 < n < 28.

Lemma 3.2. Fork=3,n>2k+1 andd > 1, v4(C(n;{1,k})) > 2 grar3 -

Proof. Let D = {a;,y; : i = 1,2,...,q} be a d-distance paired dominating set of
C(n;{1,k}) for k = 3 with the minimum cardinality. By Observation 2.1, we have
that

(3.1) 1<0; <2kd+4

for every j € {1,2,...,q}.

Suppose that there exists £ € {1,2,...,q} such that §; > 2kd + 3. Then v;,rd+2
would not be dominated by (¢, y¢) and (x¢+1, ye+1). To dominate v;, 4442, we have
vi,+2 € D. It follows that v;,_1 € D, which implies (z¢—1,ye—1) = (Viy—1,Vi,+2);
and thus

(3.2) 0p—1 =1.
Let
S1={i:1<i<q,2kd+3<6; <2kd+4},
So={i:1<i<¢q,2<6; <2kd+ 2},
S3={i:1<i<gq,d =1}

By (3.1) and (3.2), we have that {1,2,...,q} = 51 U S2 U S5, and there exists an
injection ¢ : S; — S5 defined by ¢(i) = i — 1 for any i € Sy, ie., |S1] < |Ss]. It
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follows that

n=6++6,

S ILEDILEDIL
€5, 1€S5 1€S3
< (2kd + 4)|S1| + (2kd + 2)|S2| + | S3]
= (2kd + 2)(|S1] + [S2| + [S3]) + 2(|S1| — |S3]) — (2kd — 1)| S5
< (2kd + 2)q,

which implies ¢ > [5;7751, and thus YUC(n; {1, k})) > 2] spqs ] for k = 3 and

d>1. 1

As an immediate consequence of Lemmas 3.1 and 3.2, we have the following:

Theorem 3.1. Fork=3,n>2k+1 and d>1, v}(C(n;{1,k})) = 2[ 55551

4. d-distance paired-domination number of C(n;{1,4})

In this section, we shall determine the d-distance paired domination number of
C(n;{1,k}) for k=4 and d > 1.

We shall first consider the case for d = 1. At this time, the d-distance paired-
domination number 'yg is just the paired-domination number ~,,.

Lemma 4.1. Forn > 9,

20327 +2, ifn=15,22 (mod 23);

2737, otherwise.

7p(C(n;{1,4})) < {

Proof. Tt suffices to give a paired-dominating set D of C(n;{1,4}) with the cardi-
nality equaling to the exact values mentioned in this lemma.

Let my = |g5] and ¢t = n mod 23. Then n = 23m; +¢.

For 2k +1 <n <22, let

{vo,v1,v7, 08}, it 9 <n <14 and n # 12;
{vo,v1,v2,v3}, if n =12;
D= {vo,v1,v7,v8,v13, 14}, if n = 15;
B {vo, v1,v7,vs, V14, V15 }, if 16 <n <21 and n # 19;
{vo,v1,v7,v11, 13, v17}, if n =19;

{vo, v1,v7,v8,v14, V15, V20, v21}, if n=22.
For n > 23 and ¢ # 5, let my = [ L],

Do1 = {va3i, U23i41, U23i47, V235411, U23i413, V2zit17 - 0 <@ <my — 1},

D2 = {v23m, +7i> V23my +7i+1 : 0 <4 <mgy — 1}
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and
D017 lft = O,
Do1 U {v23m;—1,v23m, } ift =1;
p— ) DorU{vasmy, vazmy 41}, if2<t<7andt+#5;

Do1 U Do2 U {023m, +7ma—15V23my+7ms },  if t = 8,15,22;
D()l @] D02 @] {v23m1+7m2;v23m1+7m2+1}a if 9 § t S 21 and ¢ # 12, 15, ].9,
Do1 U Do2 U {023m, +7mas V23my +7mata ), if t =12,19.

n—>51
23

For t =5, let m3 = where n > 51,
Do3 = {23, V23i 44, U23i 410, V23i+11, V23i+17, V23i421 : 0 < @ <mg — 1},

Doy = {V23ms4+10+7i> V23mg+1147 : 0 <4 < 4}

and
{vri,v7i41 2 0 < i < 3}, if n = 28;
D= {vri, 07541 : 0 <0 <4} U {vss, v39,v41,v45}, if n = 51;
Dy3 U Doy U {'U23m3»'023m3+47 Vn—=6, Un,Q}, if n > 51.

It is not hard to verify that D is a paired-dominating set of C'(n; {1,4}) with the
cardinality equaling to the exact values mentioned in this lemma. 1

In Figure 3 and Figure 4, we show the paired-dominating sets of C(n;{1,4}) for
9 <n <22 and 23 < n < 46, respectively, where the vertices of paired-dominating
sets are in dark.

Y (Gi64) =6 Yp(Gi7,4) =6 Yp(Giga) =6 p(Gro,a) =6 Yp(Ga0,4) =6 Yp(Ga1,4) =6 Yp(Gaz4) =8

Figure 3. The paired-dominating sets of C'(n; {1,4}) for 9 <n < 22.

For convenience, let
V' (i,t) = {viy; € V(C(n; {1,4})) : 0 < j <t —1},

where i € {0,1,...,n—1} and t € {1,2,...,n}.
For each vertex v € V(G), we define a function rdd counting the times that v is
re-dominated by vertex pairs {z;,y;} in D as follows:

rdd(v) = [{i: 1 <i<q,v € N[{z;,y:}]}H - 1.
For a vertex set S C V(G), let

rdd(S) = ) rdd(v).

veES
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et

X%

Tp(Gaza) =12 Vp(Gaaa) = 12 Tp(Gasa) = 14 p(Gaga) =12

Figure 4. The paired-dominating sets of C(n; {1,4}) for 23 < n < 46.

Since x is not adjacent to y for any two vertices z,y € N(v) where v € V(C(n;{1,4})),
by the definition of rdd, we have:

Observation 4.1. rdd(v) = [N(v) N D| — 1 for every vertex v € V(C(n; {1,4})).
Lemma 4.2. Suppose n > 23. Then rdd(V'(i, 23)) > 1 for every i € {0,1,...,n —

1}.
Proof. Suppose to the contrary that there exists £ € {0,1,...,n — 1} such that
(4.1) rdd(V' (¢,23)) = 0.

Suppose that there exists s € {¢,£+ 1,...,¢ + 21} such that (vs,vs+1) € Dp.
For s € {£,£+1,...,0 4+ 10}, by (4.1), we have vs_1,Vs12, Vs13, Ustd, Vst+5, Us+65
Vsit8, Vst € D. To dominate vs43, we have vs17 € D. It follows that vs410 € D.
Since (D) contains a perfect matching, we have vgsy1; € D. It follows that vsy13 € D
(see Figure 5(T) for s = £). Thus, vs19 would not be dominated by D, a contradiction.
For s € {{+ 11,4+ 12,..., ¢+ 21}, by symmetry, we derive a contradiction. Hence,
there does not exist s € {¢,£+1,...,¢+ 21} such that (vs,vsy1) € Dp.
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To dominate vgyg9, we have that there exists s € {¢ + 1,...,¢ + 13} such that
(vs,Vs14) € Dp. By (4.1), we have vs_9, Vst1,Vst2, Ust3, Uste & D (see Figure 5(II)
for s = £+ 1). It follows that vs42 would not be dominated by D, a contradiction.

The lemma follows. 1
i
TR STRGR GRS oS S S S S S S S SR SR SR R S SR SR SR S SR SR SR R SR
Ve—4 Ve—2 Ve Ve+2 Vi+4 UVe+6  Ve4s U410 Ur412 Veb14 V416 UVe418 Ve420 W+2{2 V24 Vi426
;o ‘ '
(I) {vs,vs41} C DUV (£,23) for s = ¢
i
RIS ST ST S ST ST ST ST ST S SS oS oS S S S ST ST SS ST S SR S ST

Vo—y Ve—2 Ve V42 Ve+4a Ve+6 Ve+s V10 Ue+12 Ur414 Ve+16 Ve+18 V420 W+212 Vo424 V426

[
(11) {vs, vs4a} C DUV (£,23) for s = £+ 1

Figure 5. The graphs for the proof of Lemma 4.2.

Lemma 4.3. 7,(C(n;{1,4})) > 2[32] forn > 9.

Proof. Let D = {z;,y; : i = 1,2,...,¢q} be a minimum paired-dominating set of
C(n;{1,4}) where {z;y; : i = 1,2,...,q} is a perfect matching of (D). Since each
pair {x;,y;} dominates exactly 8 vertices, we have 8¢ —n > 0. It follows that
¢=[5]
For 9 <n <22 and n # 16, since [%] = [32], we have 7,(C(n; {1,4})) > 2[22].
For n = 16, it is easy to verify that two pairs of vertices would not dominate
all vertices in C(n;{1,4}). Hence, ¢ > 3 = [32], which implies v, (C(n;{1,4})) >

23
2[2].
For n > 23, by Lemma 4.2, we have 8¢ > n + [2] = [Z2]. It follows that
¢ > [gx [531] >[5 x 531 = [35], which implies v,(C(n; {1,4})) > 2[33]. |

For convenience, we define
n—1
R=(rdd(V'(i,23)) - 1).
i=0

Lemma 4.4. If there exists £ € {0,1,...,n—1} such that rdd(ve) > 2, then R > 24.

Proof. By Observation 4.1, we have that | N (v,)ND| = rdd(ve)+1 > 3. Since |N(vg)N
D| < |N(uvp)| = 4, we have {vp41,vp44} C D or {vp_1,v_4} C D, say {vey1,veqa} C

D. Tt follows that rdd(veis) > 1, and thus ® > S0 (xdd(V'(3,23)) — 1) >
—17<i<e
18 x (rdd(wve) + rdd(vess) — 1) > 18 x (2+ 1 —1) > 24. The lemma follows. 1

In what follows, we admit that rdd(v;) € {0,1} for every ¢ € {0,1,...,n—1}. Let
Vi, Vig, - - - Ui, De all the vertices re-dominated once, where ¢ = rdd(V (C(n; {1,4})))
and 0 <i; <ip < --- < iy <n—1. We define

O = ij41 — 1
for j =1,2,...,t, where the subscripts are modulo ¢. Obviously, ©1 + -+ 0; = n.

Lemma 4.5. If R < 24, then ©; + ©,11 > 22 for every j € {1,2,...,t} where
t =rdd(V(C(n;{1,4}))).
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Proof. Choose arbitrary ¢ € {1,2,...,t}. By the definition of R, we have =
i (23—0,;) > (23—0y)+ (23 —0y11) =46 — (©y + Oy11). Since R < 24, we have
46— (O + Or11) < 24. Tt follows that O + Ops1 > 22. The lemma follows. |
Lemma 4.6. Forn > 23, if there exists £ € {0,1,...,n — 1} such that vy € D and
rdd(ve) = 1, then R > 24.

Proof. Assume to the contrary that # < 24. By Lemma 4.4, we have that rdd(v;) €
{0,1} for every i € {0,1,...,n — 1}. By Observation 4.1, we have |N(v,) N D| =
rdd(vg) + 1 = 2. Let N(v) N D = {wy,ws}. By symmetry, we have {w;,ws} €
{Hve—1,ve41}, {ves1, vesa}, {ves1, ve—a}, {Ve—a,ve4a}}. Since D contains a perfect
matching, we infer that
rdd(w;) =1 or rdd(ws) = 1.

That is, there exists j € {1,2,...,t} such that ©; < 4. By Lemma 4.5, we have that
(42) @j—l > 18 and @j+1 > 18.

From (4.2), we have {wi,wo} & {{vet1,vera}, {verr, ve-a}} I {wi,wo} =
{ve—1,ve41}, by (4.2), we have V (£ — 5,11) N D = {vp_1,ve,ve41} (see Figure
6(I)), which is contradicted with the fact that D contains a perfect matching.

If {wr,we} = {ve—g,vesa}, by (4.2), we have vy_o,vpt2,Ver3, V046 & D. Since
ver1 & D, we have that veyo would not be dominated by D (see Figure 6(II)), a
contradiction. 1

Figure 6. The graphs for the proof of Lemma 4.6.

As an immediate consequence of Lemmas 4.4 and 4.6, we have the following:
Corollary 4.1. Suppose (x,y) € D, and ® < 24. Then N(z) N D = {y}.

Lemma 4.7. Suppose n > 23 and R < 24. If there exists £ € {0,1,...,n— 1} such
that vg € D and rdd(ve) = 1, then one of the following conditions holds.

(a) V: (0 —=5,11)ND = {vy—5,0¢—1,Vp41,Ve45};

(b) V(£ —=4,9)ND = {ve_4,v¢-3,Ve43, Ve 44}

Proof. By Lemma 4.4, we have that rdd(v;) € {0,1} for every i € {0,1,...,n — 1}.
By Observation 4.1, we have |N(v;) N D| = rdd(vg) + 1 = 2. By symmetry, we
distinguish four cases.

Case 1. N(v) N D = {vp_1,vp41}-

By Lemma 4.6, we have |{v¢—5,v¢—2, 0043} N D| = [{ve—3, veq2,0045} N D| = 1. If
ve—g € D, then rdd(ve—3) = rdd(ves2) = 1 (see Figure 7(I) where the vertices that
re-dominated once are in gray). By Lemma 4.5, we derive a contradiction. Hence
vo—o € D. By symmetry, we have vp1o & D. If vy13 € D, then rdd(ves2) = 1. Let
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i; = {. By Lemma 4.5, we have that ©; = 2, ©,_1 > 20 and ©;; > 20. It follows
that ve_3,ver5 ¢ D (see Figure 7(II)). Since vg,vero ¢ D, we have that D does
not contain a perfect matching, a contradiction. Hence vyy3 ¢ D. By symmetry,
we have vy_3 € D. Therefore, we conclude that vy_5,vers € D (see Figure 7(III)).
Since vy_4, verqa € D, we have v’ (0 =5,11)ND = {vp—5,Vp—1, Vet1, Vet5}-

-

Vet2 Vet+4 Vet+6 Ve—6 Ve—4 Ve—2 Ve Vo2 Vo+4a Ve+6

> o
-2 Ve Ve+2 Upta  Vit6 Veo— Ve—a Vg2 Ve Ve+2  Vr+4 Vit

o
Ve—6 Ve—a Ve—2 Ve Vo2 Vetd Ve+6 Ve+8  Ve410  Ve+12 U414 Ue416 V18
)
.’T’v”””"” T ==
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(VIII)

Figure 7. The graphs for proof of Lemma 4.7.

Case 2. N(v) N D = {vp41,Vp44}-

Then rdd(veys) = 1. Let 4; = ¢. By Lemma 4.5, we have that ©; =5, ©,_1 > 17
and ©;41 > 17. It follows that ve_2, veyo, Veq3, ve4s € D. Since D contains a perfect
matching, we have vy_3 € D. It follows that vy_5 & D (see Figure 7(IV)). Thus,
vp_1 would not be dominated by D, a contradiction.

Case 3. N(v¢) N D = {vp41,v0—4}.

Then rdd(ve—3) = 1. Let i; = ¢ — 3. By Lemma 4.5, we have that ©; = 3,
O;_1 > 19 and ©;11 > 19. It follows that vy_g, vi—3,v—2,ve+3 ¢ D. To dominate
{ve—2,v¢-1}, we have vpyo,vp_5 € D. It follows that veya,vets, Vets, verr &€ D. To
dominate vg44, we have vypg € D. It follows that vyyg,vet10,Ve411 € D. Since D
contains a perfect matching, we have vy112 € D. It follows that vey14 € D (see
Figure 7(V)). Thus, v¢119 would not be dominated by D, a contradiction.

Case 4. N(v)) N D = {vp_4,vp44}.

By Lemma 4.6, we have |{vs_g,v¢—5, vg—3} N D| = [{ves3, vets5,ve48} N D] = 1.

Suppose vy_g € D. By Lemma 4.5, we have vy_g ¢ D. By Corollary 4.1, we
have vy_7,v¢—5,v0—3 € D. If vy1o € D, then either v,_o would not be dominated
by D or D would not contain a perfect matching. Hence v,12 € D. It follows that
rdd(veys) = 1. Let ¢; = . By Lemma 4.5, we have that ©; = 3, ©;_1 > 19 and
©j41 > 19. It follows that ve_19,ve—2 € D (see Figure 7(VI)), and thus v,_s would
not be dominated by D, a contradiction. Hence vy_g ¢ D. By symmetry, we have
vers € D.

Suppose vy_5 € D. By Corollary 4.1, we have vy_g,v¢_3 € D. By Lemma 4.5,
we have vy_o & D. Since vy_1 € D, to dominate vy_s, we have vpyo € D. It
follows that rdd(veqs) = 1. Let i; = ¢. By Lemma 4.5, we have that ©; = 3,
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©;_1 > 19 and ©,41 > 19. It follows that v,ys, vers & D (see Figure 7(VII)). Since
Vps1,Ve—o & D, we have that D does not contain a perfect matching, a contradiction.
Hence vy_5 ¢ D. By symmetry, we have vyy5 & D.

Therefore, we conclude that vy_3,ve13 € D (see Figure 7(VIII)). By Corollary
4.1, we have vy_o, voyro € D, i.e., V' (6 —4,9ND = {vp_4,v0-3,V0+3, Vota}

This completes the proof of Lemma 4.7. 1

Lemma 4.8. Lett =rdd(V(C(n;{1,4}))). If R < 24, then the following conditions
hold.

(a) ©; € {7,15,23} for every i € {1,2,...,t};
(b) {1 <i<t:0; =15} is even.

Proof. (a)Let A; = {0 <i<n—1:rdd(v;) =1,V (i=5,11)ND = {v;_5,v;_1,vi41,

’Ui+5}} and Ay = {0 <i<n-—1: I‘dd(’l}l) =1,V (i—47 9)ﬂD = {Ui,4,’()i,37’l)¢+3,7)i+4}}.
By Lemma 4.7, we have A; N Ay = () and

(4.3) AjUA; ={0<i<n-—1:rdd(v;) =1}.

By Lemma 4.2, we have ©; < 23 for every i € {1,2,...,t}. Let © be an arbi-
trary integer of {O1,...,0;}. That is, there exists £ € {0,1,...,n — 1} such that
rdd(v¢) = rdd(vere) = 1 and rdd(vey ;) = 0 for every j € {1,2,...,0—1}. To prove
(a), it suffices to show © € {7, 15,23}.

Case 1. { € A;.

By Corollary 4.1, we have vpi¢, ver9 € D. By Lemma 4.5, we have vyy7, vots, Vot+10
¢ D. To dominate {vs17,vsts}, we have vpy11,ve412 € D. It follows from Corollary
4.1 that vey13,ve415,0e416 € D. By Lemma 4.5, we have vpy14,v0417 € D. To
dominate vgy14, we have vpy15 € D. Since D contains a perfect matching, it follows
from Corollary 4.1 that [{vg419,ve402} N D] = 1.

If vor19 € D, then rdd(ves15) = 1 and £ + 15 € Ay (see Figure 8(I) where the
vertices that re-dominated once are in gray). Thus, © = 15. If vy490 € D, by (4.3),
we have vpqa4, o428 € D and rdd(veyes) = 1, ie., £+ 23 € Ay (see Figure 8(II)).
Thus, © = 23.

Case 2. [ € A,.

By Corollary 4.1, we have vs15, vo47, ve+s € D. By Lemma 4.5, we have vy, Vot
¢ D. To dominate vs16, we have vy119 € D. Since D contains a perfect matching,
it follows from Corollary 4.1 that [{ves11,ve414} N D| = 1.

If vg111 € D, then rdd(vey7) =1 and £+ 7 € As (see Figure 8(I11)). Thus, © = 7.
If vpr14 € D, by (4.3), we have vyi16, Ver20 € D and rdd(ves15) = 1, ie., £+ 15 € Ay
(see Figure 8(IV)). Thus, © = 15.

From the above discuss, we see that ©; € {7,15,23} for every 7 € {1,2,...,t} if
R < 24.

(b) Let v;,, vy, . .., v;, be all the vertices that re-dominated once, where 0 <47 <
ig < -+ <ip <n—1 Then ©; =4;.1 —i; for j =1,2,...,t. By the arguments of
(a), we conclude that ©; = 15 if and only if either i; € A; and i,41 € Ag, ori; € A
and ;41 € Aj. Note that 4411 = i1. We infer that [{1 <i<t:0; =15}|is even. |
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Ve+6 Ve+8  Ve+10  Ve+12 Ur414 Ve16 V18 Ur420  Uet22 Ur424
1) vpy19 € D and rdd(ves15) =1
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= d
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~
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Figure 8. The graphs for proof of Lemma 4.8.

Lemma 4.9. v,(C(n;{1,4})) > 2[32] + 2 for n = 15,22 (mod 23).

Proof. Suppose to the contrary that v,(C(n; {1,4})) < 2[32] + 2, i.e., there exists
a paired dominating set D = {z;,y; : ¢ =1,2,..., ¢} such that

(4.4) = Bﬂ .

For n = 15 (22), it is not hard to verify that two (three) pairs of vertices would
not dominate all vertices in C'(n;{1,4}). Hence, we need only consider the case for
n > 23.

Since each pair {z;,y;} in C(n;{1,4}) dominates exactly 8 vertices, we have 8¢ —
n =rdd(V(C(n;{1,4}))). By the definition of R, we have that 23 x (8¢ — n) = 23 x
rdd(V(C(n; {1,4}))) = 23 X X pevomifr.ap) 1d(0) = D gcicn_q 1dd(V'(i,23)) =
n+ R, and thus ¢ = 3";7?/8. By (4.4), we conclude that ® = 8 for n = 15 (mod 23)
and i = 24 for n = 22 (mod 23).

By Lemma 4.4, we have that rdd(v;) € {0,1} for every ¢ € {0,1,...,n —1}. Let
t = rdd(V(C(n;{1,k}))). By Lemma 4.8, we have that ©; € {7,15,23} for every
ie{1,2,. .t ifR<24 Let Ny =[{1<i<t:0;,=7Hand Nys = |[{1 <i<t:
®i = 15}‘ Then & = (23—23) X (t—N7—N15)—|—(23—7) X N7—|—(23— 15) X N15 =
16N7 + 8Njs.

For # = 8, we have (N7,Ni5) = (0,1). For R = 24, we have (N7, Ny5) =
{(1,1),(0,3)}. In either case, we have that Ni5 is odd, which is contradicted with
Lemma 4.8 (b). 1

From Lemmas 4.1, 4.3 and 4.9, we have the following:

Theorem 4.1. Forn > 9,
2[38] 2, if n=1522 (mod 23);

2 [% , otherwise.

1(C(n; {1,4})) = {

In the rest of this section, we shall consider the case for d > 2.

For the readers’ convenience, we shall show the cases for the vertices dominated
by a specific vertex pair (z,y) € D, in Figure 9, where the vertex pair (z,y) are in
dark and the vertices dominated by the vertex pair (x,y) are in gray.
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Vt4(d—1)k+1 Vtt+dk+1

Vt+dk Vit (d4+1)k

(1) (,y) = (ve, verk) for k=4

Figure 9. The cases for the vertices dominated by a specific vertex pair.

Lemma 4.10. Fork=4,n>2k+1 and d > 2,

. 2]'4]3;11-\ +2, ifn=2kd,4kd — 1,4kd (mod 4kd + 1)
T (C(n;{1,k})) < on .
2] a1 s otherwise.

Proof. Tt suffices to give a d-distance paired-dominating set D of C(n;{1,k}) for
k =4 and d > 2 with the cardinality equaling to the exact values mentioned in this
lemma.

For 9 < n < 4kd, let

{vo, va}, if 9 <n <2kd—1;
{v0,v1, Vakd—2, V2kd—1}, if n = 2kd;

D= {vo, v1, Vard—1,V2ra}, if 2kd +1 <n <2kd+ 3;
{vo, V1, Vard—1,V2kd+3}, if 2kd +4 <n < 4kd — 2;

{vo, V1, Vakd—1, Vokd+3, Un—2,Un—1}, if n =4kd —1,4kd.
Forn > 4kd +1,let a =4kd+1, 3 =2kd -1, m; = | 2] and t = n mod a. Let
Do1 = {Vai, Vait1, Vait+ss Vaitg+a : 0 <1 <my — 1},

DO2 = {Uaml y Vami+1; Vam 443> Uam1+,(3+4}»

and
DOla ift = O7
D01 U {Uaml—lavam1}7 if t = 17
D()l @] {vaml,vaml—&-l}a if 2 S t S 2kd — 1
and t # 2kd — 3;
D = Dy U {Uam1,5,’l)am1,1}, if t = 2kd — 3;

Doy U {Uaml7'Uaml-Q—lyvaml-‘rﬁ—lv'Uaml-i-ﬁ}a if t = 2kd;

Doy U {UamlaUam1+1yvam1+ﬁavam1+ﬁ+l}y if 2kd +1 <t < 2kd + 3;
D01UD02, 1f2kd+4§t§4kd*2,
D01 @] D02 @] {'Un,Q, ’Unfl}, if t =4kd — ]., 4kd.

It is not hard to verify that D is a d-distance paired dominating set of C'(n; {1, k})
for £k = 4 and d > 2 with the cardinality equaling to the exact values mentioned in
this lemma. 1

For convenience, we give a map ¢ : {1,2,...,q} — {1,4} defined by ¢(s) =1 for
(xs7ys) = (Uisvvierl) and 90(8) = 4 for (xsays) = (Uisﬂvis+4)'
Lemma 4.11. Suppose k=4,d>2 and ¢ € {1,2,...,q}.

(a) If (55_1 Z 2kd+ 3, then 5@ S 2.
(b) If p(€) =1, then either 6p—1 <5 or 6y < 2kd — 1.
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(¢) If p(£) = 4, then either 6p—1 < 2 or 6y < 2kd + 2.
(d) If p(£) = p({ + 1) = 4 and 2kd < 6 < 2kd + 2, then either dp_1 < 2 or
Opp1 < 2.

Proof. (a) Suppose d;—1 > 2kd+3. If 6, > 3, then v;,_gq+2 would not be dominated
by D, a contradiction. Hence §, < 2.

(b) Suppose ¢(¢) = 1. If §_1 > 6 and &y > 2kd, then v;,4q—1 would not be
dominated by D, a contradiction. Hence either d,_1 <5 or §, < 2kd — 1.

(c) Suppose p(f) = 4. If 6,0—1 > 3 and 0, > 2kd + 3, then v;, 4 r4+2 would not be
dominated by D, a contradiction. Hence either d,_; < 2 or §, < 2kd + 2.

(d) Suppose p(f) = p(f +1) = 4 and 2kd < §; < 2kd+ 2. If §p_1; > 3 and
de41 > 3, then at least one of {v;,4kd+2, Vi, +kd+s} would not be dominated by D, a
contradiction. Hence either §;—1 < 2 or dpy1 < 2. |

We denote Q; = §;+0;41 fori = 1,2, ..., q, where the subscripts are taken modulo
q.

Lemma 4.12. Suppose k = 4 and d > 2. Let £ € {1,2,...,q}. Then either
Qp < 4kd + 1, or 2255 < 4kd 4+ 1 and 6,y < 5.

Proof. Suppose

(4.5) Qp > 4dkd + 2.

By Observation 2.1, we have that §; < 2kd + 5 for every i € {1,2,...,q}. If
0¢ < 2kd—4 or §py1 < 2kd—4, then Qp = §p+6p41 < (2kd+5)+ (2kd—4) = 4kd+1,
a contradiction with (4.5). Therefore,

(4.6) 80> 2kd — 3 > 13
and
(4.7) Sep1 > 2kd — 3 > 13.
It follows from (4.7) and Lemma 4.11 (a) that

5 < 2kd + 2.

Case 1. p({+1) =1.
By (4.6) and Lemma 4.11 (b), we have dpy; < 2kd — 1. It follows that Q, =
0¢+ 641 < (2kd +2) + (2kd — 1) = 4kd + 1, a contradiction with (4.5).

Case 2. p({+1) =4.

By (4.6) and Lemma 4.11 (c), we have dp41 < 2kd + 2.

Suppose ¢(¢) = 1. By Lemma 4.11 (b), we have that either d,—1 < 5 or §; <
2kd — 1. If 6p < 2kd — 1, then Qp = §p + 11 < (2kd — 1) 4+ (2kd + 2) = 4kd+ 1, a
contradiction with (4.5). Hence §; > 2kd — 1, i.e.,

dp—1 < 5.
It follows that
Q1+ (014 60) + (e + 011)
2 2
< 5+ (2kd + 2) + (2kd + 2) + (2kd + 2)
- 2

< 4kd + 1.
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Suppose @(£) = 4. If 6y < 2kd — 1 or §pyr1 < 2kd — 1, then Qp = 6y + 1 <
(2kd — 1) 4+ (2kd + 2) = 4kd + 1, a contradiction with (4.5). Hence d, > 2kd and
d¢4+1 > 2kd. By Lemma 4.11 (d), we have that

5@—1 < 2a
and thus
Qo1+ (01 460) + (e + e11)
2 2
2 2 2 2 2 2
< + (2kd +2) + ( l;d+ )+ (2kd + 2) kd4 1.
This completes the proof of Lemma 4.12. |

Lemma 4.13. For k=4, n>2k+1 and d > 2, v3(C(n; {1,k})) > [4kd+1

Proof. Let 1 ={1 <i<¢q:Q; <4kd+ 1} and So = {1 <i < gq:Q; > 4kd + 2}.
Then S; U Sy ={1,2,...,q}. By Lemma 4.12, there exists an injection ¢ : Sy — S
defined by ¢(i) =4 — 1, where i € Sy. Then Q; + Qy;) < 2(4kd + 1) for any i € Ss.
It follows that

2n—ZQ
:ZQ +)

€51 i€Sy

= > L+ > %+ >

i€S1\¢(S2) 1€S2 i€p(S2)

= > U+ ) (it Q)

i€51\$(S2) €S,
< (|S1] = [S2]) x (4kd + 1) + |Sa| x 2(4kd + 1)
= (I51] + |52]) x (4kd + 1)
=qx (dkd 4+ 1),
which implies ¢ > [413«1%1’ and thus v¢(C(n; {1,k})) > 2(4,3(1%] for k =4, n >
2k +1 and d > 2. |

Lemma 4.14. For k = 4, n > 2k + 1 and d > 2, suppose d; > 6 for every
1€{1,2,...,q}. Let s€ {1,2,...,q}.

(a) If (p(s), (s + 1)) = (1,1), then 6; < 2kd — 1 and §5 # 2kd — 3.
(b) If (p(s), (s + 1)) = (1,4), then §s < 2kd — 1 and 65 & {2kd — 3,2kd — 2}.
(c) If (p(s),p(s +1)) = (4,1), then 65 < 2kd+ 2 and 65 & {2kd, 2kd + 1}.
(d) If (#(s), (s +1)) = (4,4), then §; < 2kd — 1.
Proof. (a) Suppose (p(s), (s + 1)) = (1,1). If 65 > 2kd or 65 = 2kd — 3, then

Vi, +kd—1 would not be dominated by D, a contradiction. Hence §, < 2kd — 1 and
0s # 2kd — 3.

(b) Suppose (¢(s),(s+1)) = (1,4). If 65 > 2kd or §5 € {2kd — 3, 2kd — 2}, then
Vi, +kd—1 would not be dominated by D, a contradiction. Hence 6, < 2kd — 1 and
0s & {2kd — 3,2kd — 2}.
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(c) Suppose (p(s), (s + 1)) = (4,1). If 65 > 2kd + 3 or 5 = 2kd, then v;_ 4 kd+2
would not be dominated by D, a contradiction. If 64 = 2kd + 1, then v;_4rq4+3 would
not be dominated by D, a contradiction. Hence 5 < 2kd+2 and 05 & {2kd, 2kd+1}.

(d) Suppose (¢(s),p(s+1)) = (4,4). If 65 > 2kd, then at least one of {v;_ 4xd+2,
Vs, +kd+3} would not be dominated by D, a contradiction. Hence 5 < 2kd — 1. |

From Lemma 4.14, we can easily derive the following result.
Lemma 4.15. For k = 4, n > 2k + 1 and d > 2, suppose &; > 6 for every
1€{1,2,...,q}. Let se {1,2,...,q}.
(a (8),p(s+1),0(s+2)) € {(1,1,1),(1,4,4),(4,4,4)}, then Qg < 4kd — 2.
(1,1

) If (¢
(b) If (e(s), (s+1),<,0(5+2)) ,4), then Qy < 4kd — 2 and Q, # 4kd — 4.
(¢) If (p(s),p(s+1),0(s +2)) € {(1,4,1),(4,1,4)}, then Qs ¢ {4kd,4kd — 1}.
(d) If (p(s), (s + 1), p(s +2)) = (4,1 1) then Qg # 4kd — 1.

Lemma 4.16. Suppose k = 4, n > 2k+1 and d > 2. Then fyg(C(n;{l,k;})) >
f4kd+11 + 2 for n = 2kd, 4kd — 1,4kd (mod 4kd + 1).

Proof. Suppose to the contrary that v4(C(n;{1,k})) < [4kd+ﬂ + 2, i.e., there
exists a d-distance paired dominating set D = {z;,y; : i = 1,2,...,q} such that
2n

4, _r_2n 4
(4.8) 4= Tar 1)
Let € Z be such that
q
(4.9) =) Q=qx (4kd+1) -
i=1
It follows from (4.8) and (4.9) that
2n _ 2n+x

(4.10) a1 =9 a1

Since 2n = 4kd, 4kd — 1,4kd — 3 (mod 4kd + 1), by (4.10), we have
(4.11) r=1,24

for n = 2kd, 4kd, 4kd — 1 (mod 4kd + 1), respectively.

Let 1 = {1 <i<q:Q; <4kd+1} and Sy = {1 <i < q:Q; > 4kd + 2}.
Then S; U Sy ={1,2,...,q}. By Lemma 4.12, there exists an injection ¢ : Sy — S
defined by ¢(i) =4 — 1, where i € Sy. Then Q; + Q) < 2(4kd + 1) for any i € Ss.

If there exists £ € {1, 2,...,q} such that Qp > 4kd + 2, by Lemma 4.12, we have
do—1 < 5. Tt follows from Observation 2.1 that Qy_1 = dp—1 + ¢ < 5+ (2kd +5) <
(4kd+1)—T7and Qp_ o =6y o+ p_1 < (2kd+5) +5 < (4kd + 1) — 7, which implies
¢—2¢€ 57\ ¢(S2). It follows that

q
ZQi: ZQz+ZQI
i=1

i€S1 €Sy
= Z Qi + Qo+ Z Qi+ZQi
i€51\(¢(S2)U{t~2}) i€p(Sa) i€Ss

= > Qi+ Qo+ > (U+ Q)

1€S1\(p(S2)U{f—2}) 1€S52
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< (|S1] = 1S2] = 1) x (4kd + 1) + ((4dkd + 1) — 7) + |S2| x 2(4kd + 1)
= (|S1| +|S2|) x (4kd +1) — 7= ¢ x (4kd + 1) — 7.

By (4.9), we have z > 7, which is a contradiction with (4.11). Hence

(4.12) Q; < 4kd + 1

for every i € {1,2,...,q} when n = 2kd, 4kd, 4kd — 1 (mod 4kd + 1).

For n = 2kd, i.e., ¢ = 1, we may assume (z1,¥y1) € {(vo,v1), (vo,v4)}. Then vigyo
would not be dominated by D, a contradiction.

For n = 4kd — 1,4kd, i.e., ¢ = 2, by Observation 2.1, we have ¢; < 2kd + 5 for
j =1,2. It follows that §; > (4kd — 1) — (2kd +5) = 2kd — 6 > 6 for j = 1,2. If
(p(1),9(2)) € {(1,1),(4,4)}, by Lemma 4.14 (a) and (d), we have n = §; + J3 <
(2kd — 1) 4+ (2kd — 1) = 4kd — 2, a contradiction. If (p(1),¢(2)) € {(1,4),(4,1)},
by Lemma 4.14 (b) and (c), we have n = §; + 02 # 4kd,4kd — 1, a contradiction.
Therefore, it remains to consider the case for n ¢ {2kd, 4kd — 1,4kd}, i.e., ¢ > 3.

Case 1. n = 2kd,4kd (mod 4kd + 1).

Then z = 1,2. It follows from (4.9) and (4.12) that 4kd — 1 < Q; < 4kd + 1 for
every i € {1,2,...,q}, and there exists £ € {1,2,...,q} such that Q, < 4kd + 1. By
Observation 2.1, we have that 6; = Q; — d;41 > (4kd — 1) — (2kd +5) = 2kd — 6 > 6
for every i € {1,2,...,q}. By Lemma 4.15 (a) and (b), we conclude that for any
i€ {1,2,...,q9}, (i) # @i +1). Since ¢ > 3, by Lemma 4.15 (c¢), we derive a
contradiction.

Case 2. n =4kd — 1 (mod 4kd + 1).

Then z = 4. It follows from (4.9) and (4.12) that 4kd — 3 < Q; < 4kd + 1 for
every i € {1,2,...,q}, and there exists £ € {1,2,...,q} such that Q, < 4kd + 1.

By Observation 2.1, we have that 6; = Q;— ;11 > (4kd—1)—(2kd+5) = 2kd—6 >
6 forevery i € {1,2,...,q}. If Q; > 4kd—1for every i € {1,2,...,q}, by Lemma 4.15
(a) and (b), we conclude that for any i € {1,2,...,q}, (i) # ¢(i + 1). Since ¢ > 3,
by Lemma 4.15 (c), we have that ; = 4kd + 1 for every i € {1,2,...,q}, which is a
contradiction. Hence, there exists s € {1,2,..., ¢} such that Qg € {4kd—2,4kd—3}.

Case 2.1 Suppose Q; = 4kd — 3.

By (4.9) and (4.12), we have that Qs = 4kd+1 for every i € {1,2,...,q}\{s}. It
follows that either d; < 2kd — 2 or d,41 < 2kd — 2. If 5 < 2kd — 2, by Lemma 4.14,
then Qg1 = ds_14+0s < (2kd+2)+(2kd—2) = 4kd, a contradiction. If 541 < 2kd—2,
by Lemma 4.14, then Qg1 = 0541 + 0542 < (2kd — 2) + (2kd + 2) = 4kd, a contra-
diction.

Case 2.2 Suppose Q; = 4kd — 2.

By (4.9) and (4.12), there exists ¢t € {1,2,...,q} \ {s} such that Q; = 4kd and
0; = 4kd + 1 for every i € {1,2,...,q} \ {s,t}. By Lemma 4.15, we conclude that
(P(0), (¢ + 1,00t +2)) € (41, 1), (4,4, 1)},

Suppose (¢(t), p(t+1),p(t+2)) = (4,1,1). By Lemma 4.14 (a) and (c), we have
that §; = 2kd + 2 and 0,11 = 2kd — 2. By Lemma 4.14 (a) and (b), we have that
Qi1 = 041 + g2 < (2kd — 2) + (2kd — 1) = 4kd — 3, a contradiction.
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Suppose (p(t), p(t+1),p(t+2)) = (4,4,1). By Lemma 4.14 (a) and (c), we have
that d;41 = 2kd + 2 and 0; = 2kd — 2. By Lemma 4.14 (b) and (d), we have that
Qi1 =01+ < (2kd — 1) + (2kd — 2) = 4kd — 3, a contradiction. |

From Lemmas 4.10, 4.13 and 4.16, we have the following
Theorem 4.2. Fork=4,n>2k+1 and d > 2,

2[5 +2, ifn=2kd,4kd — 1,4kd (mod 4kd + 1)

2 .
2l d s otherwise.

% (C(n; {1, k})) =
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