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Abstract. Let G = (V, E) be a graph without isolated vertices. A set D ⊆ V
is a d-distance paired-dominating set of G if D is a d-distance dominating set
of G and the induced subgraph 〈D〉 has a perfect matching. The minimum
cardinality of a d-distance paired-dominating set for graph G is the d-distance
paired-domination number, denoted by γd

p(G). In this paper, we study the d-

distance paired-domination number of circulant graphs C(n; {1, k}) for 2 ≤ k ≤
4. We prove that for k = 2, n ≥ 5 and d ≥ 1,

γd
p(C(n; {1, k})) = 2

⌈
n

2kd + 3

⌉
,

for k = 3, n ≥ 7 and d ≥ 1,

γd
p(C(n; {1, k})) = 2

⌈
n

2kd + 2

⌉
,

and for k = 4 and n ≥ 9,
(i) if d = 1, then

γp(C(n; {1, k})) =

{
2d 3n

23
e+ 2, if n ≡ 15, 22 (mod 23);

2d 3n
23
e, otherwise

(ii) if d ≥ 2, then

γd
p(C(n; {1, k})) =





2d 2n
4kd+1

e+ 2, if n ≡ 2kd, 4kd− 1, 4kd

(mod 4kd + 1)

2d 2n
4kd+1

e, otherwise.

2010 Mathematics Subject Classification: 05C69, 05C12

Keywords and phrases: Paired-domination number, d-distance paired-domination
number, circulant graph.

Communicated by Xueliang Li.
Received: July 8, 2009; Revised: October 20, 2009.



2 H. Wang, X. Xu, Y. Yang, G. Wang and K. Lü

1. Introduction

All graphs considered in this paper are finite and simple. Let G = (V (G), E(G)) be
a graph without isolated vertices. The open neighborhood and the closed neighbor-
hood of a vertex v ∈ V (G) are denoted by N(v) = {u ∈ V (G) : vu ∈ E(G)} and
N [v] = N(v)∪ {v}, respectively. For a vertex set D ⊆ V (G), N(D) = ∪

v∈D
N(v) and

N [D] = ∪
v∈D

N [v]. For D ⊆ V (G), let 〈D〉 be the subgraph induced by D.

A set D ⊆ V (G) is a dominating set if every vertex in V (G) − D is adjacent
to at least one vertex in D. A set D ⊆ V (G) is a paired-dominating set of G if it
is dominating and the induced subgraph 〈D〉 has a perfect matching. The paired-
domination number γp(G) is the cardinality of a smallest paired-dominating set of
G. This type of domination was introduced by Haynes and Slater in [9, 10] and is
well studied, for example, in [1–7,11–13,15].

For two vertices x and y, let d(x, y) denote the distance between x and y in G.
A set D ⊆ V (G) is a d-distance dominating set of G if every vertex in V (G) − D
is within distance d of at least one vertex in D. The d-distance domination number
γd(G) of G is the minimum cardinality among all d-distance dominating sets of G.
For a more detailed treatment of domination-related parameters and for terminology
not defined here, the reader is referred to [8].

The d-distance paired-domination was introduced by Joanna Raczek [14] as a
generalization of paired-domination. For a positive integer d, a set D ⊆ V (G) is
a d-distance paired-dominating set if every vertex in V (G) − D is within distance
d of a vertex in D and the induced subgraph 〈D〉 has a perfect matching. The d-
distance paired-domination number, denoted by γd

p(G), is the minimum cardinality
of a d-distance paired-dominating set.

In the same paper, Joanna Raczek investigated properties of the d-distance paired-
domination number of a graph. He also gave an upper bound and a lower bound on
the d-distance paired-domination number of a non-trivial tree T in terms of the size
of T and the number of leaves in T and characterized the extremal trees.

The circulant graph C(n;S) is the graph with the vertex set V (C(n;S)) = {vi|0 ≤
i ≤ n − 1} and the edge set E(C(n; S)) = {vivj |0 ≤ i, j ≤ n − 1, (i − j) mod
n ∈ S}, S ⊆ {1, 2, . . . , bn−1

2 c}.
In this paper, we determine the exact d-distance paired-domination number of

the circulant graphs C(n; {1, k}) for 2 ≤ k ≤ 4 and d ≥ 1. We prove that for k = 2,
n ≥ 5 and d ≥ 1,

γd
p(C(n; {1, k})) = 2

⌈
n

2kd + 3

⌉
,

for k = 3, n ≥ 7 and d ≥ 1,

γd
p(C(n; {1, k})) = 2

⌈
n

2kd + 2

⌉
,

and for k = 4 and n ≥ 9,
(i) if d = 1, then

γp(C(n; {1, k})) =

{
2d 3n

23 e+ 2, if n ≡ 15, 22 (mod 23);

2d 3n
23 e, otherwise
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(ii) if d ≥ 2, then

γd
p(C(n; {1, k})) =

{
2d 2n

4kd+1e+ 2, if n ≡ 2kd, 4kd− 1, 4kd (mod 4kd + 1)

2d 2n
4kd+1e, otherwise.

In this paper, let D = {xi, yi : i = 1, 2, . . . , q} be an arbitrary d-distance paired-
dominating set of C(n; {1, k}), where {xiyi : i = 1, 2, . . . , q} is a perfect matching of
〈D〉, and let

Dp = {(xi, yi) : i = 1, 2, . . . , q}.
For each pair (xj , yj) ∈ Dp with j ∈ {1, 2, . . . , q}, for convenience, we denote

xj = vij , and yj = vij+1 or yj = vij+k, i.e., (vij , vij+1) ∈ Dp or (vij , vij+k) ∈ Dp,
where 0 = i1 ≤ i2 ≤ · · · ≤ iq < n.

We also denote
δj = (ij+1 − ij) mod n

for j = 1, 2, . . . , q, where the subscripts are modulo q.
For example, we consider the case for C(12; {1, 4}). Let d = 4, D = {v1, v2, v3, v5,

v8, v9}, and let Dp = {(x1, y1), (x2, y2), (x3, y3)} where (x1, y1) = (v1, v5), (x2, y2) =
(v2, v3) and (x3, y3) = (v8, v9). That is, i1 = 1, i2 = 2, i3 = 8. We check that
δ1 = (2−1) mod 12 = 1, δ2 = (8−2) mod 12 = 6 and δ3 = (1−8) mod 12 = 5.

Clearly,
n = δ1 + · · ·+ δq.

Throughout the paper, the subscripts are taken modulo n when it is unambiguous.

2. d-distance paired-domination number of C(n; {1, 2})
In this section, we shall determine the exact d-distance paired-domination number
of C(n; {1, k}) for k = 2 and d ≥ 1.

For the circulant graphs C(n; {1, k}), if there exists ` ∈ {1, 2, . . . , q} such that
δ` ≥ (2d + 1)k + 2 for k ≥ 2 and d ≥ 1, then vi`+(d+1)k+1 would not be dominated
by D. Hence, we have:
Observation 2.1. Suppose k ≥ 2 and d ≥ 1. Then 1 ≤ δj ≤ (2d+1)k +1 for every
j ∈ {1, 2, . . . , q}.
Theorem 2.1. For k ≥ 2, n ≥ 2k + 1 and d ≥ 1, γd

p(C(n; {1, k})) ≥ 2d n
(2d+1)k+1e.

Proof. By Observation 2.1, we have n = δ1 + · · ·+δq ≤ q× ((2d+1)k+1), and thus,
q ≥ d n

(2d+1)k+1e, which implies γd
p(C(n; {1, k})) ≥ 2d n

(2d+1)k+1e.
Theorem 2.2. For k = 2, n ≥ 2k + 1 and d ≥ 1, γd

p(C(n; {1, k})) = 2d n
2kd+3e.

Proof. Let D be a d-distance paired-dominating set of C(n; {1, k}) for k = 2. Let
m = b n

2kd+3c, t = n mod (2kd + 3) and

D =





{v(2kd+3)i, v(2kd+3)i+2 : 0 ≤ i ≤ m− 1}, if t = 0;
{v(2kd+3)i, v(2kd+3)i+2 : 0 ≤ i ≤ m− 1} ∪ {v(2kd+3)m−1, v(2kd+3)m},

if t = 1;
{v(2kd+3)i, v(2kd+3)i+2 : 0 ≤ i ≤ m− 1} ∪ {v(2kd+3)m, v(2kd+3)m+1},

if t = 2;
{v(2kd+3)i, v(2kd+3)i+2 : 0 ≤ i ≤ m}, otherwise.
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It is not hard to verify that D is a d-distance paired dominating set of C(n; {1, k}) for
k = 2 with |D| = 2d n

2kd+3e. Hence, γd
p(C(n; {1, k})) ≤ 2d n

2kd+3e for k = 2 and d ≥ 1.
On the other hand, by Theorem 2.2, we have that γd

p(C(n; {1, k})) ≥ 2d n
2kd+3e for

k = 2 and d ≥ 1. The result immediately holds.
In Figure 1, we show the d-distance paired-dominating sets of C(n; {1, 2}) for

d = 1 and 7 ≤ n ≤ 14, and for d = 2 and 11 ≤ n ≤ 22, where the vertices of
d-distance paired dominating sets are in dark.

Gn,k stands for C(n; {1, k}) in all figures of this paper.

γp(G7,2) = 2 γp(G8,2) = 4 γp(G9,2) = 4 γp(G10,2) = 4 γp(G11,2) = 4 γp(G12,2) = 4 γp(G13,2) = 4

γp(G14,2) = 4 γ2

p
(G11,2) = 2 γ2

p
(G12,2) = 4 γ2

p
(G13,2) = 4 γ2

p
(G14,2) = 4 γ2

p
(G15,2) = 4 γ2

p
(G16,2) = 4

γ2

p
(G17,2) = 4 γ2

p
(G18,2) = 4 γ2

p
(G19,2) = 4 γ2

p
(G20,2) = 4 γ2

p
(G21,2) = 4 γ2

p
(G22,2) = 4

Figure 1. The d-distance paired dominating sets of C(n; {1, 2}) for d = 1 and
7 ≤ n ≤ 14, and for d = 2 and 11 ≤ n ≤ 22.

3. d-distance paired-domination number of C(n; {1, 3})
In this section, we shall determine the exact d-distance paired-domination number
of C(n; {1, k}) for k = 3 and d ≥ 1.

Lemma 3.1. For k = 3, n ≥ 2k + 1 and d ≥ 1, γd
p(C(n; {1, k})) ≤ 2d n

2kd+2e.
Proof. Let D be a d-distance paired-dominating set of C(n; {1, k}) for k = 3. Let
m = b n

2kd+2c, t = n mod (2kd + 2) and

D =




{v(2kd+2)i, v(2kd+2)i+1 : 0 ≤ i ≤ m− 1}, if t = 0;
{v(2kd+2)i, v(2kd+2)i+1 : 0 ≤ i ≤ m− 1} ∪ {v(2kd+2)m−1, v(2kd+2)m}, if t = 1;
{v(2kd+2)i, v(2kd+2)i+1 : 0 ≤ i ≤ m}, otherwise.

It is not hard to verify that D is a d-distance paired dominating set of C(n; {1, k})
for k = 3 with |D| = 2d n

2kd+2e. Hence, γd
p(C(n; {1, k})) ≤ 2d n

2kd+2e for k = 3 and
d ≥ 1.

In Figure 2, we show the d-distance paired-dominating sets of C(n; {1, 3}) for
d = 1 and 8 ≤ n ≤ 16, and for d = 2 and 14 ≤ n ≤ 28, where the vertices of
d-distance paired dominating sets are in dark.
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γp(G8,3) = 2 γp(G9,3) = 4 γp(G10,3) = 4 γp(G11,3) = 4 γp(G12,3) = 4 γp(G13,3) = 4

γp(G14,3) = 4 γp(G15,3) = 4 γp(G16,3) = 4 γ2

p
(G14,3) = 2 γ2

p
(G15,3) = 4 γ2

p
(G16,3) = 4

γ2

p
(G17,3) = 4 γ2

p
(G18,3) = 4 γ2

p
(G19,3) = 4 γ2

p
(G20,3) = 4 γ2

p
(G21,3) = 4 γ2

p
(G22,3) = 4

γ2

p
(G23,3) = 4 γ2

p
(G24,3) = 4 γ2

p
(G25,3) = 4 γ2

p
(G26,3) = 4 γ2

p
(G27,3) = 4 γ2

p
(G28,3) = 4

Figure 2. The d-distance paired dominating sets of C(n; {1, 3}) for d = 1 and
8 ≤ n ≤ 16, and for d = 2 and 14 ≤ n ≤ 28.

Lemma 3.2. For k = 3, n ≥ 2k + 1 and d ≥ 1, γd
p(C(n; {1, k})) ≥ 2d n

2kd+2e.
Proof. Let D = {xi, yi : i = 1, 2, . . . , q} be a d-distance paired dominating set of
C(n; {1, k}) for k = 3 with the minimum cardinality. By Observation 2.1, we have
that

(3.1) 1 ≤ δj ≤ 2kd + 4

for every j ∈ {1, 2, . . . , q}.
Suppose that there exists ` ∈ {1, 2, . . . , q} such that δ` ≥ 2kd + 3. Then vi`+kd+2

would not be dominated by (x`, y`) and (x`+1, y`+1). To dominate vi`+kd+2, we have
vi`+2 ∈ D. It follows that vi`−1 ∈ D, which implies (x`−1, y`−1) = (vi`−1, vi`+2),
and thus

(3.2) δ`−1 = 1.

Let

S1 = {i : 1 ≤ i ≤ q, 2kd + 3 ≤ δi ≤ 2kd + 4},
S2 = {i : 1 ≤ i ≤ q, 2 ≤ δi ≤ 2kd + 2},
S3 = {i : 1 ≤ i ≤ q, δi = 1}.

By (3.1) and (3.2), we have that {1, 2, . . . , q} = S1 ∪ S2 ∪ S3, and there exists an
injection φ : S1 → S3 defined by φ(i) = i − 1 for any i ∈ S1, i.e., |S1| ≤ |S3|. It
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follows that

n = δ1 + · · ·+ δq

=
∑

i∈S1

δi +
∑

i∈S2

δi +
∑

i∈S3

δi

≤ (2kd + 4)|S1|+ (2kd + 2)|S2|+ |S3|
= (2kd + 2)(|S1|+ |S2|+ |S3|) + 2(|S1| − |S3|)− (2kd− 1)|S3|
≤ (2kd + 2)q,

which implies q ≥ d n
2kd+2e, and thus γd

p(C(n; {1, k})) ≥ 2d n
2kd+2e for k = 3 and

d ≥ 1.

As an immediate consequence of Lemmas 3.1 and 3.2, we have the following:

Theorem 3.1. For k = 3, n ≥ 2k + 1 and d ≥ 1, γd
p(C(n; {1, k})) = 2d n

2kd+2e.

4. d-distance paired-domination number of C(n; {1, 4})
In this section, we shall determine the d-distance paired domination number of
C(n; {1, k}) for k = 4 and d ≥ 1.

We shall first consider the case for d = 1. At this time, the d-distance paired-
domination number γd

p is just the paired-domination number γp.

Lemma 4.1. For n ≥ 9,

γp(C(n; {1, 4})) ≤
{

2d 3n
23 e+ 2, if n ≡ 15, 22 (mod 23);

2d 3n
23 e, otherwise.

Proof. It suffices to give a paired-dominating set D of C(n; {1, 4}) with the cardi-
nality equaling to the exact values mentioned in this lemma.

Let m1 = b n
23c and t = n mod 23. Then n = 23m1 + t.

For 2k + 1 ≤ n ≤ 22, let

D =





{v0, v1, v7, v8}, if 9 ≤ n ≤ 14 and n 6= 12;
{v0, v1, v2, v3}, if n = 12;
{v0, v1, v7, v8, v13, v14}, if n = 15;
{v0, v1, v7, v8, v14, v15}, if 16 ≤ n ≤ 21 and n 6= 19;
{v0, v1, v7, v11, v13, v17}, if n = 19;
{v0, v1, v7, v8, v14, v15, v20, v21}, if n = 22.

For n ≥ 23 and t 6= 5, let m2 = b t
7c,

D01 = {v23i, v23i+1, v23i+7, v23i+11, v23i+13, v23i+17 : 0 ≤ i ≤ m1 − 1},
D02 = {v23m1+7i, v23m1+7i+1 : 0 ≤ i ≤ m2 − 1}
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and

D =





D01, if t = 0;
D01 ∪ {v23m1−1, v23m1}, if t = 1;
D01 ∪ {v23m1 , v23m1+1}, if 2 ≤ t ≤ 7 and t 6= 5;
D01 ∪D02 ∪ {v23m1+7m2−1, v23m1+7m2}, if t = 8, 15, 22;
D01 ∪D02 ∪ {v23m1+7m2 , v23m1+7m2+1}, if 9 ≤ t ≤ 21 and t 6= 12, 15, 19;
D01 ∪D02 ∪ {v23m1+7m2 , v23m1+7m2+4}, if t = 12, 19.

For t = 5, let m3 = n−51
23 where n > 51,

D03 = {v23i, v23i+4, v23i+10, v23i+11, v23i+17, v23i+21 : 0 ≤ i ≤ m3 − 1},
D04 = {v23m3+10+7i, v23m3+11+7i : 0 ≤ i ≤ 4}

and

D =




{v7i, v7i+1 : 0 ≤ i ≤ 3}, if n = 28;
{v7i, v7i+1 : 0 ≤ i ≤ 4} ∪ {v35, v39, v41, v45}, if n = 51;
D03 ∪D04 ∪ {v23m3 , v23m3+4, vn−6, vn−2}, if n > 51.

It is not hard to verify that D is a paired-dominating set of C(n; {1, 4}) with the
cardinality equaling to the exact values mentioned in this lemma.

In Figure 3 and Figure 4, we show the paired-dominating sets of C(n; {1, 4}) for
9 ≤ n ≤ 22 and 23 ≤ n ≤ 46, respectively, where the vertices of paired-dominating
sets are in dark.

γp(G9,4) = 4 γp(G10,4) = 4 γp(G11,4) = 4 γp(G12,4) = 4 γp(G13,4) = 4 γp(G14,4) = 4 γp(G15,4) = 6

γp(G16,4) = 6 γp(G17,4) = 6 γp(G18,4) = 6 γp(G19,4) = 6 γp(G20,4) = 6 γp(G21,4) = 6 γp(G22,4) = 8

Figure 3. The paired-dominating sets of C(n; {1, 4}) for 9 ≤ n ≤ 22.

For convenience, let

V
′
(i, t) = {vi+j ∈ V (C(n; {1, 4})) : 0 ≤ j ≤ t− 1},

where i ∈ {0, 1, . . . , n− 1} and t ∈ {1, 2, . . . , n}.
For each vertex v ∈ V (G), we define a function rdd counting the times that v is

re-dominated by vertex pairs {xi, yi} in D as follows:

rdd(v) = |{i : 1 ≤ i ≤ q, v ∈ N [{xi, yi}]}| − 1.

For a vertex set S ⊆ V (G), let

rdd(S) =
∑

v∈S

rdd(v).
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γp(G23,4) = 6 γp(G24,4) = 8 γp(G25,4) = 8 γp(G26,4) = 8 γp(G27,4) = 8

γp(G28,4) = 8 γp(G29,4) = 8 γp(G30,4) = 8 γp(G31,4) = 10 γp(G32,4) = 10

γp(G33,4) = 10 γp(G34,4) = 10 γp(G35,4) = 10 γp(G36,4) = 10 γp(G37,4) = 10

γp(G38,4) = 12 γp(G39,4) = 12 γp(G40,4) = 12 γp(G41,4) = 12 γp(G42,4) = 12

γp(G43,4) = 12 γp(G44,4) = 12 γp(G45,4) = 14 γp(G46,4) = 12

Figure 4. The paired-dominating sets of C(n; {1, 4}) for 23 ≤ n ≤ 46.

Since x is not adjacent to y for any two vertices x, y ∈ N(v) where v ∈ V (C(n; {1, 4})),
by the definition of rdd, we have:
Observation 4.1. rdd(v) = |N(v) ∩D| − 1 for every vertex v ∈ V (C(n; {1, 4})).
Lemma 4.2. Suppose n ≥ 23. Then rdd(V

′
(i, 23)) ≥ 1 for every i ∈ {0, 1, . . . , n−

1}.
Proof. Suppose to the contrary that there exists ` ∈ {0, 1, . . . , n− 1} such that

(4.1) rdd(V
′
(`, 23)) = 0.

Suppose that there exists s ∈ {`, ` + 1, . . . , ` + 21} such that (vs, vs+1) ∈ Dp.
For s ∈ {`, ` + 1, . . . , ` + 10}, by (4.1), we have vs−1, vs+2, vs+3, vs+4, vs+5, vs+6,
vs+8, vs+9 6∈ D. To dominate vs+3, we have vs+7 ∈ D. It follows that vs+10 6∈ D.
Since 〈D〉 contains a perfect matching, we have vs+11 ∈ D. It follows that vs+13 6∈ D
(see Figure 5(I) for s = `). Thus, vs+9 would not be dominated by D, a contradiction.
For s ∈ {` + 11, ` + 12, . . . , ` + 21}, by symmetry, we derive a contradiction. Hence,
there does not exist s ∈ {`, ` + 1, . . . , ` + 21} such that (vs, vs+1) ∈ Dp.
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To dominate v`+9, we have that there exists s ∈ {` + 1, . . . , ` + 13} such that
(vs, vs+4) ∈ Dp. By (4.1), we have vs−2, vs+1, vs+2, vs+3, vs+6 6∈ D (see Figure 5(II)
for s = ` + 1). It follows that vs+2 would not be dominated by D, a contradiction.
The lemma follows.

v`−4 v`−2 v` v`+2 v`+4 v`+6 v`+8 v`+10 v`+12 v`+14 v`+16 v`+18 v`+20 v`+22 v`+24 v`+26

(I) {vs, vs+1} ⊂ D ∪ V
′

(`, 23) for s = `

v`−4 v`−2 v` v`+2 v`+4 v`+6 v`+8 v`+10 v`+12 v`+14 v`+16 v`+18 v`+20 v`+22 v`+24 v`+26

(II) {vs, vs+4} ⊂ D ∪ V
′

(`, 23) for s = ` + 1

Figure 5. The graphs for the proof of Lemma 4.2.

Lemma 4.3. γp(C(n; {1, 4})) ≥ 2d 3n
23 e for n ≥ 9.

Proof. Let D = {xi, yi : i = 1, 2, . . . , q} be a minimum paired-dominating set of
C(n; {1, 4}) where {xiyi : i = 1, 2, . . . , q} is a perfect matching of 〈D〉. Since each
pair {xi, yi} dominates exactly 8 vertices, we have 8q − n ≥ 0. It follows that
q ≥ dn

8 e.
For 9 ≤ n ≤ 22 and n 6= 16, since dn

8 e = d 3n
23 e, we have γp(C(n; {1, 4})) ≥ 2d 3n

23 e.
For n = 16, it is easy to verify that two pairs of vertices would not dominate

all vertices in C(n; {1, 4}). Hence, q ≥ 3 = d 3n
23 e, which implies γp(C(n; {1, 4})) ≥

2d 3n
23 e.
For n ≥ 23, by Lemma 4.2, we have 8q ≥ n + d n

23e = d 24n
23 e. It follows that

q ≥ d 1
8 × d 24n

23 ee ≥ d 1
8 × 24n

23 e = d 3n
23 e, which implies γp(C(n; {1, 4})) ≥ 2d 3n

23 e.
For convenience, we define

< =
n−1∑

i=0

(rdd(V
′
(i, 23))− 1).

Lemma 4.4. If there exists ` ∈ {0, 1, . . . , n−1} such that rdd(v`) ≥ 2, then < > 24.

Proof. By Observation 4.1, we have that |N(v`)∩D| = rdd(v`)+1 ≥ 3. Since |N(v`)∩
D| ≤ |N(v`)| = 4, we have {v`+1, v`+4} ⊂ D or {v`−1, v`−4} ⊂ D, say {v`+1, v`+4} ⊂
D. It follows that rdd(v`+5) ≥ 1, and thus < ≥ ∑

`−17≤i≤`

(rdd(V
′
(i, 23)) − 1) ≥

18× (rdd(v`) + rdd(v`+5)− 1) ≥ 18× (2 + 1− 1) > 24. The lemma follows.
In what follows, we admit that rdd(vi) ∈ {0, 1} for every i ∈ {0, 1, . . . , n−1}. Let

vi1 , vi2 , . . . , vit be all the vertices re-dominated once, where t = rdd(V (C(n; {1, 4})))
and 0 ≤ i1 < i2 < · · · < it ≤ n− 1. We define

Θj = ij+1 − ij

for j = 1, 2, . . . , t, where the subscripts are modulo t. Obviously, Θ1 + · · ·+ Θt = n.

Lemma 4.5. If < ≤ 24, then Θj + Θj+1 ≥ 22 for every j ∈ {1, 2, . . . , t} where
t = rdd(V (C(n; {1, 4}))).
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Proof. Choose arbitrary ` ∈ {1, 2, . . . , t}. By the definition of <, we have < =
t∑

i=1

(23−Θi) ≥ (23−Θ`) + (23−Θ`+1) = 46− (Θ` + Θ`+1). Since < ≤ 24, we have

46− (Θ` + Θ`+1) ≤ 24. It follows that Θ` + Θ`+1 ≥ 22. The lemma follows.

Lemma 4.6. For n > 23, if there exists ` ∈ {0, 1, . . . , n− 1} such that v` ∈ D and
rdd(v`) = 1, then < > 24.

Proof. Assume to the contrary that < ≤ 24. By Lemma 4.4, we have that rdd(vi) ∈
{0, 1} for every i ∈ {0, 1, . . . , n − 1}. By Observation 4.1, we have |N(v`) ∩ D| =
rdd(v`) + 1 = 2. Let N(v`) ∩ D = {w1, w2}. By symmetry, we have {w1, w2} ∈
{{v`−1, v`+1}, {v`+1, v`+4}, {v`+1, v`−4}, {v`−4, v`+4}}. Since D contains a perfect
matching, we infer that

rdd(w1) = 1 or rdd(w2) = 1.

That is, there exists j ∈ {1, 2, . . . , t} such that Θj ≤ 4. By Lemma 4.5, we have that

(4.2) Θj−1 ≥ 18 and Θj+1 ≥ 18.

From (4.2), we have {w1, w2} 6∈ {{v`+1, v`+4}, {v`+1, v`−4}}. If {w1, w2} =
{v`−1, v`+1}, by (4.2), we have V

′
(` − 5, 11) ∩ D = {v`−1, v`, v`+1} (see Figure

6(I)), which is contradicted with the fact that D contains a perfect matching.
If {w1, w2} = {v`−4, v`+4}, by (4.2), we have v`−2, v`+2, v`+3, v`+6 6∈ D. Since
v`+1 6∈ D, we have that v`+2 would not be dominated by D (see Figure 6(II)), a
contradiction.

v`−6 v`−4 v`−2 v` v`+2 v`+4 v`+6

(I)

v`−6 v`−4 v`−2 v` v`+2 v`+4 v`+6

(II)

Figure 6. The graphs for the proof of Lemma 4.6.

As an immediate consequence of Lemmas 4.4 and 4.6, we have the following:

Corollary 4.1. Suppose (x, y) ∈ Dp and < ≤ 24. Then N(x) ∩D = {y}.
Lemma 4.7. Suppose n > 23 and < ≤ 24. If there exists ` ∈ {0, 1, . . . , n− 1} such
that v` 6∈ D and rdd(v`) = 1, then one of the following conditions holds.

(a) V
′
(`− 5, 11) ∩D = {v`−5, v`−1, v`+1, v`+5};

(b) V
′
(`− 4, 9) ∩D = {v`−4, v`−3, v`+3, v`+4}.

Proof. By Lemma 4.4, we have that rdd(vi) ∈ {0, 1} for every i ∈ {0, 1, . . . , n− 1}.
By Observation 4.1, we have |N(v`) ∩ D| = rdd(v`) + 1 = 2. By symmetry, we
distinguish four cases.

Case 1. N(v`) ∩D = {v`−1, v`+1}.
By Lemma 4.6, we have |{v`−5, v`−2, v`+3} ∩D| = |{v`−3, v`+2, v`+5} ∩D| = 1. If

v`−2 ∈ D, then rdd(v`−3) = rdd(v`+2) = 1 (see Figure 7(I) where the vertices that
re-dominated once are in gray). By Lemma 4.5, we derive a contradiction. Hence
v`−2 6∈ D. By symmetry, we have v`+2 6∈ D. If v`+3 ∈ D, then rdd(v`+2) = 1. Let
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ij = `. By Lemma 4.5, we have that Θj = 2, Θj−1 ≥ 20 and Θj+1 ≥ 20. It follows
that v`−3, v`+5 6∈ D (see Figure 7(II)). Since v`, v`+2 6∈ D, we have that D does
not contain a perfect matching, a contradiction. Hence v`+3 6∈ D. By symmetry,
we have v`−3 6∈ D. Therefore, we conclude that v`−5, v`+5 ∈ D (see Figure 7(III)).
Since v`−4, v`+4 6∈ D, we have V

′
(`− 5, 11) ∩D = {v`−5, v`−1, v`+1, v`+5}.

v`−6 v`−4 v`−2 v` v`+2 v`+4 v`+6

(I)

v`−6 v`−4 v`−2 v` v`+2 v`+4 v`+6

(II)

v`−6 v`−4 v`−2 v` v`+2 v`+4 v`+6

(III)

v`−6 v`−4 v`−2 v` v`+2 v`+4 v`+6

(IV)

v`−6 v`−4 v`−2 v` v`+2 v`+4 v`+6 v`+8 v`+10 v`+12 v`+14 v`+16 v`+18

(V)

v`−9 v`−7 v`−5 v`−3 v`−1 v`+1 v`+3

(VI)

v`−6 v`−4 v`−2 v` v`+2 v`+4 v`+6

(VII)

v`−6 v`−4 v`−2 v` v`+2 v`+4 v`+6

(VIII)

Figure 7. The graphs for proof of Lemma 4.7.

Case 2. N(v`) ∩D = {v`+1, v`+4}.
Then rdd(v`+5) = 1. Let ij = `. By Lemma 4.5, we have that Θj = 5, Θj−1 ≥ 17

and Θj+1 ≥ 17. It follows that v`−2, v`+2, v`+3, v`+5 6∈ D. Since D contains a perfect
matching, we have v`−3 ∈ D. It follows that v`−5 6∈ D (see Figure 7(IV)). Thus,
v`−1 would not be dominated by D, a contradiction.

Case 3. N(v`) ∩D = {v`+1, v`−4}.
Then rdd(v`−3) = 1. Let ij = ` − 3. By Lemma 4.5, we have that Θj = 3,

Θj−1 ≥ 19 and Θj+1 ≥ 19. It follows that v`−6, v`−3, v`−2, v`+3 6∈ D. To dominate
{v`−2, v`−1}, we have v`+2, v`−5 ∈ D. It follows that v`+4, v`+5, v`+6, v`+7 6∈ D. To
dominate v`+4, we have v`+8 ∈ D. It follows that v`+9, v`+10, v`+11 6∈ D. Since D
contains a perfect matching, we have v`+12 ∈ D. It follows that v`+14 6∈ D (see
Figure 7(V)). Thus, v`+10 would not be dominated by D, a contradiction.

Case 4. N(v`) ∩D = {v`−4, v`+4}.
By Lemma 4.6, we have |{v`−8, v`−5, v`−3} ∩D| = |{v`+3, v`+5, v`+8} ∩D| = 1.
Suppose v`−8 ∈ D. By Lemma 4.5, we have v`−6 6∈ D. By Corollary 4.1, we

have v`−7, v`−5, v`−3 6∈ D. If v`+2 6∈ D, then either v`−2 would not be dominated
by D or D would not contain a perfect matching. Hence v`+2 ∈ D. It follows that
rdd(v`+3) = 1. Let ij = `. By Lemma 4.5, we have that Θj = 3, Θj−1 ≥ 19 and
Θj+1 ≥ 19. It follows that v`−10, v`−2 6∈ D (see Figure 7(VI)), and thus v`−6 would
not be dominated by D, a contradiction. Hence v`−8 6∈ D. By symmetry, we have
v`+8 6∈ D.

Suppose v`−5 ∈ D. By Corollary 4.1, we have v`−6, v`−3 6∈ D. By Lemma 4.5,
we have v`−2 6∈ D. Since v`−1 6∈ D, to dominate v`−2, we have v`+2 ∈ D. It
follows that rdd(v`+3) = 1. Let ij = `. By Lemma 4.5, we have that Θj = 3,
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Θj−1 ≥ 19 and Θj+1 ≥ 19. It follows that v`+3, v`+6 6∈ D (see Figure 7(VII)). Since
v`+1, v`−2 6∈ D, we have that D does not contain a perfect matching, a contradiction.
Hence v`−5 6∈ D. By symmetry, we have v`+5 6∈ D.

Therefore, we conclude that v`−3, v`+3 ∈ D (see Figure 7(VIII)). By Corollary
4.1, we have v`−2, v`+2 6∈ D, i.e., V

′
(`− 4, 9) ∩D = {v`−4, v`−3, v`+3, v`+4}.

This completes the proof of Lemma 4.7.

Lemma 4.8. Let t = rdd(V (C(n; {1, 4}))). If < ≤ 24, then the following conditions
hold.

(a) Θi ∈ {7, 15, 23} for every i ∈ {1, 2, . . . , t};
(b) |{1 ≤ i ≤ t : Θi = 15}| is even.

Proof. (a) Let A1 = {0 ≤ i ≤ n−1 : rdd(vi) = 1, V
′
(i−5, 11)∩D = {vi−5, vi−1, vi+1,

vi+5}} and A2 = {0 ≤ i ≤ n−1 : rdd(vi) = 1, V
′
(i−4, 9)∩D = {vi−4, vi−3, vi+3, vi+4}}.

By Lemma 4.7, we have A1 ∩A2 = ∅ and

(4.3) A1 ∪A2 = {0 ≤ i ≤ n− 1 : rdd(vi) = 1}.
By Lemma 4.2, we have Θi ≤ 23 for every i ∈ {1, 2, . . . , t}. Let Θ be an arbi-
trary integer of {Θ1, . . . , Θt}. That is, there exists ` ∈ {0, 1, . . . , n − 1} such that
rdd(v`) = rdd(v`+Θ) = 1 and rdd(v`+j) = 0 for every j ∈ {1, 2, . . . , Θ−1}. To prove
(a), it suffices to show Θ ∈ {7, 15, 23}.

Case 1. ` ∈ A1.
By Corollary 4.1, we have v`+6, v`+9 6∈ D. By Lemma 4.5, we have v`+7, v`+8, v`+10

6∈ D. To dominate {v`+7, v`+8}, we have v`+11, v`+12 ∈ D. It follows from Corollary
4.1 that v`+13, v`+15, v`+16 6∈ D. By Lemma 4.5, we have v`+14, v`+17 6∈ D. To
dominate v`+14, we have v`+18 ∈ D. Since D contains a perfect matching, it follows
from Corollary 4.1 that |{v`+19, v`+22} ∩D| = 1.

If v`+19 ∈ D, then rdd(v`+15) = 1 and ` + 15 ∈ A2 (see Figure 8(I) where the
vertices that re-dominated once are in gray). Thus, Θ = 15. If v`+22 ∈ D, by (4.3),
we have v`+24, v`+28 ∈ D and rdd(v`+23) = 1, i.e., ` + 23 ∈ A1 (see Figure 8(II)).
Thus, Θ = 23.

Case 2. ` ∈ A2.
By Corollary 4.1, we have v`+5, v`+7, v`+8 6∈ D. By Lemma 4.5, we have v`+6, v`+9

6∈ D. To dominate v`+6, we have v`+10 ∈ D. Since D contains a perfect matching,
it follows from Corollary 4.1 that |{v`+11, v`+14} ∩D| = 1.

If v`+11 ∈ D, then rdd(v`+7) = 1 and `+7 ∈ A2 (see Figure 8(III)). Thus, Θ = 7.
If v`+14 ∈ D, by (4.3), we have v`+16, v`+20 ∈ D and rdd(v`+15) = 1, i.e., `+15 ∈ A1

(see Figure 8(IV)). Thus, Θ = 15.
From the above discuss, we see that Θi ∈ {7, 15, 23} for every i ∈ {1, 2, . . . , t} if

< ≤ 24.
(b) Let vi1 , vi2 , . . . , vit be all the vertices that re-dominated once, where 0 ≤ i1 <

i2 < · · · < it ≤ n− 1. Then Θj = ij+1 − ij for j = 1, 2, . . . , t. By the arguments of
(a), we conclude that Θj = 15 if and only if either ij ∈ A1 and ij+1 ∈ A2, or ij ∈ A2

and ij+1 ∈ A1. Note that it+1 = i1. We infer that |{1 ≤ i ≤ t : Θi = 15}| is even.
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v`−4 v`−2 v` v`+2 v`+4 v`+6 v`+8 v`+10 v`+12 v`+14 v`+16 v`+18 v`+20 v`+22 v`+24

(I) v`+19 ∈ D and rdd(v`+15) = 1

v`−4 v`−2 v` v`+2 v`+4 v`+6 v`+8 v`+10 v`+12 v`+14 v`+16 v`+18 v`+20 v`+22 v`+24

(II) v`+22 ∈ D and rdd(v`+23) = 1

v`−4 v`−2 v` v`+2 v`+4 v`+6 v`+8 v`+10 v`+12 v`+14 v`+16 v`+18 v`+20 v`+22 v`+24 v`+26

(III) v`+11 ∈ D and rdd(v`+7) = 1

v`−4 v`−2 v` v`+2 v`+4 v`+6 v`+8 v`+10 v`+12 v`+14 v`+16 v`+18 v`+20 v`+22 v`+24 v`+26

(IV) v`+14 ∈ D and rdd(v`+15) = 1

Figure 8. The graphs for proof of Lemma 4.8.

Lemma 4.9. γp(C(n; {1, 4})) ≥ 2d 3n
23 e+ 2 for n ≡ 15, 22 (mod 23).

Proof. Suppose to the contrary that γp(C(n; {1, 4})) < 2d 3n
23 e + 2, i.e., there exists

a paired dominating set D = {xi, yi : i = 1, 2, . . . , q} such that

(4.4) q =
⌈

3n

23

⌉
.

For n = 15 (22), it is not hard to verify that two (three) pairs of vertices would
not dominate all vertices in C(n; {1, 4}). Hence, we need only consider the case for
n > 23.

Since each pair {xi, yi} in C(n; {1, 4}) dominates exactly 8 vertices, we have 8q−
n = rdd(V (C(n; {1, 4}))). By the definition of <, we have that 23× (8q−n) = 23×
rdd(V (C(n; {1, 4}))) = 23 × ∑

v∈V (C(n;{1,4})) rdd(v) =
∑

0≤i≤n−1 rdd(V ′(i, 23)) =

n +<, and thus q = 3n+</8
23 . By (4.4), we conclude that < = 8 for n ≡ 15 (mod 23)

and < = 24 for n ≡ 22 (mod 23).
By Lemma 4.4, we have that rdd(vi) ∈ {0, 1} for every i ∈ {0, 1, . . . , n− 1}. Let

t = rdd(V (C(n; {1, k}))). By Lemma 4.8, we have that Θi ∈ {7, 15, 23} for every
i ∈ {1, 2, . . . , t} if < ≤ 24. Let N7 = |{1 ≤ i ≤ t : Θi = 7}| and N15 = |{1 ≤ i ≤ t :
Θi = 15}|. Then < = (23− 23)× (t−N7−N15)+ (23− 7)×N7 +(23− 15)×N15 =
16N7 + 8N15.

For < = 8, we have (N7, N15) = (0, 1). For < = 24, we have (N7, N15) =
{(1, 1), (0, 3)}. In either case, we have that N15 is odd, which is contradicted with
Lemma 4.8 (b).

From Lemmas 4.1, 4.3 and 4.9, we have the following:

Theorem 4.1. For n ≥ 9,

γp(C(n; {1, 4})) =

{
2d 3n

23 e+ 2, if n ≡ 15, 22 (mod 23);

2d 3n
23 e, otherwise.

In the rest of this section, we shall consider the case for d ≥ 2.
For the readers’ convenience, we shall show the cases for the vertices dominated

by a specific vertex pair (x, y) ∈ Dp in Figure 9, where the vertex pair (x, y) are in
dark and the vertices dominated by the vertex pair (x, y) are in gray.
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vt−dk vt−(d−1)k vt−k vt vt+1 vt+k+1 vt+(d−1)k+1 vt+dk+1

(I) (x, y) = (vt, vt+1)

vt−dk vt−(d−1)k vt−k vt vt+k vt+2k vt+dk vt+(d+1)k

(II) (x, y) = (vt, vt+k) for k = 4

Figure 9. The cases for the vertices dominated by a specific vertex pair.

Lemma 4.10. For k = 4, n ≥ 2k + 1 and d ≥ 2,

γd
p(C(n; {1, k})) ≤

{
2d 2n

4kd+1e+ 2, if n ≡ 2kd, 4kd− 1, 4kd (mod 4kd + 1)

2d 2n
4kd+1e, otherwise.

Proof. It suffices to give a d-distance paired-dominating set D of C(n; {1, k}) for
k = 4 and d ≥ 2 with the cardinality equaling to the exact values mentioned in this
lemma.

For 9 ≤ n ≤ 4kd, let

D =





{v0, v4}, if 9 ≤ n ≤ 2kd− 1;
{v0, v1, v2kd−2, v2kd−1}, if n = 2kd;
{v0, v1, v2kd−1, v2kd}, if 2kd + 1 ≤ n ≤ 2kd + 3;
{v0, v1, v2kd−1, v2kd+3}, if 2kd + 4 ≤ n ≤ 4kd− 2;
{v0, v1, v2kd−1, v2kd+3, vn−2, vn−1}, if n = 4kd− 1, 4kd.

For n ≥ 4kd + 1, let α = 4kd + 1, β = 2kd− 1, m1 = bn
αc and t = n mod α. Let

D01 = {vαi, vαi+1, vαi+β , vαi+β+4 : 0 ≤ i ≤ m1 − 1},
D02 = {vαm1 , vαm1+1, vαm1+β , vαm1+β+4},

and

D =





D01, if t = 0;
D01 ∪ {vαm1−1, vαm1}, if t = 1;
D01 ∪ {vαm1 , vαm1+1}, if 2 ≤ t ≤ 2kd− 1

and t 6= 2kd− 3;
D01 ∪ {vαm1−5, vαm1−1}, if t = 2kd− 3;
D01 ∪ {vαm1 , vαm1+1, vαm1+β−1, vαm1+β}, if t = 2kd;
D01 ∪ {vαm1 , vαm1+1, vαm1+β , vαm1+β+1}, if 2kd + 1 ≤ t ≤ 2kd + 3;
D01 ∪D02, if 2kd + 4 ≤ t ≤ 4kd− 2;
D01 ∪D02 ∪ {vn−2, vn−1}, if t = 4kd− 1, 4kd.

It is not hard to verify that D is a d-distance paired dominating set of C(n; {1, k})
for k = 4 and d ≥ 2 with the cardinality equaling to the exact values mentioned in
this lemma.

For convenience, we give a map ϕ : {1, 2, . . . , q} → {1, 4} defined by ϕ(s) = 1 for
(xs, ys) = (vis , vis+1) and ϕ(s) = 4 for (xs, ys) = (vis , vis+4).

Lemma 4.11. Suppose k = 4, d ≥ 2 and ` ∈ {1, 2, . . . , q}.
(a) If δ`−1 ≥ 2kd + 3, then δ` ≤ 2.
(b) If ϕ(`) = 1, then either δ`−1 ≤ 5 or δ` ≤ 2kd− 1.
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(c) If ϕ(`) = 4, then either δ`−1 ≤ 2 or δ` ≤ 2kd + 2.
(d) If ϕ(`) = ϕ(` + 1) = 4 and 2kd ≤ δ` ≤ 2kd + 2, then either δ`−1 ≤ 2 or

δ`+1 ≤ 2.

Proof. (a) Suppose δ`−1 ≥ 2kd+3. If δ` ≥ 3, then vi`−kd+2 would not be dominated
by D, a contradiction. Hence δ` ≤ 2.

(b) Suppose ϕ(`) = 1. If δ`−1 ≥ 6 and δ` ≥ 2kd, then vi`+kd−1 would not be
dominated by D, a contradiction. Hence either δ`−1 ≤ 5 or δ` ≤ 2kd− 1.

(c) Suppose ϕ(`) = 4. If δ`−1 ≥ 3 and δ` ≥ 2kd + 3, then vi`+kd+2 would not be
dominated by D, a contradiction. Hence either δ`−1 ≤ 2 or δ` ≤ 2kd + 2.

(d) Suppose ϕ(`) = ϕ(` + 1) = 4 and 2kd ≤ δ` ≤ 2kd + 2. If δ`−1 ≥ 3 and
δ`+1 ≥ 3, then at least one of {vi`+kd+2, vi`+kd+3} would not be dominated by D, a
contradiction. Hence either δ`−1 ≤ 2 or δ`+1 ≤ 2.

We denote Ωi = δi+δi+1 for i = 1, 2, . . . , q, where the subscripts are taken modulo
q.

Lemma 4.12. Suppose k = 4 and d ≥ 2. Let ` ∈ {1, 2, . . . , q}. Then either
Ω` ≤ 4kd + 1, or Ω`−1+Ω`

2 < 4kd + 1 and δ`−1 ≤ 5.

Proof. Suppose

(4.5) Ω` ≥ 4kd + 2.

By Observation 2.1, we have that δi ≤ 2kd + 5 for every i ∈ {1, 2, . . . , q}. If
δ` ≤ 2kd−4 or δ`+1 ≤ 2kd−4, then Ω` = δ` +δ`+1 ≤ (2kd+5)+(2kd−4) = 4kd+1,
a contradiction with (4.5). Therefore,

(4.6) δ` ≥ 2kd− 3 ≥ 13

and

(4.7) δ`+1 ≥ 2kd− 3 ≥ 13.

It follows from (4.7) and Lemma 4.11 (a) that

δ` ≤ 2kd + 2.

Case 1. ϕ(` + 1) = 1.
By (4.6) and Lemma 4.11 (b), we have δ`+1 ≤ 2kd − 1. It follows that Ω` =

δ` + δ`+1 ≤ (2kd + 2) + (2kd− 1) = 4kd + 1, a contradiction with (4.5).

Case 2. ϕ(` + 1) = 4.
By (4.6) and Lemma 4.11 (c), we have δ`+1 ≤ 2kd + 2.
Suppose ϕ(`) = 1. By Lemma 4.11 (b), we have that either δ`−1 ≤ 5 or δ` ≤

2kd− 1. If δ` ≤ 2kd− 1, then Ω` = δ` + δ`+1 ≤ (2kd− 1) + (2kd + 2) = 4kd + 1, a
contradiction with (4.5). Hence δ` > 2kd− 1, i.e.,

δ`−1 ≤ 5.

It follows that
Ω`−1 + Ω`

2
=

(δ`−1 + δ`) + (δ` + δ`+1)
2

≤ 5 + (2kd + 2) + (2kd + 2) + (2kd + 2)
2

< 4kd + 1.
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Suppose ϕ(`) = 4. If δ` ≤ 2kd − 1 or δ`+1 ≤ 2kd − 1, then Ω` = δ` + δ`+1 ≤
(2kd − 1) + (2kd + 2) = 4kd + 1, a contradiction with (4.5). Hence δ` ≥ 2kd and
δ`+1 ≥ 2kd. By Lemma 4.11 (d), we have that

δ`−1 ≤ 2,

and thus
Ω`−1 + Ω`

2
=

(δ`−1 + δ`) + (δ` + δ`+1)
2

≤ 2 + (2kd + 2) + (2kd + 2) + (2kd + 2)
2

< 4kd + 1.

This completes the proof of Lemma 4.12.

Lemma 4.13. For k = 4, n ≥ 2k + 1 and d ≥ 2, γd
p(C(n; {1, k})) ≥ 2d 2n

4kd+1e.
Proof. Let S1 = {1 ≤ i ≤ q : Ωi ≤ 4kd + 1} and S2 = {1 ≤ i ≤ q : Ωi ≥ 4kd + 2}.
Then S1 ∪ S2 = {1, 2, . . . , q}. By Lemma 4.12, there exists an injection φ : S2 → S1

defined by φ(i) = i− 1, where i ∈ S2. Then Ωi + Ωφ(i) < 2(4kd + 1) for any i ∈ S2.
It follows that

2n =
q∑

i=1

Ωi

=
∑

i∈S1

Ωi +
∑

i∈S2

Ωi

=
∑

i∈S1\φ(S2)

Ωi +
∑

i∈S2

Ωi +
∑

i∈φ(S2)

Ωi

=
∑

i∈S1\φ(S2)

Ωi +
∑

i∈S2

(Ωi + Ωφ(i))

≤ (|S1| − |S2|)× (4kd + 1) + |S2| × 2(4kd + 1)

= (|S1|+ |S2|)× (4kd + 1)

= q × (4kd + 1),

which implies q ≥ d 2n
4kd+1e, and thus γd

p(C(n; {1, k})) ≥ 2d 2n
4kd+1e for k = 4, n ≥

2k + 1 and d ≥ 2.

Lemma 4.14. For k = 4, n ≥ 2k + 1 and d ≥ 2, suppose δi ≥ 6 for every
i ∈ {1, 2, . . . , q}. Let s ∈ {1, 2, . . . , q}.

(a) If (ϕ(s), ϕ(s + 1)) = (1, 1), then δs ≤ 2kd− 1 and δs 6= 2kd− 3.
(b) If (ϕ(s), ϕ(s + 1)) = (1, 4), then δs ≤ 2kd− 1 and δs 6∈ {2kd− 3, 2kd− 2}.
(c) If (ϕ(s), ϕ(s + 1)) = (4, 1), then δs ≤ 2kd + 2 and δs 6∈ {2kd, 2kd + 1}.
(d) If (ϕ(s), ϕ(s + 1)) = (4, 4), then δs ≤ 2kd− 1.

Proof. (a) Suppose (ϕ(s), ϕ(s + 1)) = (1, 1). If δs ≥ 2kd or δs = 2kd − 3, then
vis+kd−1 would not be dominated by D, a contradiction. Hence δs ≤ 2kd − 1 and
δs 6= 2kd− 3.

(b) Suppose (ϕ(s), ϕ(s + 1)) = (1, 4). If δs ≥ 2kd or δs ∈ {2kd− 3, 2kd− 2}, then
vis+kd−1 would not be dominated by D, a contradiction. Hence δs ≤ 2kd − 1 and
δs 6∈ {2kd− 3, 2kd− 2}.
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(c) Suppose (ϕ(s), ϕ(s + 1)) = (4, 1). If δs ≥ 2kd + 3 or δs = 2kd, then vis+kd+2

would not be dominated by D, a contradiction. If δs = 2kd+1, then vis+kd+3 would
not be dominated by D, a contradiction. Hence δs ≤ 2kd+2 and δs 6∈ {2kd, 2kd+1}.

(d) Suppose (ϕ(s), ϕ(s + 1)) = (4, 4). If δs ≥ 2kd, then at least one of {vis+kd+2,
vis+kd+3} would not be dominated by D, a contradiction. Hence δs ≤ 2kd− 1.

From Lemma 4.14, we can easily derive the following result.

Lemma 4.15. For k = 4, n ≥ 2k + 1 and d ≥ 2, suppose δi ≥ 6 for every
i ∈ {1, 2, . . . , q}. Let s ∈ {1, 2, . . . , q}.

(a) If (ϕ(s), ϕ(s+1), ϕ(s+2)) ∈ {(1, 1, 1), (1, 4, 4), (4, 4, 4)}, then Ωs ≤ 4kd− 2.
(b) If (ϕ(s), ϕ(s + 1), ϕ(s + 2)) = (1, 1, 4), then Ωs ≤ 4kd− 2 and Ωs 6= 4kd− 4.
(c) If (ϕ(s), ϕ(s + 1), ϕ(s + 2)) ∈ {(1, 4, 1), (4, 1, 4)}, then Ωs /∈ {4kd, 4kd− 1}.
(d) If (ϕ(s), ϕ(s + 1), ϕ(s + 2)) = (4, 1, 1), then Ωs 6= 4kd− 1.

Lemma 4.16. Suppose k = 4, n ≥ 2k + 1 and d ≥ 2. Then γd
p(C(n; {1, k})) ≥

2d 2n
4kd+1e+ 2 for n ≡ 2kd, 4kd− 1, 4kd (mod 4kd + 1).

Proof. Suppose to the contrary that γd
p(C(n; {1, k})) < 2d 2n

4kd+1e + 2, i.e., there
exists a d-distance paired dominating set D = {xi, yi : i = 1, 2, . . . , q} such that

(4.8) q = d 2n

4kd + 1
e.

Let x ∈ Z be such that

(4.9) 2n =
q∑

i=1

Ωi = q × (4kd + 1)− x.

It follows from (4.8) and (4.9) that

(4.10) d 2n

4kd + 1
e = q =

2n + x

4kd + 1
.

Since 2n ≡ 4kd, 4kd− 1, 4kd− 3 (mod 4kd + 1), by (4.10), we have

(4.11) x = 1, 2, 4

for n ≡ 2kd, 4kd, 4kd− 1 (mod 4kd + 1), respectively.
Let S1 = {1 ≤ i ≤ q : Ωi ≤ 4kd + 1} and S2 = {1 ≤ i ≤ q : Ωi ≥ 4kd + 2}.

Then S1 ∪ S2 = {1, 2, . . . , q}. By Lemma 4.12, there exists an injection φ : S2 → S1

defined by φ(i) = i− 1, where i ∈ S2. Then Ωi + Ωφ(i) < 2(4kd + 1) for any i ∈ S2.
If there exists ` ∈ {1, 2, . . . , q} such that Ω` ≥ 4kd + 2, by Lemma 4.12, we have

δ`−1 ≤ 5. It follows from Observation 2.1 that Ω`−1 = δ`−1 + δ` ≤ 5 + (2kd + 5) ≤
(4kd + 1)− 7 and Ω`−2 = δ`−2 + δ`−1 ≤ (2kd + 5) + 5 ≤ (4kd + 1)− 7, which implies
`− 2 ∈ S1 \ φ(S2). It follows that

q∑

i=1

Ωi =
∑

i∈S1

Ωi +
∑

i∈S2

Ωi

=
∑

i∈S1\(φ(S2)∪{`−2})
Ωi + Ω`−2 +

∑

i∈φ(S2)

Ωi +
∑

i∈S2

Ωi

=
∑

i∈S1\(φ(S2)∪{`−2})
Ωi + Ω`−2 +

∑

i∈S2

(Ωi + Ωφ(i))
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≤ (|S1| − |S2| − 1)× (4kd + 1) + ((4kd + 1)− 7) + |S2| × 2(4kd + 1)

= (|S1|+ |S2|)× (4kd + 1)− 7 = q × (4kd + 1)− 7.

By (4.9), we have x ≥ 7, which is a contradiction with (4.11). Hence

(4.12) Ωi ≤ 4kd + 1

for every i ∈ {1, 2, . . . , q} when n ≡ 2kd, 4kd, 4kd− 1 (mod 4kd + 1).
For n = 2kd, i.e., q = 1, we may assume (x1, y1) ∈ {(v0, v1), (v0, v4)}. Then vkd+2

would not be dominated by D, a contradiction.
For n = 4kd − 1, 4kd, i.e., q = 2, by Observation 2.1, we have δj ≤ 2kd + 5 for

j = 1, 2. It follows that δj ≥ (4kd − 1) − (2kd + 5) = 2kd − 6 > 6 for j = 1, 2. If
(ϕ(1), ϕ(2)) ∈ {(1, 1), (4, 4)}, by Lemma 4.14 (a) and (d), we have n = δ1 + δ2 ≤
(2kd − 1) + (2kd − 1) = 4kd − 2, a contradiction. If (ϕ(1), ϕ(2)) ∈ {(1, 4), (4, 1)},
by Lemma 4.14 (b) and (c), we have n = δ1 + δ2 6= 4kd, 4kd − 1, a contradiction.
Therefore, it remains to consider the case for n /∈ {2kd, 4kd− 1, 4kd}, i.e., q ≥ 3.

Case 1. n ≡ 2kd, 4kd (mod 4kd + 1).
Then x = 1, 2. It follows from (4.9) and (4.12) that 4kd − 1 ≤ Ωi ≤ 4kd + 1 for

every i ∈ {1, 2, . . . , q}, and there exists ` ∈ {1, 2, . . . , q} such that Ω` < 4kd + 1. By
Observation 2.1, we have that δi = Ωi − δi+1 ≥ (4kd− 1)− (2kd + 5) = 2kd− 6 > 6
for every i ∈ {1, 2, . . . , q}. By Lemma 4.15 (a) and (b), we conclude that for any
i ∈ {1, 2, . . . , q}, ϕ(i) 6= ϕ(i + 1). Since q ≥ 3, by Lemma 4.15 (c), we derive a
contradiction.

Case 2. n ≡ 4kd− 1 (mod 4kd + 1).
Then x = 4. It follows from (4.9) and (4.12) that 4kd − 3 ≤ Ωi ≤ 4kd + 1 for

every i ∈ {1, 2, . . . , q}, and there exists ` ∈ {1, 2, . . . , q} such that Ω` < 4kd + 1.
By Observation 2.1, we have that δi = Ωi−δi+1 ≥ (4kd−1)−(2kd+5) = 2kd−6 >

6 for every i ∈ {1, 2, . . . , q}. If Ωi ≥ 4kd−1 for every i ∈ {1, 2, . . . , q}, by Lemma 4.15
(a) and (b), we conclude that for any i ∈ {1, 2, . . . , q}, ϕ(i) 6= ϕ(i + 1). Since q ≥ 3,
by Lemma 4.15 (c), we have that Ωi = 4kd + 1 for every i ∈ {1, 2, . . . , q}, which is a
contradiction. Hence, there exists s ∈ {1, 2, . . . , q} such that Ωs ∈ {4kd−2, 4kd−3}.

Case 2.1 Suppose Ωs = 4kd− 3.
By (4.9) and (4.12), we have that Ωs = 4kd+1 for every i ∈ {1, 2, . . . , q}\{s}. It

follows that either δs ≤ 2kd− 2 or δs+1 ≤ 2kd− 2. If δs ≤ 2kd− 2, by Lemma 4.14,
then Ωs−1 = δs−1+δs ≤ (2kd+2)+(2kd−2) = 4kd, a contradiction. If δs+1 ≤ 2kd−2,
by Lemma 4.14, then Ωs+1 = δs+1 + δs+2 ≤ (2kd− 2) + (2kd + 2) = 4kd, a contra-
diction.

Case 2.2 Suppose Ωs = 4kd− 2.
By (4.9) and (4.12), there exists t ∈ {1, 2, . . . , q} \ {s} such that Ωt = 4kd and

Ωi = 4kd + 1 for every i ∈ {1, 2, . . . , q} \ {s, t}. By Lemma 4.15, we conclude that
(ϕ(t), ϕ(t + 1), ϕ(t + 2)) ∈ {(4, 1, 1), (4, 4, 1)}.

Suppose (ϕ(t), ϕ(t+1), ϕ(t+2)) = (4, 1, 1). By Lemma 4.14 (a) and (c), we have
that δt = 2kd + 2 and δt+1 = 2kd − 2. By Lemma 4.14 (a) and (b), we have that
Ωt+1 = δt+1 + δt+2 ≤ (2kd− 2) + (2kd− 1) = 4kd− 3, a contradiction.
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Suppose (ϕ(t), ϕ(t+1), ϕ(t+2)) = (4, 4, 1). By Lemma 4.14 (a) and (c), we have
that δt+1 = 2kd + 2 and δt = 2kd − 2. By Lemma 4.14 (b) and (d), we have that
Ωt−1 = δt−1 + δt ≤ (2kd− 1) + (2kd− 2) = 4kd− 3, a contradiction.

From Lemmas 4.10, 4.13 and 4.16, we have the following

Theorem 4.2. For k = 4, n ≥ 2k + 1 and d ≥ 2,

γd
p(C(n; {1, k})) =

{
2d 2n

4kd+1e+ 2, if n ≡ 2kd, 4kd− 1, 4kd (mod 4kd + 1)

2d 2n
4kd+1e, otherwise.
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[1] B. Brešar, M. A. Henning and D. F. Rall, Paired-domination of Cartesian products of graphs,
Util. Math. 73 (2007), 255–265.

[2] T. C. E. Cheng, L. Y. Kang and C. T. Ng, Paired domination on interval and circular-arc
graphs, Discrete Appl. Math. 155 (2007), no. 16, 2077–2086.

[3] L. Chen, C. Lu and Z. Zeng, Labelling algorithms for paired-domination problems in block
and interval graphs, J. Comb. Optim. (2008), in press (doi:10.1007/s10878-008-9177-6).

[4] L. Chen, C. Lu and Z. Zeng, Hardness results and approximation algorithms
for (weighted) paired-domination in graphs, Theoret. Comput. Sci. (2009), in press
(doi:10.1016/j.tcs.2009.08.004)

[5] L. Chen, C. Lu and Z. Zeng, Distance paired-domination problems on subclasses of chordal
graphs, Theoret. Comput. Sci. 410 (2009), no. 47-49, 5072–5081.

[6] P. Dorbec and S. Gravier, Paired-domination in P5-free graphs, Graphs Combin. 24 (2008),
no. 4, 303–308.

[7] P. Dorbec, S. Gravier and M. A. Henning, Paired-domination in generalized claw-free graphs,
J. Comb. Optim. 14 (2007), no. 1, 1–7.

[8] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs,
Monographs and Textbooks in Pure and Applied Mathematics, 208, Dekker, New York, 1998.

[9] T. W. Haynes and P. J. Slater, Paired-domination and the paired-domatic number, Congr.
Numer. 109 (1995), 65–72.

[10] T. W. Haynes and P. J. Slater, Paired-domination in graphs, Networks 32 (1998), no. 3,
199–206.

[11] L. Kang, M. Y. Sohn and T. C. E. Cheng, Paired-domination in inflated graphs, Theoret.
Comput. Sci. 320 (2004), no. 2-3, 485–494.

[12] K. E. Proffitt, T. W. Haynes and P. J. Slater, Paired-domination in grid graphs, Congr. Numer.
150 (2001), 161–172.

[13] H. Qiao, L. Y. Kang, M. Cardei and D. Z. Du, Paired-domination of trees, J. Global Optim.
25 (2003), no. 1, 43–54.

[14] J. Raczek, Distance paired domination numbers of graphs, Discrete Math. 308 (2008), no. 12,
2473–2483.

[15] E. Shan, L. Kang and M. A. Henning, A characterization of trees with equal total domination
and paired-domination numbers, Australas. J. Combin. 30 (2004), 31–39.


