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1. Introduction

One of the most active and fertile subjects in matrix theory during the past one
hundred years is the linear preserver problem, which concerns the characterization
of linear operators on matrix spaces that leave certain functions, subsets, relations,
etc., invariant. Although the linear operators concerned are mostly linear operators
on matrix spaces over some fields or rings, the same problem has been extended to
matrices over various semirings [1, 2, 4, 10].

In this paper, we study the problem of characterizing those operators T on the
matrices over general Boolean algebra such that T (X) is regular if and only if X is
regular.

For a fixed positive integer k, let Bk be the Boolean algebra of subsets of a k-
element set Sk and σ1, σ2, . . . , σk denote the singleton subsets of Sk. Union is denoted
by + and intersection by juxtaposition; 0 denotes the null set and 1 the set Sk. Under
these two operations, Bk is a commutative, antinegative semiring (that is, only zero
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element has an additive inverse); all of its elements, except 0 and 1, are zero-divisors.
In particular, if k = 1, B1 is called the binary Boolean algebra.

Let Mn(Bk) denote the set of all n × n matrices with entries in Bk. The usual
definitions for addition and multiplication of matrices over fields are applied to
matrices over Bk as well.

A matrix X in Mn(Bk) is said to be invertible if there is a matrix Y in Mn(Bk)
such that XY = Y X = In, where In is the n× n identity matrix.

In 1952, Luce [5] showed a matrix A in Mn(B1) possesses a two-sided inverse if
and only if A is an orthogonal matrix in the sense that AAT = In, and that, in this
case, AT is a two-sided inverse of A. In 1963, Rutherford [9] showed if a matrix A in
Mn(B1) possesses a one-sided inverse, then the inverse is also a two-sided inverse.
Furthermore such an inverse, if it exists, is unique and is AT . Also, it is well known
that the n× n permutation matrices are the only n× n invertible matrices over the
binary Boolean algebra.

For any matrix A = [ai,j ] in Mn(Bk), the pth constituent, Ap, of A is the matrix
in Mn(B1) whose (i, j)th entry is 1 if and only if ai,j ⊇ σp. Via the constituents, A
can be written uniquely as A =

∑k
p=1 σpAp which is called the canonical form of A.

It follows from the uniqueness of the decomposition and the fact that the singletons
are mutually orthogonal idempotents that for all matrices A,B,C ∈ Mn(Bk) and
for all α ∈ Bk,

(1.1) (A+B)p = Ap +Bp, (BC)p = BpCp and (αA)p = αpAp

for all p = 1, . . . , k.

Lemma 1.1. [4] For any matrix A in Mn(Bk) with k ≥ 1, A is invertible if and
only if its all constituents are permutation matrices. In particular, if A is invertible,
then A−1 = AT .

The notion of generalized inverse of an arbitrary matrix apparently originated in
the work of Moore [6], and the generalized inverses have applications in network and
switching theory and information theory [2].

Let A be a matrix in Mn(Bk). Consider a matrix X ∈Mn(Bk) in the equation

(1.2) AXA = A.

If (1.2) has a solution X ∈ Mn(Bk), then X is called a generalized inverse of A.
Furthermore A is called regular if there is a solution of (1.2).

The equation (1.2) have been studied by several authors [3, 6, 7, 8]. Rao and
Rao [8] characterized all regular matrices in Mn(B1). Also Plemmons [7] published
algorithms for computing generalized inverses of regular matrices in Mn(B1) under
certain conditions.

In this paper, we study some properties of regular matrices over general Boolean
algebras Bk. We also determine the linear operators on Mn(Bk) that strongly pre-
serve regular matrices.

2. Preliminaries and some results

The n × n identity matrix, In, and the n × n zero matrix, On, are defined as if Bk
were a field. We denote the n × n matrix all of whose entries are 1 by Jn. We
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will suppress the subscripts on these matrices when the orders are evident from the
context. For any matrix A in Mn(Bk), AT denotes the transpose of A. The n × n
matrix all of whose entries are zero except its (i, j)th, which is 1, is denoted by Ei,j .
We call Ei,j a cell.

Matrices J and O in Mn(Bk) are regular because JGJ = J and OGO = O for
all cells G in Mn(Bk). Therefore in general, a solution of (2.1), although it exists,
is not necessarily unique. Furthermore each cell E in Mn(Bk) is regular because
EETE = E.

Proposition 2.1. Let A be a matrix inMn(Bk). If U and V are invertible matrices
in Mn(Bk), then the following are equivalent:

(i) A is regular;
(ii) UAV is regular;
(iii) AT is regular.

Proof. The proof is an easy exercise.

Also we can easily show that

(2.1) A is regular if and only if
[
A O
O B

]
is regular,

for all matrices A ∈Mn(Bk) and for all regular matrices B ∈Mm(Bk). In particu-
lar, all idempotent matrices in Mn(Bk) are regular.

For any zero-one matrices A = [ai,j ] and B = [bi,j ] in Mn(Bk), we define A \ B
to be the zero-one matrix C = [ci,j ] such that ci,j = 1 if and only if ai,j = 1 and
bi,j = 0 for all i and j.

Define an upper triangular matrix Λn in Mn(Bk) by

Λn = [λi,j ] ≡
( n∑
i≤j

Ei,j

)
\ E1,n =


1 1 · · · 1 0

1 · · · 1 1
. . .

...
...

1 1
1

 .

Then the following lemma shows that Λn is not regular for n ≥ 3.

Lemma 2.1. Λn is regular in Mn(Bk) if and only if n ≤ 2.

Proof. For n ≤ 2, clearly Λn is regular because ΛnInΛn = Λn.
Conversely, assume that Λn is regular for some n ≥ 3. Then there is a nonzero ma-

trix B = [bi,j ] inMn(Bk) such that Λn = ΛnBΛn. From 0 = λ1,n =
∑n−1
i=1

∑n
j=2 bi,j ,

we obtain all entries of the second column of B are zero except for the entry bn,2.
From 0 = λ2,1 =

∑n
i=2 bi,1, we have all entries of the first column of B are zero

except for b1,1. Also, from 0 = λ3,2 =
∑n
i=3

∑2
j=1 bi,j , we obtain bn,2 = 0. If we

combine these three results, we conclude all entries of the first two columns are zero
except for b1,1. But we have 1 = λ2,2 =

∑n
i=2

∑2
j=1 bi,j = 0, a contradiction. Hence

Λn is not regular for all n ≥ 3.
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In particular, Λ3 =

1 1 0
0 1 1
0 0 1

 is not regular in M3(Bk). Let

(2.2) Φn =
[
Λ3 O
O O

]
for all n ≥ 3. Then Φn is not regular in Mn(Bk) by (2.1).

Note that for a matrix A = [ai,j ] in Mn(Bk), the pth constituent, Ap, of A is the
matrix in Mn(B1) whose (i, j)th entry is 1 if and only if ai,j ⊇ σp.

Example 2.1. Let k ≥ 2. Consider the matrix

A =

1 σ1 0
0 σ1 σ1

0 0 σ1

 ∈M3(Bk).

Then we have A1 = Λ3 is not regular in M3(B1), while Ap = E1,1 is regular in
M3(B1) for all p = 2, 3, . . . , k. The theorem below shows that A is not regular in
M3(Bk).

Theorem 2.1. Let A be a matrix inMn(Bk). Then A is regular inMn(Bk) if and
only if its all constituents are regular in Mn(B1).

Proof. If A is regular in Mn(Bk), then all constituents of A are regular in Mn(B1)
by (1.1).

Conversely, assume that each constituent Ap of A is regular in Mn(B1) for all
p = 1, . . . , k. Then there are matrices G1, . . . , Gk in Mn(B1) such that ApGpAp =
Ap for all p = 1, . . . , k. If G =

∑k
p=1 σpGp, then we can easily show that AGA = A

and hence A is regular in Mn(Bk).
Theorem 2.1 shows that the regularity of a matrix A inMn(Bk) depends only on

the regularities of its all constituents in Mn(B1). Henceforth we suffice to consider
properties of regular matrices in Mn(B1).

The factor rank [1], b(A), of a nonzero matrix A ∈Mn(Bk) is defined as the least
integer r for which there are matrices B and C of orders n×r and r×n, respectively
such that A = BC. The rank of a zero matrix is zero. Also we can easily obtain
that

(2.3) 0 ≤ b(A) ≤ n and b(AB) ≤ min{b(A), b(B)}
for all A,B ∈Mn(Bk).

Let A = [a1 a2 · · · an] be a matrix inMn(Bk), where aj denotes the jth column
of A for all j = 1, . . . , n. Then the column space of A is the set {

∑n
j=1 αjaj |αj ∈

Bk}, and denoted by < A >; the row space of A is < AT >.
For a matrix A ∈ Mn(Bk) with b(A) = r, A is said to be space decomposable if

there are matrices B and C of orders n×r and r×n, respectively such that A = BC,
< A >=< B > and < AT >=< CT >.

Theorem 2.2. [8] A is regular in Mn(B1) if and only if A is space decomposable.

Let A be a matrix inMn(Bk). By Theorems 2.1 and 2.2, we have A is regular in
Mn(Bk) if and only if its all constituents are space decomposable in Mn(B1).
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Lemma 2.2. If A is a matrix in Mn(B1) with b(A) ≤ 2, then A is regular.

Proof. If b(A) = 0, then A = O is clearly regular. If b(A) = 1, then there exist

permutation matrices P and Q such that PAQ =
[
J O
O O

]
, and hence PAQ is

regular by (2.1). It follows from Proposition 2.1 that A is regular.
Suppose b(A) = 2. Then there are matrices B = [b1 b2] and C = [c1 c2]T of

orders n×2 and 2×n, respectively such that A = BC, where b1 and b2 are distinct
nonzero columns of B, and c1 and c2 are distinct nonzero columns of CT . Then we
can easily show that all columns of A are of the forms 0,b1,b2 and b1 + b2 so that
< A >=< B >. Similarly, all columns of AT are of the forms 0, c1, c2 and c1 +c2 so
that < AT >=< CT >. Therefore A is space decomposable and hence A is regular
by Theorem 2.2.

For matrices A = [ai,j ] and B = [bi,j ] inMn(Bk), we say B dominates A (written
B ≥ A or A ≤ B) if bi,j = 0 implies ai,j = 0 for all i and j. This provides a reflexive
and transitive relation on Mn(Bk).

The number of nonzero entries of a matrix A in Mn(Bk) is denoted by |A|. The
number of elements in a set S is also denoted by |S|.

Corollary 2.1. Let A be a nonzero matrix in Mn(B1), where n ≥ 3.
(i) If |A| ≤ 4, then A is regular;
(ii) If |A| ≤ 2, there is a matrix B such that |A + B| = 5 and A + B is not

regular;
(iii) If |A| = 3 and b(A) = 2 or 3, there is a matrix C with |C| = 2 such that

A+ C is not regular;
(iv) If |A| = 5 and A has a row or a column that has at least 3 nonzero entries,

then A is regular.

Proof. (i) By Lemma 2.2, we lose no generality in assuming that b(A) ≥ 3 so that

b(A) = 3 or 4. Consider the matrix X =
[
A O
O 0

]
in Mn+1(B1). Since |A| ≤ 4 and

b(A) = 3 or 4, we can easily show that there are permutation matrices P and Q of

orders n+ 1 such that PXQ =
[
Y O
O O

]
for some idempotent matrix Y in M4(B1)

with |Y | = 3 or 4. By (2.1) and Proposition 2.1, X is regular and hence A is regular
by (2.1).

(ii) If |A| ≤ 2, we can easily show that there are permutation matrices P and Q
such that PAQ ≤ Φn. Let B′ = Φn \ PAQ. Then we have PAQ+B′ = Φn so that
A+PTB′QT = PTΦnQT is not regular by Proposition 2.1. If we let B = PTB′QT ,
then we have |A+B| = 5 and A+B is not regular.

(iii) Similar to (ii).
(iv) If |A| = 5 and A has a row or a column that has at least 3 nonzero entries, then

we can easily show that b(A) ≤ 3. By Lemma 2.2, it suffices to consider b(A) = 3.
Then A has either a row or a column that has just 3 nonzero entries. Suppose that a
row of A has just 3 nonzero entries. Since b(A) = 3, there are permutation matrices
P and Q such that

PAQ = E1,1 + E1,2 + E1,3 + E2,i + E3,j
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for some i, j ∈ {1, . . . , n} with i < j. If j ≥ 4, then PAQ is regular by the above
result (i) and (2.1), and hence A is regular by Proposition 2.1. If 1 ≤ i < j ≤ 3, then

there are permutation matrices P ′ and Q′ such that P ′PAQQ′ =
[
D O
O O

]
, where

D =

1 1 1
0 1 0
0 0 1

. We can easily show that D is idempotent in M3(B1), and hence

D is regular. It follows from (2.1) and Proposition 2.1 that A is regular.
If a column of A has just 3 nonzero entries, a parallel argument shows that A is

regular.
Linearity of operators on Mn(Bk) is defined as for vector spaces over fields. A

linear operator on Mn(Bk) is completely determined by its behavior on the set of
cells in Mn(Bk).

An operator T on Mn(Bk) is said to be
(1) singular if T (X) = O for some nonzero matrix X ∈Mn(Bk); otherwise T is

nonsingular ;
(2) preserve regularity if T (A) is regular whenever A is regular in Mn(Bk) ;
(3) strongly preserve regularity if T (A) is regular if and only if A is regular in
Mn(Bk).

Example 2.2. Let A be any regular matrix in Mn(Bk), where at least one entry
of A is 1. Define an operator T on Mn(Bk) by

T (X) =

 n∑
i=1

n∑
j=1

xi,j

A

for all X = [xi,j ] ∈ Mn(Bk). Then we can easily show that T is nonsingular and T
is a linear operator that preserves regularity. But T does not preserve any matrix
that is not regular in Mn(Bk).

Thus, we are interested in linear operators on Mn(Bk) that strongly preserve
regularity.

Lemma 2.3. Let n ≥ 3. If T is a linear operator onMn(B1) that strongly preserves
regularity, then T is nonsingular.

Proof. If T (X) = O for some nonzero matrix X inMn(B1), then we have T (E) = O
for all cells E ≤ X. By Corollary 2.1 (ii), there is a matrix B such that |B| = 4 and
E + B is not regular, while B is regular by Corollary 2.7(i). Nevertheless, T (E +
B) = T (B), a contradiction to the fact that T strongly preserves regularity. Hence
T (X) 6= O for all nonzero matrix X in Mn(B1). Therefore T is nonsingular.

If n ≤ 2, then all matrices in Mn(B1) are regular by (2.3) and Lemma 2.2.
Therefore all matrices in Mn(Bk) are also regular by Theorem 2.1. This proves:

Theorem 2.3. If n ≤ 2, then all operators onMn(Bk) strongly preserve regularity.

3. The binary Boolean case

In this section we have characterizations of the linear operators that strongly preserve
regular matrices over the binary Boolean algebra B1.
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As shown in Theorem 2.3, each operator T onMn(B1) strongly preserve regularity
if n ≤ 2. Thus in the followings, unless otherwise stated, we assume that T is a linear
operator on Mn(B1) that strongly preserve regularity for n ≥ 3.

The next lemmas and propositions are necessary to prove the main theorem.

Lemma 3.1. Let A be a matrix inMn(B1) with |A| = k and b(A) = k. Then J \A
is regular if and only if k ≤ 2.

Proof. If k ≤ 2, then there are permutation matrices P and Q such that P (J \A)Q =
J \ (aE1,1 + bE2,2), where a, b ∈ {0, 1}, and hence

P (J \A)Q =


a′ 1
1 b′

1 1
...

...
1 1


[
1 0 1 · · · 1
0 1 1 · · · 1

]

so that b(J \ A) = b(P (J \ A)Q) ≤ 2, where a + a′ = b + b′ = 1 with a 6= a′ and
b 6= b′. Thus we have J \A is regular by Lemma 2.2.

Conversely, assume that J \ A is regular for some k ≥ 3. It follows from |A| = k
and b(A) = k that there are permutation matrices U and V such that

U(J \A)V = J \
k∑
t=1

Et,t.

Let J \
(∑k

t=1Et,t

)
= X = [xi,j ]. By Proposition 2.1, X is regular, and hence there

is a nonzero matrix B = [bi,j ] ∈ Mn(B1) such that X = XBX. Then the (t, t)th

entry of XBX becomes

(3.1)
∑
i∈I

∑
j∈J

bi,j

for all t = 1, . . . , k, where I = J = {1, . . . , n} \ {t}. From x1,1 = 0 and (3.1), we
have

(3.2) bi,j = 0 for all i, j ∈ {2, . . . , n}.

Consider the first row and the first column of B. It follows from x2,2 = 0 and (3.1)
that

(3.3) bi,1 = 0 = b1,j for all i, j ∈ {1, 3, 4, . . . , n}.

Also, from x3,3 = 0, we obtain b1,2 = b2,1 = 0, and hence B = O by (3.2) and (3.3).
This contradiction shows that k ≤ 2.

Proposition 3.1. Let A and B be matrices in Mn(B1) such that A ≤ B and
|A| < |B|. If |B| ≤ (n− 2)n, then we have |T (A)| < |T (B)|.

Proof. Suppose that |T (A)| = |T (B)| for some A,B ∈ Mn(B1) with A ≤ B, |A| <
|B| and |B| ≤ (n− 2)n. Then T (A) = T (B) and there is a cell E such that E ≤ B
and E 6≤ A. Since |A| < (n− 2)n, there must be two distinct cells F and G different
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from E such that F 6≤ A, G 6≤ A and b(E + F +G) = 3. Let C = J \ (E + F +G).
Then

A+ C = J \ (E + F +G) and B + C = J \ (F +G).
It follows from T (A) = T (B) that T (J\(E+F+G)) = T (J\(F+G)), a contradiction
to the fact that T strongly preserves regularity because J \ (F +G) is regular, while
J \ (E + F +G) is not regular by Lemma 3.1. Hence the result follows.

Let A be a matrix in M3(B1). If |A| ≤ 4, then A is regular by Corollary 2.1
(i). And if |A| ≥ 7, then b(A) ≤ 2 and so A is regular by Lemma 2.2. Hence, if
A ∈ M3(B1) is not regular, then |A| = 5 or 6 and there are permutation matrices
P and Q such that PAQ is of the form of following:

B =

1 1 0
0 1 1
0 0 1

 or C =

0 1 1
1 0 1
1 1 0

 .
Furthermore, if E is a cell with E ≤ C, then there are permutation matrices P ′ and
Q′ such that P ′(C \ E)Q′ = B and hence C \ E is not regular.

Lemma 3.2. For every cell E in M3(B1), T (E) is a cell.

Proof. Suppose that |T (E1)| ≥ 2 for some cell E1 ∈ M3(B1). Let A ∈ M3(B1) be
a matrix that is not regular with E1 ≤ A and |A| = 5. Then T (A) is not regular
and so |T (A)| ∈ {5, 6}. Let B ∈ M3(B1) be a matrix with B ≤ A and |B| = 4.
If |T (B)| ≥ 5, then T (B) is not regular, while B is regular by Corollary 2.1 (i), a
contradiction. Hence there is not a matrix B with B ≤ A and |B| = 4 such that
|T (B)| ≥ 5.

Write A =
∑5
i=1Ei for distinct cells E1, . . . , E5. It follows from Proposition 3.1

that
|T (E1)| < |T (E1 + E2)| < |T (E1 + E2 + E3)|

and hence 4 ≤ |T (E1 + E2 + E3)| ≤ |T (A)| because |T (E1)| ≥ 2. Thus we have
|T (E1 + E2 + E3)| = 4. Since T (

∑3
i=1Ei) ≤ T (

∑4
i=1Ei) and |T (

∑4
i=1Ei)| ≥ 5 is

impossible, we have

T

(
3∑
i=1

Ei

)
= T

(
4∑
i=1

Ei

)
,

and hence T (E1 +E2 +E3 +E5) = T (A), a contradiction because A is not regular,
while E1 + E2 + E3 + E5 is regular by Corollary 2.1 (i). Thus we have |T (E)| ≤ 1
and hence |T (E)| = 1 for every cell E by Lemma 2.3. Consequently, T (E) is a cell
for every cell E.

For any k ∈ {1, 2, . . . , n2}, let Sk denote a sum of arbitrary distinct cells in
Mn(B1) with |Sk| = k.

Proposition 3.2.
(i) If n = 2t and t ≥ 2, then |T (Stn−1)| ≤ n2 − 3 for all Stn−1 ∈Mn(B1),
(ii) If n = 2t+ 1 and t ≥ 2, then

|T (S(t+1)n−(t+1))| ≤ n2 − 2

for all S(t+1)n−(t+1) ∈Mn(B1).
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Proof. (i) Let n = 2t with t ≥ 2. Suppose that |T (Stn−1)| ≥ n2 − 2 for some
Stn−1 ∈ Mn(B1). Since |Stn−1| = tn − 1, there must be three distinct cells E1, E2

and E3 such that they are not dominated by Stn−1 and b(E1 + E2 + E3) = 3.
Hence there is a matrix A ∈ Mn(B1) such that Stn−1 + A = J \ (E1 + E2 + E3).
It follows from |T (Stn−1)| ≥ n2 − 2 that |T (J \ (E1 + E2 + E3))| ≥ n2 − 2 and
hence B = T (J \ (E1 + E2 + E3)) is regular by Lemma 2.2 because b(B) ≤ 2. But
J \ (E1 + E2 + E3) is not regular by Lemma 3.1, a contradiction. Hence the result
follows.

(ii) Similar to (i).
The next lemma will be important in order to show that if E is any cell inMn(B1)

with n ≥ 4, then T (E) is also a cell for any linear operator onMn(B1) that strongly
preserves regularity.

Lemma 3.3.
(i) Let n = 2t, t ≥ 2 and h ∈ {0, 1, 2, . . . , tn− 2}. Then

|T (Stn−1−h)| ≤ n2 − 3− 2h

for all Stn−1−h ∈Mn(B1),
(ii) Let n = 2t+ 1, t ≥ 2 and h ∈ {0, 1, 2, . . . , (t+ 1)n− (t+ 2)}. Then

|T (S(t+1)n−(t+1)−h)| ≤ n2 − 2− 2h

for all S(t+1)n−(t+1)−h ∈Mn(B1).

Proof. (i) The proof proceeds by induction on h. If h = 0, the result is obvious
by Proposition 3.2 (i). Next, we assume that for some h ∈ {0, 1, 2, . . . , tn − 3}, the
argument holds. That is,

(3.4) |T (Stn−1−h)| ≤ n2 − 3− 2h

for all Stn−1−h ∈Mn(B1). Now we will show that |T (Stn−2−h)| ≤ n2−5−2h for all
Stn−2−h ∈ Mn(B1). Suppose that |T (Stn−2−h)| ≥ n2 − 4− 2h for some Stn−2−h ∈
Mn(B1). By (3.4) and Proposition 3.1, we have |T (Stn−2−h)| = n2 − 4− 2h and

|T (Stn−2−h + F )| = n2 − 3− 2h

for all cells F with F 6≤ Stn−2−h. This means that for all cell F with F 6≤ Stn−2−h,
there is only cell CF such that

(3.5) CF 6≤ T (Stn−2−h), CF ≤ T (F ) and T (Stn−2−h +F ) = T (Stn−2−h) +CF

because |T (Stn−2−h)| = n2−4−2h. Let En be the set of all cells inMn(B1) and let

Ω = {CF |F ∈ En and F 6≤ Stn−2−h}.
Suppose that CH 6= CF for all distinct cells F and H that are not dominated
by Stn−2−h. Then we have |Ω| = n2 − (tn − 2 − h). Since CF 6≤ T (Stn−2−h)
for any cell F with F 6≤ Stn−2−h, we have |Ω| ≤ n2 − (n2 − 4 − 2h) because
|T (Stn−2−h)| = n2 − 4 − 2h. This is impossible. Hence CH = CF for some two
distinct cells F and H that are not dominated by Stn−2−h. It follows from (3.5)
that

T (Stn−2−h + F +H) = T (Stn−2−h + F ) + T (Stn−2−h +H)

= T (Stn−2−h) + CF = T (Stn−2−h + F ).
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But Proposition 3.1 implies that |T (Stn−2−h +F )| < |T (Stn−2−h +F +H)| because
|Stn−2−h + F +H| ≤ tn ≤ (n− 1)n, a contradiction. Hence the result follows.

(ii) Similar to (i).

Corollary 3.1. T (E) is a cell for all cells E.

Proof. For n = 3, the result was proved in Lemma 3.2. If n = 2t with t ≥ 2, let
h = tn− 2 in Lemma 3.3 (i). Then |T (S1)| ≤ 1 for all S1 ∈ Mn(B1). If n = 2t+ 1
with t ≥ 2, let h = (t + 1)n − (t + 2) in Lemma 3.3 (ii). Then |T (S1)| ≤ 1 for all
S1 ∈ Mn(B1). It follows from Lemma 2.3 that |T (S1)| = 1 for all S1 ∈ Mn(B1),
equivalently |T (E)| = 1 for any cell E inMn(B1). Therefore we have T (E) is a cell
for any cell E in Mn(B1).

Lemma 3.4. T is bijective on the set of cells.

Proof. By Corollary 3.1, it suffices to show that T (E) 6= T (F ) for all distinct cells
E and F in Mn(B1). Suppose T (E) = T (F ) for some distinct cells E and F . Then
we have T (E + F ) = T (E). But this is impossible because |T (E) < |T (E + F )| by
Proposition 3.1. Thus the result follows.

A matrix L ∈Mn(B1) is called a line matrix if L =
∑n
k=1Ei,k or L =

∑n
l=1El,j

for some i, j ∈ {1, . . . , n}; Ri =
∑n
k=1Ei,k is an ith row matrix and Cj =

∑n
l=1El,j

is a jth column matrix. Cells E1, E2, . . . , Ek are called collinear if
∑k
i=1Ei ≤ L for

some line matrix L.
A matrix A ∈Mn(B1) is an s-star matrix if |A| = s and there are cells E1, . . . , Es

such that A =
∑s
i=1Ei and A ≤ L for some line matrix L. By Lemma 2.2, all line

matrices and all s-star matrices are regular in Mn(B1).

Lemma 3.5. T preserves all line matrices.

Proof. By Lemma 3.4, T is bijective on the set of cells. First, we show that T
preserves all 3-star matrices. If T does not preserve a 3-star matrix A ∈ Mn(B1),
then we have b(T (A)) = 2 or 3 with |T (A)| = 3. By Corollary 2.1 (iii), there is a
matrix C ∈ Mn(B1) with |C| = 2 such that T (A) + C is not regular. Furthermore
we can write C = T (E1 + E2) for some distinct cells E1 and E2. Thus we have

T (A) + C = T (A+ E1 + E2).

But A+E1 +E2 is regular by Corollary 2.1 (i) or (iv). This contradicts to the fact
that T strongly preserves regularity. Hence T preserves all 3-star matrices.

Suppose that T does not preserve a line matrix L in Mn(B1). Then there are
two distinct cells F1 and F2 dominated by L such that two cells T (F1) and T (F2)
are not collinear. Let F3 be a cell such that F1 +F2 +F3 is a 3-star matrix. By the
above result, T (F1 +F2 +F3) is a 3-star matrix, and hence b(T (F1 +F2 +F3)) = 1.
Thus, the three cells T (F1), T (F2) and T (F3) are collinear. This contradicts to the
fact that the two cells T (F1) and T (F2) are not collinear. Therefore T preserves all
line matrices.

A linear operator T on Mn(Bk) is called a (U, V )-operator if there are invertible
matrices U and V such that T (X) = UXV for all X ∈ Mn(Bk) or T (X) = UXTV
for all X ∈Mn(Bk).
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We remind the n × n permutation matrices are the only invertible matrices in
Mn(B1).

Now, we are ready to prove the main theorem.

Theorem 3.1. Let T be a linear operator onMn(B1) with n ≥ 3. Then T strongly
preserves regularity if and only if T is a (U, V )-operator.

Proof. If T is a (U, V )-operator on Mn(B1), clearly T strongly preserves regularity
by Proposition 2.1.

Conversely, assume that T strongly preserves regularity. Then T is bijective on
the set of cells by Lemma 3.4 and T preserves all line matrices by Lemma 3.5. Since
no combination of s row matrices and t column matrices can dominate Jn where
s+ t = n unless s = 0 or t = 0, we have that either

(1) the image of each row matrix is a row matrix and the image of each column
matrix is a column matrix, or

(2) the image of each row matrix is a column matrix and the image of each
column matrix is a row matrix.

If (1) holds, then there are permutations σ and τ of {1, . . . , n} such that T (Ri) =
Rσ(i) and T (Cj) = Cτ(j) for all i, j ∈ {1, 2, . . . , n}. Let U and V be permutation
(i.e., invertible) matrices corresponding to σ and τ , respectively. Then we have

T (Ei,j) = Eσ(i),τ(j) = UEi,jV

for all cells Ei,j inMn(B1). Let X =
∑n
i=1

∑n
j=1 xi,jEi,j be any matrix inMn(B1).

By the action of T on the cells, we have T (X) = UXV . If (2) holds, then a parallel
argument shows that there are invertible matrices U and V such that T (X) = UXTV
for all X ∈Mn(B1).

Thus, as shown in Theorems 2.3 and 3.1, we have characterizations of the linear
operators that strongly preserve regular matrices over the binary Boolean algebra.

4. The general Boolean cases

If T is a linear operator on Mn(Bk) with k ≥ 1, for each p ∈ {1, 2, . . . , k}, define
its pth constituent operator, Tp, by Tp(B) = (T (B))p for all B ∈ Mn(B1). By the
linearity of T , we have

T (A) =
k∑
p=1

σpTp(Ap)

for all A ∈Mn(Bk).

Lemma 4.1. If T is a linear operator onMn(Bk) that strongly preserves regularity,
then its all constituent operators on Mn(B1) strongly preserve regularity.

Proof. Let A be any matrix in Mn(B1). Obviously, A is the matrix in Mn(Bk)
such that Ap = A for all p = 1, . . . , k. If A is regular in Mn(B1), then A is
regular in Mn(Bk) by Theorem 2.1. Since T preserves regularity, we have T (A) =∑k
p=1 σpTp(Ap) is also regular in Mn(Bk). Again by Theorem 2.1, each Tp(Ap) is

regular in Mn(B1) so that Tp(A) is regular in Mn(B1) for all p = 1, . . . , k.
Conversely, if Tp(A) is regular in Mn(B1) for all p = 1, . . . , k, then T (A) =∑k
p=1 σpTp(Ap) is regular in Mn(Bk) by Theorem 2.1. Since T strongly preserves
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regularity, we have A is regular inMn(Bk). Hence by Theorem 2.1, we have A(= Ap)
is regular in Mn(B1).

Example 4.1. Let n ≥ 3. Define an operator T on Mn(B3) by

T (X) = σ1X1 + σ2X
T
2 + σ3X3

for all X =
∑3
p=1 σpXp in Mn(B3). Then we can easily show that T is not a

(U, V )-operator on Mn(B3) while its all constituent operators are (U, V )-operators
on Mn(B1). Furthermore the theorem below shows that T strongly preserve regu-
larity.

Theorem 4.1. Let T be a linear operator on Mn(Bk) with n ≥ 3. Then the
following statements are equivalent:

(i) T strongly preserves regularity on Mn(Bk);
(ii) All constituent operators of T strongly preserve on Mn(B1);
(iii) There are invertible matrices U and V such that

(4.1) T (X) = UXV for all X ∈Mn(Bk), or

(4.2) T (X) = U

(
k∑
p=1

σpYp

)
V for all X ∈Mn(Bk),

where Yp = Xp or XT
p for all p = 1, . . . , k.

Proof. It follows from Lemma 4.1 that (i) implies (ii). Assume (ii) holds. That
is, each constituent operator Tp of T strongly preserves regularity on Mn(B1) for
all p = 1, . . . , k. Let X =

∑k
p=1 σpXp be any matrix in Mn(Bk). Then we have

T (X) =
∑k
p=1 σpTp(Xp). By Theorem 3.1, each Tp has the form

(4.3) Tp(Xp) = UpXpVp,

or

(4.4) Tp(Xp) = UpX
T
p Vp,

where Up and Vp are permutation matrices for all p = 1, . . . , k.
Assume that only (4.3) are possible for all p = 1, . . . , k. Then we have

T (X) =
k∑
p=1

σpUpXpVp =

(
k∑
p=1

σpUp

)(
k∑
p=1

σpXp

)(
k∑
p=1

σpVp

)
.

If we let U =
(∑k

p=1 σpUp

)
and V =

(∑k
p=1 σpVp

)
, then U and V are invertible

matrices in Mn(Bk) by Lemma 1.1, and hence (4.1) is satisfied.
If both (4.3) and (4.4) are possible, then T (X) =

∑k
p=1 σpUpYpVp, where Yp = Xp

or XT
p for each p ∈ {1, . . . , k}, equivalently

T (X) =

(
k∑
p=1

σpUp

)(
k∑
p=1

σpYp

)(
k∑
p=1

σpVp

)
.
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If we let U = (
∑k
p=1 σpUp) and V = (

∑k
p=1 σpVp), then (4.2) is satisfied. Therefore

(ii) implies (iii).
Assume (iii) holds. If T has a form (4.1), then we are done by Proposition 2.1.

Thus we assume (4.2). If X =
∑k
p=1 σpXp is regular in Mn(Bk), then so is Xp in

Mn(B1) for all p = 1, . . . , k by Theorem 2.1. Thus there are matrices Gp ∈Mn(B1)
such that XpGpXp = Xp for all p = 1, . . . , k. Let G = V T (

∑k
p=1 σpHp)UT , where

Hp = Gp or GTp according as Yp = Xp or XT
p . Then we can easily show that

T (X)GT (X) = T (X) so that T (X) is regular in Mn(Bk). Conversely, if T (X) is
regular in Mn(Bk), then each constituent Tp(Xp) = UpYpVp is regular in Mn(B1)
for all p = 1, . . . , k. By Proposition 2.1, each Xp is regular in Mn(B1) because
Yp = Xp or XT

p for all p = 1, . . . , k. Hence X is regular inMn(Bk) by Theorem 2.1.
Therefore (i) is satisfied.

Thus, as shown in Theorems 2.3 and 4.1, we have characterizations of the linear
operators that strongly preserve regular matrices over general Boolean algebras.
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