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Abstract. In this paper, we show the relation between the Schur algebras

Sr
Λ,Σ(B) and Sr′

Λ,Σ(B), where 1 ≤ r′ < r < ∞. Then we set up the involution

operator in these Schur algebras and show that with this involution operator
there is only one C∗-algebra among these classes of Banach algebras. Further-

more, we show the equivalence of a condition on the Schur multiplier norm and
the existence of C∗-algebra.
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1. Introduction

Fix p and q with 1 ≤ p, q < ∞. The space of pth power summable sequences of
complex numbers is denoted by lp, and the space of matrices which define bounded
linear transformations from lp to lq is denoted by B(lp, lq). Let A = [ajk] , B = [bjk]
be infinite matrices, not necessarily in B(lp, lq). The Schur product A•B of A and B
is defined by A •B = [ajkbjk]. This product was first defined by I. Schur in [10]. He
gave a nice property of this product: That is submultiplicative with respect to the
operator norm on B(l2). He also proved that the space B(l2) forms a commutative
Banach algebra under the Schur product and the norm of the operator defined on
B(l2) by the matrix. From the results of Schur we see that the Schur product has
some nice properties that the usual product lacks. Many areas in mathematics such
as matrix theory, complex function theory, operator theory and operator algebras
have made use of results from the study of the Schur product and have injected new
problems in return. See [1, 4, 5] for further references to related literature. In [2]
we studied algebras under the Schur product operation of matrices over a Banach
algebra, for which the matrix of the norms of the entries define bounded operators. In
[7] S.-C. Ong studied the operator B 7→ A•B on the algebra of n×n scalar matrices
whenever A is a fixed scalar matrix in this algebra and the norm of this operator,
denoted by ‖A‖m , that is called the Schur multiplier norm of A. He characterized
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the class of all matrices in this algebra whose operator norm is equal to its Schur
multiplier norm. It is noticeable that the results mentioned above concerned only
matrices with scalar entries. In [5] L. Livshits studied a generalized Schur product
of matrices whose entries are bounded linear operators on a Hilbert space. The
product on the entries is the usual operator multiplication. In [2] P. Chaisuriya and
S.-C. Ong considered the classes Srp,q(B), where p, q, r ≥ 1, of all infinite matrices
A = [ajk] over a Banach algebra B with identity whose absolute Schur rth power
A[r] = [‖ajk‖r] defines a bounded linear operator from lp to lq. It was shown in their
paper that all classes Srp,q(B) are Banach algebras under the Schur product and the

norm ‖A‖p,q,r :=
∥∥A[r]

∥∥1/r
. Moreover they proved that the Banach algebra Srp,q(C)

contains B(lp, lq) as a proper subset and if r = 2 then B(lp, lq) is an ideal of S2
p,q(C).

In [8] we extend the results from sequence spaces lp, lq to Λ,Σ, where Λ,Σ are any
sequence in {c0}∪{lp : 1 ≤ p <∞} and we showed that the space SrΛ,Σ(B) of infinite
matrices A = [ajk] over Banach algebra B such that A[r] defines a bounded linear
operator from Λ to Σ are Banach algebras under the Schur product and the norm
‖A‖Λ,Σ,r :=

∥∥A[r]
∥∥1/r

Λ,Σ
.

2. Preliminaries results

Let 1 ≤ r <∞, Λ,Σ be any sequence spaces in {c0}∪{lp : 1 ≤ p <∞} and B be any
Banach algebra with identity. We denote M(B) the class of all matrices A = [ajk],
where ajk ∈ B for all j, k ≥ 1 (i.e., one side infinite matrices over B).

Definition 2.1. Given a matrix A = [ajk] ∈ M(B), and for any positive real
number r, the absolute Schur rth power of A is the scalar matrix A[r] = [‖ajk‖r]
with non-negative entries.

The following result is easy to check.

Lemma 2.1.
(a) Let A = [ajk] and B = [bjk] be scalar matrices. If |ajk| ≤ bjk for all j, k

then
‖A‖Λ,Σ ≤

∥∥∥A[1]
∥∥∥

Λ,Σ
≤ ‖B‖Λ,Σ .

(b) For any α, β ≥ 0 and t > 0,

(α+ β)t ≤ 2t(αt + βt).

(c) For any matrix A = [ajk] over C, |ajk| ≤ ‖A‖Λ,Σ for all j, k.
(d) For any scalar matrices A and B with non-negative entries

‖A •B‖Λ,Σ ≤ ‖A‖Λ,Σ ‖B‖Λ,Σ .

The Proposition 2.1, 2.2 and Theorem 2.1 have been proved in [8].

Proposition 2.1. (Hölder-type Inequality) Let A,B ∈M(B). Then∥∥∥(A •B)[1]
∥∥∥

Λ,Σ
≤
∥∥∥A[1] •B[1]

∥∥∥
Λ,Σ
≤
∥∥∥A[r]

∥∥∥ 1
r

Λ,Σ

∥∥∥B[r∗]
∥∥∥ 1

r∗

Λ,Σ
,

for 1 < r, r∗ <∞ with 1
r + 1

r∗ = 1.
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Definition 2.2. For any A ∈ M(B) and 1 ≤ r <∞, the absolute Schur r-norm of

A is defined by ‖A‖Λ,Σ,r :=
∥∥A[r]

∥∥ 1
r

Λ,Σ
.

Proposition 2.2. (Minkowski-type Inequality) For any A,B ∈M(B) and 1 ≤ r <
∞,

‖A+B‖Λ,Σ,r ≤ ‖A‖Λ,Σ,r + ‖B‖Λ,Σ,r .

Corollary 2.1. For any 1 ≤ r < ∞, SrΛ,Σ(B) is a subspace of M(B) and is a
normed space under the norm ‖.‖Λ,Σ,r .

Theorem 2.1. For any 1 ≤ r <∞, the normed space SrΛ,Σ(B) is a Banach algebra
under the Schur product operation and the norm ‖.‖Λ,Σ,r .

3. Relationship between the set of absolutely bounded matrices

Theorem 3.1. For 1 < r <∞, we have
(a) For 1 ≤ r′ < r < ∞, Sr′Λ,Σ(B) ⊆ SrΛ,Σ(B) and ‖A‖Λ,Σ,r ≤ ‖A‖Λ,Σ,r′ for all

A ∈ Sr′Λ,Σ(B).
(b) If 1 ≤ r′ < r < ∞ and (Λ,Σ) 6= (l1, c0), then Sr

′

Λ,Σ(B)  SrΛ,Σ(B), and
Sr
′

Λ,Σ(B) is not closed in SrΛ,Σ(B).
(c) For all r ∈ [1,∞), and for all A = [aj,k] ∈ Srl1,c0(B), ‖A‖l1,c0,r = supj,k ‖aj,k‖ .

Furthermore, S1
l1,c0

(B) = Srl1,c0(B).

(d) If A = [ajk] ∈ Src0,c0(B), then ‖A‖c0,c0,r = supj (
∑∞
k=1 ‖ajk‖

r)1/r
.

Proof. Let A = [ajk] be a nonzero matrix in Sr
′

Λ,Σ(B). From Lemma 2.1(c), we have

‖ajk‖
‖A‖Λ,Σ,r′

≤ 1

for all (j, k). Hence, for each (j, k),(
‖ajk‖
‖A‖Λ,Σ,r′

)r
≤

(
‖ajk‖
‖A‖Λ,Σ,r′

)r′
,

that is ‖ajk‖r ≤ ‖A‖r−r
′

Λ,Σ,r′ ‖ajk‖
r′
. Thus, by Lemma 2.1(a)∥∥∥A[r]

∥∥∥
Λ,Σ
≤
∥∥∥‖A‖r−r′Λ,Σ,r′ (A

[r′])
∥∥∥

Λ,Σ
= ‖A‖r−r

′

Λ,Σ,r′

∥∥∥A[r′]
∥∥∥

Λ,Σ
.

This implies that ‖A‖Λ,Σ,r ≤ ‖A‖Λ,Σ,r′ , so A ∈ SrΛ,Σ(B). It follows that the inclusion
Sr
′

Λ,Σ(B) ⊆ SrΛ,Σ(B) holds. Next, we will show that ‖A‖l1,c0,r = supj,k ‖ajk‖ for any
r ∈ [1,∞) and A = [ajk] ∈ Srl1,c0(B). By Lemma 2.1(c) we have

(3.1) sup
j,k
‖ajk‖ ≤

∥∥∥A[r]
∥∥∥1/r

l1,c0
= ‖A‖l1,c0,r ,∀j, k

For any x = {ξk} ∈ l1 with ‖x‖l1 ≤ 1.

sup
j

∣∣∣∣∣
∞∑
k=1

‖ajk‖r ξk

∣∣∣∣∣
1/r

≤ sup
j

( ∞∑
k=1

‖ajk‖r |ξk|

)1/r
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≤ sup
j,k
‖ajk‖

( ∞∑
k=1

|ξk|

)1/r

= sup
j,k
‖ajk‖ ‖x‖1/rl1

≤ sup
j,k
‖ajk‖ .

Hence we have

(3.2) ‖A‖l1,c0,r ≤ sup
jk
‖ajk‖ .

From (3.1) and (3.2) we have

‖A‖l1,c0,r = sup
j,k
‖ajk‖ ,

for all r ∈ [1,∞), and A = [ajk] ∈ Srl1,c0(B). Consequently, S1
l1,c0

(B) = Srl1,c0(B).
Let A = [ajk] ∈ Src0,c0(B). We will show that

‖A‖c0,c0,r = sup
j

( ∞∑
k=1

‖ajk‖r
)1/r

.

It is easy to see that

‖A‖c0,c0,r ≤ sup
j

( ∞∑
k=1

‖ajk‖r
)1/r

.

Suppose that ∥∥∥A[r]
∥∥∥
c0,c0

< sup
j

∞∑
k=1

‖ajk‖r .

Then there exists a positive integer j0 such that∥∥∥A[r]
∥∥∥
c0,c0

<

∞∑
k=1

‖aj0k‖
r
.

This implies that there exists a positive integer n such that∥∥∥A[r]
∥∥∥
c0,c0

<

n∑
k=1

‖ajok‖
r
.

Let
x = {1, 1, 1,︸ ︷︷ ︸

n1′s

. . . , 1, 0, 0, . . .}.

Since

‖x‖c0 = 1,
n∑
k=1

‖aj0k‖
r ≤

∥∥∥A[r]x
∥∥∥
c0
≤
∥∥∥A[r]

∥∥∥
c0,c0

<

n∑
k=1

‖aj0k‖
r
.

This is a contradiction, so ‖A‖c0,c0,r = supj (
∑∞
k=1 ‖ajk‖

r)1/r
.

For the case where (Λ,Σ) 6= (l1, c0), the following arguments show that each in-
clusion Sr

′

Λ,Σ(B) ⊆ SrΛ,Σ(B) is proper, and Sr
′

Λ,Σ(B) is not closed in SrΛ,Σ(B).
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Case 1. Σ = lp for 1 ≤ p <∞. Let A be the matrix with first column the sequence{(
1
k

)(1/pr′)

e

}∞
k=1

,

where e is an identity for B and all other columns 0. Then A ∈ SrΛ,lp(B). Since the
series

∑∞
k=1

1
k diverges, the sequence A[r′]x /∈ lp for all nonzero element x in Λ. So

A /∈ Sr′Λ,lp(B). For each n, we have

∥∥∥(Any −A)[r]
∥∥∥

Λ,lp
=

( ∞∑
n+1

(
1
k

)r/r′)1/p

,

where Any denotes the matrix whose (j, k) entry is ajk from A for j, k ≤ n and 0
otherwise. Thus

∥∥(Any −A)[r]
∥∥

Λ,lp
→ 0 as n → ∞. This implies that A belongs to

the closure in SrΛ,lp(B) of Sr
′

Λ,lp
(B). So Sr

′

Λ,lp
(B) is not closed in SrΛ,lp(B).

Case 2. Λ = Σ = c0. let A be the matrix with first row the sequence{(
1

k + 1

)1/r′

e

}∞
k=1

and all other rows 0. Then A ∈ Src0,c0(B). Let

y =
{

1
log(k + 1)

}∞
k=1

.

Then y ∈ c0. Since the series
∑∞
k=1

1
(k+1) log(k+1) diverges, A[r′]y is not defined. This

means that A /∈ Sr′c0,c0(B). Since

∥∥∥(Any −A)[r]
∥∥∥
c0,c0

=
∞∑

k=n+1

(
1

k + 1

)r/r′
→ 0 as n→∞,

A belongs to the closure in Src0,c0(B) of Sr
′

c0,c0(B). Thus Sr
′

c0,c0(B) is not closed in
Src0,c0(B).

Case 3. Λ = lp for 1 < p <∞ and Σ = c0. Let A be the matrix with the first row
the sequence {(

1
k + 1

)1/(qr′)

e

}∞
k=1

,

where 1
p + 1

q = 1, and all other rows 0. It is easy to see that A ∈ Srlp,c0(B). Let

y =
{

1
(k + 1)1/p log(k + 1)

}∞
k=1

.
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Then y ∈ lp. Since the series
∑∞
k=1

1
(k+1) log(k+1) diverges, A[r′]y is not defined. This

implies that A /∈ Sr′lp,c0(B). Since

∥∥∥(Any −A)[r]
∥∥∥
lp,c0

=

( ∞∑
k=n+1

(
1

k + 1

)r/r′)1/q

→ 0 as n→∞,

A belongs to the closure in Srlp,c0(B) of Sr
′

lp,c0
(B). Hence Sr

′

lp,c0
(B) is not closed in

Srlp,c0(B). The proof is complete.

4. A C∗-algebra on Schur algebras

Theorem 2.1 in the above section has been proved that for 1 ≤ r <∞, all classes

SrΛ,Σ(B) = {A = [ajk] : ajk ∈ B, A[r] = [‖ajk‖r] ∈ B(Λ,Σ)}

are Banach algebras under the Schur product and the norm ‖A‖Λ,Σ,r :=
∥∥A[r]

∥∥ 1
r

Λ,Σ
.

In this section we want to find the structure of the C∗-algebra from these Banach
algebras. Let B = C be any C∗-algebra with identity and define the operator F on
SrΛ,Σ(C) by A = [ajk] 7→ AF = [a∗jk], where the ∗ is the involution on C acting on
ajk for each (j, k).

The following result is easy to check.

Proposition 4.1. The operator F on SrΛ,Σ(C) is an involution on SrΛ,Σ(C).

Next we want to show that Srl1,c0(C) is a C∗-algebra.

Theorem 4.1. Under the norm ‖.‖l1,c0,r , the Schur product and the above involu-
tion, one has Srl1,c0(C) ∼= l∞(N× N; C) as C∗-algebra, for any 1 ≤ r <∞.

Proof. It is not hard to check that the linear bijection [ajk] ∈ Srl1,c0(C) 7→ (ajk) ∈
l∞(N × N; C) preserves the norm (because of Theorem 3.1(c)) the product and the
involution.

For the case (Λ,Σ) 6= (l1, c0), we will show by examples that they are not C∗-
algebras under this involution.

Example 4.1. Let A ∈ M(C) be the matrix with the first row the sequence
{ 1

2k−1 }∞k=1 and the other rows all zero. We first show that A ∈ Src0,c0(C). Let
x = {ξk}∞k=1 ∈ c0. Then for any positive integer n,

n∑
k=1

∣∣∣∣ 1
2r(k−1)

ξk

∣∣∣∣ =
n∑
k=1

1
2r(k−1)

|ξk| ≤ ‖x‖c0
∞∑
k=1

1
2r(k−1)

<∞.

This implies that the monotone increasing sequence{
n∑
k=1

∣∣∣∣ 1
2r(k−1)

ξk

∣∣∣∣
}∞
n=1

is bounded. So, it is convergent and also
∞∑
k=1

∣∣∣∣ 1
2r(k−1)

ξk

∣∣∣∣ ≤ ‖x‖c0 ∞∑
k=1

1
2r(k−1)

.
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That is, the series
∑∞
k=1

1
2r(k−1) ξk converges.

Thus

A[r]x =

{ ∞∑
k=1

1
2r(k−1)

ξk, 0, 0, . . .

}
∈ c0

for any x = {ξk}∞k=1 ∈ c0. Moreover

(4.1)
∥∥∥A[r]

∥∥∥
c0,c0

= sup
‖x‖≤1

∥∥∥A[r]x
∥∥∥
c0
≤
∞∑
k=1

1
2r(k−1)

<∞

which means that A[r] ∈ B(c0, c0). Thus A ∈ Src0,c0(C).
To see that ∥∥∥A[r]

∥∥∥
c0,c0

=
∞∑
k=1

1
2r(k−1)

,

let
xN = (1, 1, . . . , 1︸ ︷︷ ︸

N1′s

, 0, 0, 0, . . .).

Then we get ∥∥∥A[r]xN

∥∥∥
c0

=
N∑
k=1

1
2r(k−1)

.

This implies that
∥∥A[r]

∥∥
c0,c0

≥
∑N
k=1

1
2r(k−1) for each N. By letting N →∞, we get

that

(4.2)
∥∥∥A[r]

∥∥∥
c0,c0

≥
∞∑
k=1

1
2r(k−1)

.

Therefore from (4.1) and (4.2) we have
∥∥A[r]

∥∥
c0,c0

=
∑∞
k=1

1
2r(k−1) = 2r

2r−1 . Thus

‖A‖c0,c0,r =
∥∥∥A[r]

∥∥∥1/r

c0,c0
=
(

2r

2r − 1

)1/r

.

The matrix AF • A will have the first row the sequence
{

1
22(k−1)

}∞
k=1

and all other
rows zero. By the same argument, we have

∥∥AF •A
∥∥
c0,c0,r

=

( ∞∑
k=1

1
22r(k−1)

)1/r

=
(

4r

4r − 1

)1/r

.

Since 4r − 1 = (2r − 1)2 if and only if r = 0. Therefore for any 1 ≤ r <∞,

∥∥AF •A
∥∥
c0,c0,r

=
(

4r

4r − 1

)1/r

6=
(

2r

2r − 1

)2/r

= ‖A‖2c0,c0,r .

Hence, Src0,c0(C) are not C∗-algebras.

The next example shows that Src0,lp(C) are not C∗-algebras.
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Example 4.2. Let 1 ≤ p < ∞ and A ∈ M(C) be the matrix with the first row
(1, 2, 0, 0, 0, . . .) and all other rows zero. We will first show that A ∈ Src0,lp(C). Let
x = {ξk}∞k=1 ∈ c0. Then we get that A[r]x = {ξ1 + 2rξ2, 0, 0, 0, . . .} ∈ lp, and∥∥∥A[r]x

∥∥∥
lp

= |ξ1 + 2rξ2| ≤ |ξ1|+ 2r |ξ2| ≤ ‖x‖c0 (1 + 2r).

So,
∥∥A[r]

∥∥
c0,lp

≤ 1 + 2r < ∞. This implies that A[r] ∈ B(c0, lp). Therefore A ∈
Src0,lp(C).
Next we want to find

∥∥AF •A
∥∥
c0,lp,r

. Let x̃ = (1, 1, 0, 0, . . .) ∈ c0, clearly ‖x̃‖c0 = 1

and
∥∥A[r]

∥∥
c0,lp
≥
∥∥A[r]x̃

∥∥
lp

= 1 + 2r. Therefore
∥∥A[r]

∥∥
c0,lp

= 1 + 2r. Thus

‖A‖c0,lp,r =
∥∥∥A[r]

∥∥∥1/r

c0,lp
= (1 + 2r)1/r.

By using the same argument we have
∥∥AF •A

∥∥
c0,lp,r

= (1 + 4r)1/r.

Therefore ∥∥AF •A
∥∥
c0,lp,r

= (1 + 4r)1/r 6= (1 + 2r)2/r = ‖A‖2c0,lp,r ,

since 1 + 4r 6= (1 + 2r)2 for any positive real number r. Hence, Src0,lp(C) are not
C∗-algebras.

The next example shows that Srlp,c0(C) are not C∗-algebras for p 6= 1.

Example 4.3. Let 1 < p < ∞ and 1 ≤ q < ∞ be such that 1
p + 1

q = 1 and let
A ∈M(C) be the matrix with the first row (1, 1

2 , 0, 0, . . .) and all other rows zero.
First we will show that A ∈ Srlp,c0(C), let x = {ξk}∞k=1 ∈ lp. Then A[r]x = {ξ1 +
1
2r ξ2, 0, 0, . . .} ∈ c0. Clearly the sequence {1, 1

2r , 0, 0, . . .} ∈ lq, and by using the fact
that lq ∼= (lp)∗, we have∥∥∥A[r]

∥∥∥
lp,c0

= sup
‖x‖lp

≤1

∥∥∥A[r]x
∥∥∥
c0

= sup
‖{ξk}‖lp

≤1

∣∣∣∣ξ1 +
1
2r
ξ2

∣∣∣∣ =
(

1 +
1

2qr

)1/q

<∞.

This implies that A[r] ∈ B(lp, c0) and

‖A‖lp,c0,r =
∥∥∥A[r]

∥∥∥1/r

lp,c0
=
(

1 +
1

2qr

)1/qr

.

Similarly, we have ∥∥AF •A
∥∥
lp,c0,r

=
(

1 +
1

4qr

)1/qr

.

Since for any 1 ≤ q, r <∞,(
1 +

1
4qr

)1/qr

6=
(

1 +
1

2qr

)2/qr

,

therefore
∥∥AF •A

∥∥
lp,c0,r

6= ‖A‖2lp,c0,r . Hence Srlp,c0(C) are not C∗-algebras for p 6= 1.
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Example 4.4. Let 1 ≤ p, q <∞ and A ∈M(C) be the matrix with first two entries
of the first column 1 and 3 respectively, and all other entries zero.
We will show thatA ∈ Srlp,lq (C). Let x = {ξk}∞k=1 ∈ lp, thenA[r]x = (ξ1, 3rξ1, 0, 0, . . .) ∈
lq and also∥∥∥A[r]x

∥∥∥
lq

= (|ξ1|q + 3qr|ξ1|q)1/q ≤
[
‖x‖qlp (1 + 3qr)

]1/q
= ‖x‖lp (1 + 3qr)1/q.

Hence
∥∥A[r]

∥∥
lp,lq
≤ (1+3qr)1/q <∞. This implies thatA[r] ∈ B(lp, lq) and ‖A‖lp,lq,r ≤

(1 + 3qr)1/qr.
Let x̃ = (1, 0, 0, . . .). Then x̃ ∈ lp and ‖x̃‖lp = 1. We have∥∥∥A[r]

∥∥∥
lp,lq
≥
∥∥∥A[r]x̃

∥∥∥
lq

= (1 + 3qr)1/q.

So, ‖A‖lp,lq,r = (1 + 3qr)1/qr. Similarly, we have
∥∥AF •A

∥∥
lp,lq,r

= (1 + 9qr)1/qr.

Since for any 1 ≤ q, r <∞, 1 + 9qr 6= (1 + 3qr)2, therefore∥∥AF •A
∥∥
lp,lq,r

= (1 + 9qr)1/qr 6= (1 + 3qr)2/qr = ‖A‖2lp,lq,r .

Hence, Srlp,lq (C) are not C∗-algebras.

Therefore there is only one class C∗algebra Srl1,c0(C) of all classes of Banach
algebras SrΛ,Σ(C).

5. Schur multiplier norm with C∗-algebras

We see from the last section that for SrΛ,Σ(C) to be a C∗-algebra it suffices to show
that

∥∥AF •A
∥∥

Λ,Σ,r
= ‖A‖2Λ,Σ,r . In this section we want to find the relationship

between this property and the Schur multiplier norm that is mentioned in [7].

Definition 5.1. For each A ∈ SrΛ,Σ(C), the operator SA : SrΛ,Σ(C) → SrΛ,Σ(C) is
defined by B 7→ SA(B) = A • B. The norm of the operator SA is called the Schur
multiplier norm of A and denoted by ‖A‖m . That is

‖A‖m = ‖SA‖ = sup
‖B‖≤1

‖A •B‖Λ,Σ,r .

Since we have ‖A •B‖Λ,Σ,r ≤ ‖A‖Λ,Σ,r ‖B‖Λ,Σ,r , this implies that ‖A‖m ≤
‖A‖Λ,Σ,r . The next example shows that there exists A ∈ SrΛ,Σ(C) such that∥∥AF •A

∥∥
Λ,Σ,r

= ‖A‖2Λ,Σ,r for any case of (Λ,Σ).

Example 5.1. Let A be the matrix with (1, 1)-entry αe, where α ∈ C and e is the
identity of C∗-algebra C, and all other entries zero. Clearly, A ∈ SrΛ,Σ(C) for any
case of (Λ,Σ) and

∥∥AF •A
∥∥

Λ,Σ,r
= |α|2 = ‖A‖2Λ,Σ,r .

Lemma 5.1. For any A = [ajk], B = [bjk] ∈ SrΛ,Σ(C),

‖A •B‖Λ,Σ,r ≤
∥∥AF •A

∥∥1/2

Λ,Σ,r

∥∥BF •B
∥∥1/2

Λ,Σ,r
.
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Proof. Let A = [ajk], B = [bjk] ∈ SrΛ,Σ(C). By Theorem 2.1, A • B ∈ SrΛ,Σ(C). To

show that ‖A •B‖Λ,Σ,r ≤
∥∥AF •A

∥∥1/2

Λ,Σ,r

∥∥BF •B
∥∥1/2

Λ,Σ,r
we let x = {ξk}∞k=1 ∈ Λ

with ‖x‖Λ ≤ 1.

Case I. Σ = c0. For each positive integer j, we have that∣∣∣∣∣
∞∑
k=1

‖ajkbjk‖r ξk

∣∣∣∣∣ ≤
∞∑
k=1

‖ajk‖r ‖bjk‖r |ξk|1/2|ξk|1/2

≤ sup
j

( ∞∑
k=1

∥∥a∗jkajk∥∥r |ξk|
)1/2

sup
j

( ∞∑
k=1

∥∥b∗jkbjk∥∥r |ξk|
)1/2

=
∥∥∥(AF •A)[r]|x|

∥∥∥1/2

c0

∥∥∥(BF •B)[r]|x|
∥∥∥1/2

c0

≤
∥∥∥(AF •A)[r]

∥∥∥1/2

Λ,c0

∥∥∥(BF •B)[r]
∥∥∥1/2

Λ,c0
.

Hence,∥∥∥(A •B)[r]x
∥∥∥
c0

= sup
j

∣∣∣∣∣
∞∑
k=1

‖ajkbjk‖r ξk

∣∣∣∣∣ ≤ ∥∥∥(AF •A)[r]
∥∥∥1/2

Λ,c0

∥∥∥(BF •B)[r]
∥∥∥1/2

Λ,c0
.

This implies that∥∥∥(A •B)[r]
∥∥∥

Λ,c0
≤
∥∥∥(AF •A)[r]

∥∥∥1/2

Λ,c0

∥∥∥(BF •B)[r]
∥∥∥1/2

Λ,c0
.

Thus,

‖A •B‖Λ,c0,r ≤
∥∥AF •A

∥∥1/2

Λ,c0,r

∥∥BF •B
∥∥1/2

Λ,c0,r
.

Case II. Σ = lp. By using the Cauchy-Schwarz inequality twice we have,

∞∑
j=1

∣∣∣∣∣
∞∑
k=1

‖ajkbjk‖r ξk

∣∣∣∣∣
p

≤
∞∑
j=1

( ∞∑
k=1

‖ajk‖r ‖bjk‖r |ξk|1/2|ξk|1/2
)p

≤
∞∑
j=1

( ∞∑
k=1

‖ajk‖2r |ξk|

)p/2( ∞∑
k=1

‖bjk‖2r |ξk|

)p/2

≤


∞∑
j=1

( ∞∑
k=1

∥∥a∗jkajk∥∥r |ξk|
)p

1/2

×


∞∑
j=1

( ∞∑
k=1

∥∥b∗jkbjk∥∥r |ξk|
)p

1/2

=
∥∥∥(AF •A)[r]|x|

∥∥∥p/2
lp

∥∥∥(BF •B)[r]|x|
∥∥∥p/2
lp
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≤
∥∥∥(AF •A)[r]

∥∥∥p/2
Λ,lp

∥∥∥(BF •B)[r]
∥∥∥p/2

Λ,lp
.

So,

∥∥∥(A •B)[r]x
∥∥∥
lp

=


∞∑
j=1

∣∣∣∣∣
∞∑
k=1

‖ajkbjk‖r ξk

∣∣∣∣∣
p


1/p

≤
∥∥∥(AF •A)[r]

∥∥∥1/2

Λ,lp

∥∥∥(BF •B)[r]
∥∥∥1/2

Λ,lp
.

It follows that∥∥∥(A •B)[r]
∥∥∥

Λ,lp
≤
∥∥∥(AF •A)[r]

∥∥∥1/2

Λ,lp

∥∥∥(BF •B)[r]
∥∥∥1/2

Λ,lp
.

Hence
‖A •B‖Λ,lp,r ≤

∥∥AF •A
∥∥1/2

Λ,lp,r

∥∥BF •B
∥∥1/2

Λ,lp,r
.

Therefore in all cases

‖A •B‖Λ,Σ,r ≤
∥∥AF •A

∥∥1/2

Λ,Σ,r

∥∥BF •B
∥∥1/2

Λ,Σ,r
.

The proof is complete.

Theorem 5.1. Let A ∈ SrΛ,Σ(C). Then ‖A‖m = ‖A‖Λ,Σ,r if and only if∥∥AF •A
∥∥

Λ,Σ,r
= ‖A‖2Λ,Σ,r .

Proof. First, we assume that
∥∥AF •A

∥∥
Λ,Σ,r

= ‖A‖2Λ,Σ,r . We already have ‖A‖m ≤
‖A‖Λ,Σ,r . To show ‖A‖m = ‖A‖Λ,Σ,r , suppose that ‖A‖m < ‖A‖Λ,Σ,r . Then we
get that ‖A •B‖Λ,Σ,r < ‖A‖Λ,Σ,r , for all B ∈ SrΛ,Σ(C) with ‖B‖Λ,Σ,r ≤ 1. From

the definition of C∗-algebra, we have ‖ajk‖ =
∥∥∥a∗jk∥∥∥ for all ajk ∈ C. Then we get

‖A‖Λ,Σ,r =
∥∥AF

∥∥
Λ,Σ,r

and so∥∥∥∥∥A • AF

‖A‖Λ,Σ,r

∥∥∥∥∥
Λ,Σ,r

< ‖A‖Λ,Σ,r .

Thus ∥∥AF •A
∥∥

Λ,Σ,r
=
∥∥A •AF

∥∥
Λ,Σ,r

< ‖A‖2Λ,Σ,r ,
which is a contradiction. So, ‖A‖m = ‖A‖Λ,Σ,r .

Conversely, assume that ‖A‖m = ‖A‖Λ,Σ,r . Since we already have
∥∥AF •A

∥∥
Λ,Σ,r

≤
‖A‖2Λ,Σ,r , it suffices to show that∥∥AF •A

∥∥
Λ,Σ,r

≥ ‖A‖2Λ,Σ,r .

Let B ∈ SrΛ,Σ(C) with ‖B‖Λ,Σ,r ≤ 1. Now by using Lemma 5.1 we have

‖A •B‖Λ,Σ,r ≤
∥∥AF •A

∥∥1/2

Λ,Σ,r

∥∥BF •B
∥∥1/2

Λ,Σ,r
≤
∥∥AF •A

∥∥ 1
2

Λ,Σ,r
.

This implies that ‖A‖m ≤
∥∥AF •A

∥∥ 1
2

Λ,Σ,r
. But by assumption we have ‖A‖m =

‖A‖Λ,Σ,r , hence ‖A‖2Λ,Σ,r ≤
∥∥AF •A

∥∥
Λ,Σ,r

then we have
∥∥AF •A

∥∥
Λ,Σ,r

= ‖A‖2Λ,Σ,r .
The proof is complete.
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