Ideal Theory in the Ternary Semiring \mathbb{Z}_0^-

S. KAR

Department of Mathematics, Jadavpur University, Kolkata–700032, West Bengal, India karsukhendu@yahoo.co.in

Abstract. In this paper, we study the ideal theory in the ternary semiring \mathbb{Z}_0^- of non-positive integers and obtain some results regarding the ideals of the ternary semiring \mathbb{Z}_0^- . Finally we show that \mathbb{Z}_0^- is a Noetherian ternary semiring and also almost principal ideal ternary semiring.

2010 Mathematics Subject Classification: 16Y30, 16Y60

Keywords and phrases: Ternary semiring, left, right and lateral ideal, Noetherian ternary semiring, almost principal ideal ternary semiring.

1. Introduction

In [2], we have introduced the notion of ternary semiring which generalizes the notion of ternary ring introduced by W. G. Lister [15]. The set \mathbb{Z}_0^- of all non-positive integers is an example of a ternary semiring with usual binary addition and ternary multiplication. In [4, 5, 6] we have characterized respectively the prime, semiprime and maximal ideals of the ternary semiring \mathbb{Z}_0^- . Some works on ternary semiring may be found in [2, 3, 7, 8, 9, 10, 13, 14].

Our main purpose of this paper is to study the ideal theory in the ternary semiring \mathbb{Z}_0^- . In Section 2, we give some basic definitions and examples. In Section 3, we study the ideal theory in the ternary semiring \mathbb{Z}_0^- and prove that \mathbb{Z}_0^- is a Noetherian ternary semiring.

2. Preliminaries

Definition 2.1. A non-empty set S together with a binary operation, called addition and a ternary multiplication, denoted by juxtaposition, is said to be a ternary semiring if S is an additive commutative semigroup satisfying the following conditions:

(i) (abc)de = a(bcd)e = ab(cde),

(ii) (a+b)cd = acd + bcd,

(iii) a(b+c)d = abd + acd,

(iv) ab(c+d) = abc + abd,

for all $a, b, c, d, e \in S$.

Communicated by Ang Miin Huey.

Received: March 10, 2008; Revised: July 30, 2009.

Definition 2.2. Let S be a ternary semiring. If there exists an element $0 \in S$ such that 0 + x = x and 0xy = x0y = xy0 = 0 for all $x, y \in S$ then '0' is called the zero element or simply the zero of the ternary semiring S. In this case we say that S is a ternary semiring with zero.

Example 2.1. Let \mathbb{Z}_0^- be the set of all negative integers with zero. Then with the usual binary addition and ternary multiplication, \mathbb{Z}_0^- forms a ternary semiring with zero.

Definition 2.3. An additive subsemigroup T of a ternary semiring S is called a ternary subsemiring if $t_1t_2t_3 \in T$ for all $t_1, t_2, t_3 \in T$.

Definition 2.4. An additive subsemigroup I of a ternary semiring S is called a left (right, lateral) ideal of S if s_1s_2i (respectively is_1s_2, s_1is_2) $\in I$ for all $s_1, s_2 \in S$ and $i \in I$. If I is a left, a right, a lateral ideal of S, then I is called an ideal of S.

Definition 2.5. An ideal I of a ternary semiring S is called a k-ideal if $x + y \in I$; $x \in S$, $y \in I$ imply that $x \in I$.

Definition 2.6. Let I be an ideal of a ternary semiring S. A subset B of I is called a basis for I if every element of I can be written in the form $\sum_{i=1}^{n} r_i s_i b_i$, where $r_i, s_i \in S$ and $b_i \in B$.

If the set B is finite, then B is called a finite basis for I.

Through out the rest of the paper, \mathbb{Z} denotes the set of all integers, \mathbb{Z}^+ denotes the set of all positive integers, \mathbb{Z}^- denotes the set of all negative integers, $\mathbb{Z}^+_0 = \mathbb{Z}^+ \cup \{0\}$ and $\mathbb{Z}^-_0 = \mathbb{Z}^- \cup \{0\}$.

3. Ideal theory in the ternary semiring \mathbb{Z}_0^-

In this section we study the ideal theory in the ternary semiring of non-positive integers \mathbb{Z}_0^- and classify them. The ring of integers \mathbb{Z} plays a vital role in the theory of rings and it is well known that the ring of integers \mathbb{Z} is a principal ideal ring (PIR) and hence a Noetherian ring. In [1], Allen and Dale proved that the semiring of nonnegative integers \mathbb{Z}_0^+ is a Noetherian semiring. Again we note that the semiring \mathbb{Z}_0^+ is not a principal ideal semiring but Allen and Dale [1] proved that \mathbb{Z}_0^+ is an almost principal ideal semiring. In [4], we have proved that the ternary semiring \mathbb{Z}_0^- is a principal *k*-ideal ternary semiring but not principal ideal ternary semiring. We show that \mathbb{Z}_0^- is an almost principal ideal ternary semiring. We also show that \mathbb{Z}_0^- is a Noetherian ternary semiring.

Let $n \in \mathbb{Z}_0^-$ and $T_n = \{t \in \mathbb{Z}_0^- | t \leq n\} \cup \{0\}$. Then we have the following elementary results concerning T_n .

Theorem 3.1. T_n is an ideal in \mathbb{Z}_0^- such that

- (i) $T_0 = T_{-1} = \mathbb{Z}_0^-$.
- (ii) $m \leq n \leq -1$ if and only if $T_m \subseteq T_n$.
- (iii) $T_m \cup T_n = T_p$, where $p = \max\{m, n\}$.
- (iv) $T_m \cap T_n = T_q$, where $q = \min\{m, n\}$.
- (v) $\bigcap \{T_i : i \in \mathbb{Z}_0^-\} = \{0\}.$

Proof. We first prove that T_n is an ideal of \mathbb{Z}_0^- . Let $a, b \in T_n$. Then $a \leq n$ and $b \leq n$. So $a + b \leq 2n \leq n$. Again, if $r, s \in \mathbb{Z}_0^-$, where $r \neq 0, s \neq 0$; then $rsa \leq rsn \leq n$. Therefore, $a + b \in T_n$ and $rsa \in T_n$. Consequently, T_n is an ideal of \mathbb{Z}_0^- .

The proof of properties (i) to (v) are straightforward and therefore omitted.

Remark 3.1. Note that $T_n (n \neq 0, -1)$ is not a k-ideal of the ternary semiring \mathbb{Z}_0^- .

Theorem 3.2. \mathbb{Z}_0^- satisfies the ascending chain condition on T_n -ideals.

Proof. Let $\{T_{n_{\alpha}}\}$ be an ascending chain of T_n -ideals in \mathbb{Z}_0^- . Then it is finite since by Theorem 3.1, the increasing sequence $\{n_{\alpha}\}$ of negative integers is finite. Thus there exists $j \in \mathbb{Z}_0^-$ such that $n_i = n_j$ for each $i \leq j$. Therefore, $T_{n_i} = T_{n_j}$ for each $i \leq j$ and hence \mathbb{Z}_0^- satisfies the ascending chain condition on T_n -ideals.

For $a, b \in \mathbb{Z}_0^-$ the notation S(a, b) will be used to denote the set $\{t \in \mathbb{Z}_0^- | a \leq t \leq b\}$.

Theorem 3.3. If n < -1, then S(2n, n) is a finite basis for T_n .

Proof. Let $x \in T_n$. If $x \in S(2n, n)$ or x = cdn for some $c, d \in \mathbb{Z}_0^-$, then x is generated by S(2n, n). Let x < 2n and $x \neq cdn$ for any $c, d \in \mathbb{Z}_0^-$. Then there exists a k < -2 such that -kn < x < -(k+1)n. However, this guarantees the existence of an m > n such that -(k+1)n + m = x, and it follows that $n + m \in S(2n, n)$. Therefore, x = -(k+1)n + m = -(k+2)n + n + m, where $n \in S(2n, n)$ and $n + m \in S(2n, n)$. Thus it follows that S(2n, n) is a basis for T_n .

Now we study some lemmas which will be essential for the characterization of all ideals in the ternary semiring \mathbb{Z}_0^- . From these lemmas we have some methods by which we can determine if an ideal in \mathbb{Z}_0^- contains a T_n -ideal.

Lemma 3.1. Let I be an ideal in the ternary semiring \mathbb{Z}_0^- . If $a \in I, m \in \mathbb{Z}_0^-$, where $m \neq 0$, and $S(-(m-1)a, -ma) \subset I$, then there exists an $n \in \mathbb{Z}_0^-$ such that $T_n \subset I$.

Proof. Suppose $x \in \mathbb{Z}_0^-$. If x = cda for some $c, d \in \mathbb{Z}_0^-$, then clearly $x \in I$. Next suppose that x < -(m-1)a and $x \neq cda$ for $c, d \in \mathbb{Z}_0^-$. Since there exists $k \leq m-1$ such that -(k-1)a < x < -ka, we have -(k-1)a - b = x for some $b \in \mathbb{Z}_0^-$ with b > a. Clearly, b > a implies that $-(m-1)a - b \in S(-(m-1)a, -ma) \subset I$. Therefore, $x = -(k-1)a - b = -(k-m)a + (-(m-1)a - b) \in I$. Consequently, $T_{-(m-1)a} \subset I$ and hence the proof of the lemma follows.

Lemma 3.2. Let I be an ideal in \mathbb{Z}_0^- . If there exists $a \in I$ such that $a + (-1) \in I$, then there exists an n such that $T_n \subset I$.

Proof. If I is a T_n -ideal, then the lemma is obvious. Suppose I is not a T_n -ideal and a is the greatest element in I such that $a + (-1) \in I$. Since I is an ideal, a series of simple calculations shows that the following elements belong to I:

The last row of elements is $S(-(a-1)a, -a^2)$ and hence $S(-(a-1)a, -a^2) \subset I$. Thus there exists an $n \in \mathbb{Z}_0^-$ such that $T_n \subset I$, by using Lemma 3.1.

Lemma 3.3. Let $a \in \mathbb{Z}_0^-$ and $b \in \mathbb{Z}_0^-$, where $a \neq 0$ and $b \neq 0$. If $d \in \mathbb{Z}^-$ such that -d is the greatest common divisor of a and b, then there exists $s \in \mathbb{Z}_0^-$ and $t \in \mathbb{Z}_0^-$ such that (-1)sa = (-1)tb + d or (-1)tb = (-1)sa + d.

Proof. From elementary number theory, it is well known that -d = s'(-a) + t'(-b) for some integers s' and t'. Since $0 \le -d \le -a$, $0 \le -d \le -b$ and (-a), (-b) and (-d) are all positive, it follows that $s' \ge 0$ and $t' \le 0$ or $s' \le 0$ and $t' \ge 0$. If $s' \ge 0$ and $t' \le 0$, then $-d = s'(-a) + t'(-b) \Rightarrow (-1)s'(-a) = (-1)t'b + d \Rightarrow (-1)(-s')a = (-1)t'b + d$. Thus (-1)sa = (-1)tb + d, where $s = -s' \le 0$ and $t = t' \le 0$. On the other hand, if $s' \le 0$ and $t' \ge 0$, then (-1)tb = (-1)sa + d, where $s = s' \le 0$ and $t = -t' \le 0$.

Lemma 3.4. Let I be an ideal in \mathbb{Z}_0^- , $a \in I$ and $b \in I$. If a and b are relatively prime, then there exists an n such that $T_n \subset I$.

Proof. Since a and b are relatively prime, the Lemma 3.3 guarantees the existence of $s \in \mathbb{Z}_0^-$ and $t \in \mathbb{Z}_0^-$ such that (-1)sa = (-1)tb + (-1) or (-1)tb = (-1)sa + (-1). Since I is an ideal it is clear that $(-1)sa \in I$ and $(-1)tb \in I$. Consequently, $(-1)sa + (-1) \in I$ or $(-1)tb + (-1) \in I$ and the lemma follows from Lemma 3.2.

Remark 3.2. It is easy to see that for $m \neq n$, T_m and T_n differ by at most a finite number of elements. Since $\mathbb{Z}_0^- = T_{-1}$, it follows that \mathbb{Z}_0^- differs from a T_n^- ideal by at most a finite number of elements. Consequently, if I is an ideal in \mathbb{Z}_0^- containing a T_n -ideal, then $T_n \subset I \subset \mathbb{Z}_0^-$ and it follows that \mathbb{Z}_0^- and I differ by at most a finite number of elements. It will be shown that an ideal I in \mathbb{Z}_0^- not containing a T_n -ideal differs from the multiples of some negative integer d < -1 by at most a finite number of elements. Consequently, if I is an ideal in \mathbb{Z}_0^- not containing a T_n -ideal, then there exist $m \in \mathbb{Z}_0^-$ and $d \in \mathbb{Z}_0^-$, where d < -1, such that $(-1)dT_m \subset I \subset d\mathbb{Z}_0^-\mathbb{Z}_0^- = < d >$.

In view of the above remarks, the ideals in \mathbb{Z}_0^- are classified according to the following definition.

Definition 3.1. An ideal I in \mathbb{Z}_0^- is called a T-ideal if $T_k \subset I$ for some $k \in \mathbb{Z}_0^-$. All other ideals in \mathbb{Z}_0^- are called M-ideals.

Note 3.2. It is clear that \mathbb{Z}_0^- is a *T*-ideal and $\{0\}$ is an *M*-ideal.

Lemma 3.5. Every non-empty subset of the set of all negative integers \mathbb{Z}^- has a greatest element. In particular, \mathbb{Z}^- itself has the greatest element (-1).

Remark 3.3. The above Lemma 3.5 gives the dual notion of the well-known Well-Ordering Property of the set of all natural numbers \mathbb{Z}^+ .

The following theorem gives a characterization of T-ideals in the ternary semiring \mathbb{Z}_0^- and will be used to show that \mathbb{Z}_0^- is a Noetherian ternary semiring.

Theorem 3.4. An ideal I in \mathbb{Z}_0^- is a T-ideal if and only if I has a finite basis and $I = K \cup T_k$, where T_k is the maximal T_n -ideal contained in I and $K = \{t \in I : k < t < 0\}$.

Proof. Suppose I is a T-ideal and $T_n \subset I$. Let $S = \{n \in \mathbb{Z}_0^- : T_n \subset I\}$. Since I is a T-ideal, it follows that S is a non-empty subset of \mathbb{Z}_0^- and by Lemma 3.5, S contains a greatest element, say k. Now by Theorem 3.1, $T_n \subset T_k$ for each $n \in S$ and it is clear that T_k is the maximal T_n -ideal contained in I. Letting $K = \{t \in I : k < t < 0\}$, we have $I = K \cup T_k$. According to Theorem 3.3, S(2k, k) is a finite basis for T_k . Since K is a finite subset of I, $S(2k, k) \cup K$ is a finite basis for I.

The converse of the theorem is obvious.

Now we have the following theorem analogous to Theorem 3.1.

Theorem 3.5. If $n \in \mathbb{Z}_0^-$ and $d \in \mathbb{Z}_0^-$, then $(-1)dT_n$ is an ideal in \mathbb{Z}_0^- such that

- (i) $(-1)dT_{-1} = d\mathbb{Z}_0^- \mathbb{Z}_0^- = \langle d \rangle$, $(-1)dT_n = T_n$ if and only if d = -1 and $(-1)dT_n = \{0\}$ if and only if d = 0.
- (ii) $m \leq n$ if and only if $(-1)dT_m \subseteq (-1)dT_n$.
- (iii) $(-1)dT_m \cup (-1)dT_n = (-1)dT_p$, where $p = \max\{m, n\}$.
- (iv) $(-1)dT_m \cap (-1)dT_n = (-1)dT_q$, where $q = \min\{m, n\}$.
- (v) $\bigcap \{ (-1)dT_n : n \in \mathbb{Z}_0^- \} = \{ 0 \}.$

Proof. Suppose $x \in (-1)dT_n$ and $y \in (-1)dT_n$. Then there exist $k \leq n$ and $q \leq n$ such that x = (-1)kd and y = (-1)qd. Clearly, $k + q \leq 2n \leq n$ and hence $x+y = (-1)kd+(-1)qd = (-1)(k+q)d \in (-1)dT_n$. If $r, s \in \mathbb{Z}_0^-$, where $r \neq 0, s \neq 0$, then $rsk \leq n$ and $rsx = rs(-1)kd = (-1)(rsk)d \in (-1)dT_n$. Therefore, $(-1)dT_n$ is an ideal in \mathbb{Z}_0^- .

The proof of properties (i) to (v) are straightforward and therefore omitted.

Note 3.3. $(-1)dT_{-1} = (-1)d\mathbb{Z}_0^- = d\mathbb{Z}_0^-\mathbb{Z}_0^- = \langle d \rangle$ is a k-ideal of the ternary semiring \mathbb{Z}_0^- . In [6], we have proved that $d\mathbb{Z}_0^-\mathbb{Z}_0^-$ is a maximal k-ideal and hence a prime k-ideal of \mathbb{Z}_0^- if and only if d is prime.

It will be shown that for any ideal I in \mathbb{Z}_0^- there exist $n \in \mathbb{Z}_0^-$ and $d \in \mathbb{Z}_0^-$ such that $(-1)dT_n$ is contained in I. Consequently, $(-1)dT_n$ -ideal is the basic type of ideal in \mathbb{Z}_0^- and the study of ideals in the ternary semiring \mathbb{Z}_0^- is reduced to the problem of finding a maximal $(-1)dT_n$ -ideal for each ideal in \mathbb{Z}_0^- . It has already observed in the previous Theorem 3.5 that $(-1)dT_n = T_n$ if d = -1 and $(-1)dT_n = \{0\}$ if d = 0. Consequently, it remains only to study the case for d < -1. For this purpose, in the remainder of this section it will be assumed that d < -1 unless otherwise stated.

The following three lemmas are analogous to the well-known properties of ideals in the ring of integers \mathbb{Z} .

Lemma 3.6. If $p \in \mathbb{Z}_0^-$, $q \in \mathbb{Z}_0^-$ and p divides q, then $(-1)qT_n \subseteq (-1)pT_n$.

Proof. Suppose $a \in (-1)qT_n$. Then there exists $k \leq n$ such that a = (-1)kq. Since p divides q, there exists $t \leq -1$ such that q = (-1)tp. Consequently, $a = (-1)kq = (-1)k(-1)tp = (-1)(-kt)p \in (-1)pT_n$, since $-kt \leq n$, and hence it follows that $(-1)qT_n \subseteq (-1)pT_n$.

Lemma 3.7. If $(-1)dT_c \subseteq (-1)bT_a$, then b divides d.

Proof. Suppose $(-1)dT_c \subseteq (-1)bT_a$. Since $(-1)cd \in (-1)bT_a$, there exists $p \leq a$ such that (-1)cd = (-1)pb. This implies that b divides (-1)cd. Now by definition of $(-1)dT_c$, it follows that $(-1)(c+(-1))d \in (-1)bT_a$ and hence there exists $q \leq a$ such

S. Kar

that (-1)(c+(-1))d = (-1)qb. Consequently, b divides (-1)(c+(-1))d = (-1)cd+dand in view of the fact that b divides (-1)cd, it follows that b divides d.

Corollary 3.1. If $(-1)dT_c \subseteq (-1)bT_a$, then $d \leq b$.

Proof. From the Lemma 3.7 it follows that b divides d and hence $d \leq b$, since b and d both are negative integers.

Lemma 3.8. If $(-1)bT_a \cap (-1)dT_c \neq \{0\}$, then there exist $p \in \mathbb{Z}_0^-$ and $q \in \mathbb{Z}_0^-$ such that $(-1)qT_p \subset (-1)bT_a \cap (-1)dT_c$.

Proof. Let $x \in (-1)bT_a \cap (-1)dT_c$. Since $(-1)bT_a$ is an ideal of \mathbb{Z}_0^- , $x \in (-1)bT_a \Rightarrow (-1)xT_{-1} \subset (-1)bT_a$. Similarly, $(-1)xT_{-1} \subset (-1)dT_c$. Consequently, $(-1)xT_{-1} \subset (-1)bT_a \cap (-1)dT_c$ and hence the proof of the lemma follows.

The following lemmas are essential to show that the ternary semiring \mathbb{Z}_0^- is Noe-therian on $(-1)dT_n$ -ideals.

Lemma 3.9. Any ascending sequence $\{(-1)bT_{a_j}\}$ of ideals in the ternary semiring \mathbb{Z}_0^- is finite.

Proof. Let $\{(-1)bT_{a_j}\}$ be an ascending sequence of ideals in the ternary semiring \mathbb{Z}_0^- . Then it is finite since by Theorem 3.5, the increasing sequence $\{a_j\}$ of negative integers is finite. Thus there exists $\alpha \in \mathbb{Z}_0^-$ such that $a_\alpha = a_n$ for each $n \leq \alpha$. Therefore, $(-1)bT_\alpha = (-1)bT_n$ for each $n \leq \alpha$ and hence the lemma follows.

Lemma 3.10. Any ascending sequence $\{(-1)b_iT_a\}$ of ideals in the ternary semiring \mathbb{Z}_0^- is finite.

Proof. Let $\{(-1)b_iT_a\}$ be an ascending sequence of ideals in the ternary semiring \mathbb{Z}_0^- . Then it is finite since by Corollary 3.1, the increasing sequence $\{b_i\}$ of negative integers is finite. Hence there exists an $\alpha \in \mathbb{Z}_0^-$ such that $b_\alpha = b_n$ for each $n \leq \alpha$. Thus it follows that $(-1)b_\alpha T_a = (-1)b_nT_a$ for each $n \leq \alpha$ and hence the lemma is proved.

Theorem 3.6. The ternary semiring \mathbb{Z}_0^- satisfies the ascending chain condition on $(-1)dT_n$ -ideals.

Proof. Let $\{(-1)b_iT_{a_i}\}$ be an ascending chain of ideals in the ternary semiring \mathbb{Z}_0^- . Then by Lemma 3.10, it follows that there exists $\alpha \in \mathbb{Z}_0^-$ such that $b_\alpha = b_i$ for $i \leq \alpha$. Again by Lemma 3.9, it follows that there exists $\beta \in \mathbb{Z}_0^-$ such that $a_\beta = a_j$ for $j \leq \beta$. If $k = \min\{\alpha, \beta\}$, then $(-1)b_kT_{a_k} = (-1)b_pT_{a_p}$ for $p \leq k$. Hence the ternary semiring \mathbb{Z}_0^- satisfies the ascending chain condition on $(-1)dT_n$ -ideals.

For $x \in \mathbb{Z}_0^-$, $y \in \mathbb{Z}_0^-$ and $d \in \mathbb{Z}_0^-$ where d < -1, we denote by $S_d(x, y)$ the set $\{k \in \mathbb{Z}_0^- : x \leq k \leq y \text{ and } k = (-1)md \text{ for some } m \in \mathbb{Z}_0^-\}.$

Theorem 3.7. $S_d(-2nd, -nd)$ is a finite basis for $(-1)dT_n$.

Proof. Let $p = (-1)qd \in (-1)dT_n$. If $p \in S_d(-2nd, -nd)$ or p = and for some $a \in \mathbb{Z}_0^-$, then p is generated by $S_d(-2nd, -nd)$. Suppose $p \notin S_d(-2nd, -nd)$ and $p \neq and$ for $a \in \mathbb{Z}_0^-$. Since p < -2nd and there exists k < -2 such that knd , it follows that there exists an <math>m = -td > -nd with $t \in \mathbb{Z}_0^-$ such that (k+1)nd + m = p. Now m > -nd implies that $-nd + m = -nd - td = -(n+t)d \in \mathbb{Z}_0^-$.

 $S_d(-2nd, -nd)$. Therefore, p = (k+2)nd + (-nd+m) and hence $S_d(-2nd, -nd)$ is a finite basis for $(-1)dT_n$.

Lemma 3.11. Let I be an ideal in \mathbb{Z}_0^- , $a \in I$ and d divide a, where d < -1. If there exists $m \in \mathbb{Z}_0^-$ such that $S_d(-(m-1)a, -ma) \subset I$, then there exists $n \in \mathbb{Z}_0^$ such that $(-1)dT_n \subset I$.

Proof. If *d* divides *a*, then there exists $b \in \mathbb{Z}_0^-$ such that a = -bd and it follows that $S_d(-(m-1)a, -ma) = S_d((mb-b)d, mbd)$. We shall show that $(-1)dT_{-(m-1)b} \subset I$. To show this we have to show that $x = -yd \in I$, where $y \leq -(m-1)b$. Clearly, if x = -yd, where y = -(m-1)b, then $x \in S_d(-(m-1)a, -ma) \subset I$. Next suppose that x = -yd, where y < -(m-1)b. Then it is clear that x < -(m-1)a and there exists $k \leq -1$ such that (k-1)ma < x < kma. Consequently, there exists $r \in \mathbb{Z}_0^-$ such that r > -ma and kma+r = x. Again kma+r = -kmbd+r = x = -yd implies that r = -cd for some $c = (y-kmb) \in \mathbb{Z}_0^-$. Also -(m-1)a < -ma+r < -ma and it is easy to see that $-ma+r = mbd+(-cd) = -(-mb+c)d \in S_d(-(m-1)a, -ma) \subset I$. Therefore, $-ma+r \in I$ and $(k+1)ma \in I$ together imply that $x = -yd = kma+r = (k+1)ma + (-ma+r) \in I$. This implies that for each $y \leq -(m-1)b$, $-yd \in I$ and hence letting n = -(m-1)b it is clear that $(-1)dT_n \subset I$.

Lemma 3.12. Let I be an ideal in \mathbb{Z}_0^- , $a \in I$ and $b \in I$. If a and b are not relatively prime, then there exists $n \in \mathbb{Z}_0^-$ and $d \in \mathbb{Z}^-$ such that $(-1)dT_n \subset I$, where -d is the greatest common divisor of a and b.

Proof. Since -d is the greatest common divisor of a and b, b = -cd for some $c \in \mathbb{Z}_0^-$ and by Lemma 3.3, it follows that there exist $s \in \mathbb{Z}_0^-$ and $t \in \mathbb{Z}_0^-$ such that (-1)sa = (-1)tb + d or (-1)tb = (-1)sa + d. Since I is an ideal of \mathbb{Z}_0^- , it is clear that $(-1)sa \in I$ and $(-1)tb \in I$. Consequently, if (-1)sa = (-1)tb + d, a series of simple calculations show that the following elements belong to I:

Since $-c^2td = (-ct)cd$ and $-c^2td + (-c)d = (-ct)cd + (-c)d = ((-ct)c - c)d$, the last row is $S_d([(-ct)c - c]d, (-ct)cd) = S_d(-(-ct - 1)b, -(-ct)b) = S_d(-(m - 1)b, -mb)$, where m = -ct. Consequently, by Lemma 3.11, it follows that there exists $n \in \mathbb{Z}_0^-$ such that $(-1)dT_n \subset I$. On the other hand, if (-1)tb = (-1)sa + d, then by similar argument we have the same result.

Theorem 3.8. If I is an M-ideal in \mathbb{Z}_0^- , then there exist $n \in \mathbb{Z}_0^-$ and $d \in \mathbb{Z}^-$ such that $(-1)dT_n \subset I$.

Proof. If $a \in I$ and $b \in I$ where a and b are relatively prime, then Lemma 3.4 implies that $T_k \subset I$ for some k, which is a contradiction to the fact that I is an M-ideal. Consequently, if $a \in I$ and $b \in I$ and they are not relatively prime, then by Lemma

3.12, there exist $n \in \mathbb{Z}_0^-$ and $d \in \mathbb{Z}^-$ such that $(-1)dT_n \subset I$, where -d is the greatest common divisor of a and b.

S. Kar

The following theorem gives a structure and characterization of M-ideals in the ternary semiring \mathbb{Z}_0^- and is necessary to show that the ternary semiring \mathbb{Z}_0^- is Noetherian.

Theorem 3.9. An ideal I in \mathbb{Z}_0^- is an M-ideal if and only if I has a finite basis and $I = L \cup (-1)qT_p$, where q < -1, $(-1)qT_p$ is a maximal $(-1)dT_n$ -ideal contained in I, and $L = \{t \in I : -pq < t < 0\}$.

Proof. Let I be an M-ideal in \mathbb{Z}_0^- . Then by Theorem 3.8, it follows that there exists $n \in \mathbb{Z}_0^-$ such that $(-1)dT_n \subset I$. Let $S = \{d \in \mathbb{Z}_0^- : -d \text{ is the greatest}\}$ common divisor of some $a \in I$ and $b \in I$ and q be the greatest element in S. Then Lemma 3.12 guarantees that $W = \{n \in \mathbb{Z}_0^- : (-1)qT_n \subset I\}$ is a non-empty subset of \mathbb{Z}_0^- . Consequently, by Lemma 3.5, it follows that W has a greatest element and if p is the greatest element of W, then it is clear that $(-1)qT_p \subset I$. Suppose there exists $(-1)bT_a \subset I$ such that $(-1)qT_p \subseteq (-1)bT_a$. Now it follows from Lemma 3.7 that b divides q and hence $b \ge q$. Since -b is the greatest common divisor of (-1)ba and (-1)b(a-1), we have $b \in S$ and it follows that $b \leq q$. Consequently, b = q. Again by using Theorem 3.5, we have $p \leq a$ and since $a \in W$ it follows that $p \geq a$. Consequently, a = p and hence $(-1)qT_p = (-1)bT_a$. Therefore, $(-1)qT_p$ is a maximal ideal in I. Let $x \in I$, x < -pq and $k \in \mathbb{Z}_0^-$ such that -k be the greatest common divisor of x and -pq. Then x = -ky for some $y \in \mathbb{Z}_0^-$. Now $k \in S$ and it can be shown that q divides k. Thus there exists $r \in \mathbb{Z}_0^-$ such that k = -rq. Consequently, x = -ky = -(-rq)y = -(-ry)q < -pq implies that -ry < p and hence $x \in (-1)qT_p$. Now if $L = \{t \in I : -pq < t < 0\}$, then it is clear that $I = L \cup (-1)qT_p$. Again from Theorem 3.7, it follows that $S_q(-2pq, -pq)$ is a finite basis for $(-1)qT_p$. Since L is a finite subset of I, we have $L \cup S_q(-2pq, -pq)$ is a finite basis for I.

The converse of the theorem is obvious.

Definition 3.4. An ideal I in a ternary semiring S is called almost principal if there exists a finite set $J \subset S$ such that $I \cup J = P$, where P is a principal ideal in S. A ternary semiring S is called an almost principal ideal ternary semiring if every ideal in S is almost principal.

Theorem 3.10. The ternary semiring \mathbb{Z}_0^- is an almost principal ideal ternary semiring.

Proof. Let I be an ideal in \mathbb{Z}_0^- . If I is a T-ideal, then by Theorem 3.4, $I = K \cup T_n$, where $K = \{t \in I : n < t < 0\}$. Let $S_1 = \{t \in \mathbb{Z}_0^- : t \notin I\}$. Then from Remark 3.2, it follows that S_1 is a finite subset of \mathbb{Z}_0^- and $I \cup S_1 = \mathbb{Z}_0^- = \langle -1 \rangle$, is a principal ideal. If I is an M-ideal, then by Theorem 3.9, $I = L \cup (-1)dT_n$, where $L = \{t \in I : -nd < t < 0\}$. Let $S_2 = \{(-1)td : t \in \mathbb{Z}_0^- \text{ and } (-1)td \notin I\}$. Then from Remark 3.2, it follows that S_2 is a finite subset of \mathbb{Z}_0^- and $I \cup S_2 = d\mathbb{Z}_0^-\mathbb{Z}_0^- = \langle d \rangle$, is a principal ideal. In either case I is an almost principal ideal and hence the theorem follows.

Definition 3.5. A ternary semiring S which satisfies the ascending chain condition for ideals is called a Noetherian ternary semiring.

The following is the characterization theorem for Noetherian ternary semiring.

Theorem 3.11. Let S be a ternary semiring. Then S is Noetherian if and only if every ideal of S has a finite basis.

Proof. The proof of the theorem is similar to that of ring theory and therefore we omit it.

Since any ideal in the ternary semiring \mathbb{Z}_0^- is either a *T*-ideal or an *M*-ideal, Theorem 3.4 and Theorem 3.9 give a classification and structure for all ideals in the ternary semiring \mathbb{Z}_0^- . These results can now be used to obtain the following theorem:

Theorem 3.12. The ternary semiring \mathbb{Z}_0^- is a Noetherian ternary semiring.

Proof. In view of Theorem 3.4 and Theorem 3.9, any ideal in the ternary semiring \mathbb{Z}_0^- has a finite basis and it follows from Theorem 3.11 that the ternary semiring \mathbb{Z}_0^- is a Noetherian ternary semiring.

Acknowledgement. The author is grateful to Professor T. K. Dutta for his valuable suggestions and continuous help through out the preparation of this paper.

References

- P. J. Allen and L. Dale, Ideal theory in the semiring Z⁺, Publ. Math. Debrecen 22 (1975), no. 3-4, 219–224.
- T. K. Dutta and S. Kar, On regular ternary semirings, in Advances in Algebra, 343–355, World Sci. Publ., River Edge, NJ, 2003.
- [3] T. K. Dutta and S. Kar, A note on regular ternary semirings, Kyungpook Math. J. 46 (2006), no. 3, 357–365.
- [4] T. K. Dutta and S. Kar, On prime ideals and prime radical of ternary semirings, Bull. Calcutta Math. Soc. 97 (2005), no. 5, 445–454.
- [5] T. K. Dutta and S. Kar, On semiprime ideals and irreducible ideals of ternary semirings, Bull. Calcutta Math. Soc. 97 (2005), no. 5, 467–476.
- [6] T. K. Dutta and S. Kar, On ternary semifields, Discuss. Math. Gen. Algebra Appl. 24 (2004), no. 2, 185–198.
- [7] T. K. Dutta and S. Kar, On the Jacobson radical of a ternary semiring, Southeast Asian Bull. Math. 28 (2004), no. 1, 1–13.
- [8] T. K. Dutta and S. Kar, A note on the Jacobson radicals of ternary semirings, Southeast Asian Bull. Math. 29 (2005), no. 2, 321–331.
- T. K. Dutta and S. Kar, Two types of Jacobson radicals of ternary semirings, Southeast Asian Bull. Math. 29 (2005), no. 4, 677–687.
- [10] T. K. Dutta and S. Kar, On matrix ternary semirings, Int. J. Math. Anal. 1 (2006), no. 1, 81–95.
- [11] J. S. Golan, Semirings and Their Applications, Kluwer Acad. Publ., Dordrecht, 1999.
- [12] U. Hebisch and H. J. Weinert, Semirings: Algebraic Theory and Applications in Computer Science, Translated from the 1993 German original, World Sci. Publ., River Edge, NJ, 1998.
- [13] S. Kar, On quasi-ideals and bi-ideals in ternary semirings, Int. J. Math. Math. Sci. 2005, no. 18, 3015–3023.
- [14] S. Kar, On structure space of ternary semirings, Southeast Asian Bull. Math. 31 (2007), no. 3, 537–545.
- [15] W. G. Lister, Ternary rings, Trans. Amer. Math. Soc. 154 (1971), 37–55.