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1. Introduction

In [2], we have introduced the notion of ternary semiring which generalizes the
notion of ternary ring introduced by W. G. Lister [15]. The set Z; of all non-
positive integers is an example of a ternary semiring with usual binary addition and
ternary multiplication. In [4, 5, 6] we have characterized respectively the prime,
semiprime and maximal ideals of the ternary semiring Z; . Some works on ternary
semiring may be found in [2, 3, 7, 8, 9, 10, 13, 14].

Our main purpose of this paper is to study the ideal theory in the ternary semiring
Zy . In Section 2, we give some basic definitions and examples. In Section 3, we
study the ideal theory in the ternary semiring Z, and prove that Z; is a Noetherian
ternary semiring.

2. Preliminaries

Definition 2.1. A non-empty set S together with a binary operation, called addition
and a ternary multiplication, denoted by juztaposition, is said to be a ternary semi-
ring if S is an additive commutative semigroup satisfying the following conditions:
(i) (abc)de = a(bed)e = ab(cde), (ii) (a4 b)ed = acd + bed,
(iii) a(b+ ¢)d = abd + acd, (iv) ab(c+ d) = abc + abd,
for all a,b,c,d,e € S.
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Definition 2.2. Let S be a ternary semiring. If there exists an element 0 € S such
that 0 +x = x and Ozy = 20y = xy0 = 0 for all x,y € S then 0’ is called the zero
element or simply the zero of the ternary semiring S. In this case we say that S is
a ternary semiring with zero.

Example 2.1. Let Z; be the set of all negative integers with zero. Then with the
usual binary addition and ternary multiplication, Z; forms a ternary semiring with
Z€ero.

Definition 2.3. An additive subsemigroup T of a ternary semiring S is called a
ternary subsemiring if t1tots € T for all t1,to,t3 € T.

Definition 2.4. An additive subsemigroup I of a ternary semiring S is called a left
(right, lateral) ideal of S if s1s2i (respectively is189,81182) € I for all s1,s9 € S and
i€ 1. If I is a left, a right, a lateral ideal of S, then I is called an ideal of S.

Definition 2.5. An ideal I of a ternary semiring S is called a k-ideal if x+1y € I;
x €S, yel imply that x € 1.

Definition 2.6. Let I be an ideal of a ternary semiring S. A subset B of I is called
a basis for I if every element of I can be written in the form Y., r;s;b; , where
ri,8 €S and b; € B.

If the set B is finite, then B is called a finite basis for I.

Through out the rest of the paper, Z denotes the set of all integers, Z denotes the
set of all positive integers, Z~ denotes the set of all negative integers, Zar = 7Z+tu{0}
and Z, =Z~ U{0}.

3. Ideal theory in the ternary semiring Z;

In this section we study the ideal theory in the ternary semiring of non-positive
integers Z, and classify them. The ring of integers Z plays a vital role in the
theory of rings and it is well known that the ring of integers Z is a principal ideal
ring (PIR) and hence a Noetherian ring. In [1], Allen and Dale proved that the
semiring of nonnegative integers ZS‘ is a Noetherian semiring. Again we note that
the semiring Z{ is not a principal ideal semiring but Allen and Dale [1] proved that
Z§ is an almost principal ideal semiring. In [4], we have proved that the ternary
semiring Z, is a principal k-ideal ternary semiring but not principal ideal ternary
semiring. We show that Z; is an almost principal ideal ternary semiring. We also
show that Z; is a Noetherian ternary semiring.

Let n € Zy and T, = {t € Zy|t < n} U {0}. Then we have the following
elementary results concerning 7.

Theorem 3.1. T, is an ideal in Z; such that
() To=T-1 = Zg.
(ii) m <n < —14f and only if T, C T),.
(il) Tp, U T, =Tp, where p=max{m,n}.
(iv) T, N T, = T,, where ¢ = min{m, n}.
)

v) ({T::i € Zg } = {0}.
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Proof. We first prove that T}, is an ideal of Z; . Let a,b € T,,. Thena < n and b < n.
So a+b<2n < n. Again, if r,s € Z;, where r # 0,s # 0; then rsa < rsn < n.
Therefore, a + b € T,, and rsa € T,,. Consequently, T}, is an ideal of Z .

The proof of properties (i) to (v) are straightforward and therefore omitted. 1

Remark 3.1. Note that T;,(n # 0,—1) is not a k-ideal of the ternary semiring Z .
Theorem 3.2. Z, satisfies the ascending chain condition on T, -ideals.

Proof. Let {T;,,} be an ascending chain of T),-ideals in Z;. Then it is finite since
by Theorem 3.1, the increasing sequence {n,} of negative integers is finite. Thus
there exists j € Z, such that n; = n; for each i < j. Therefore, T;,, = Ty, for each
1 < j and hence Z; satisfies the ascending chain condition on T,-ideals. 1

For a,b € Z; the notation S(a,b) will be used to denote the set {t € Z;|a <t <
b}.

Theorem 3.3. If n < —1, then S(2n,n) is a finite basis for T,.

Proof. Let x € T,,. If x € S(2n,n) or x = cdn for some ¢,d € Z;, then z is
generated by S(2n,n). Let z < 2n and x # cdn for any ¢,d € Zy . Then there exists
a k < —2 such that —kn < © < —(k 4+ 1)n. However, this guarantees the existence
of an m > n such that —(k + 1)n + m = z, and it follows that n +m € S(2n,n).
Therefore, © = —(k + 1)n+m = —(k + 2)n + n + m, where n € S(2n,n) and
n+m € S(2n,n). Thus it follows that S(2n,n) is a basis for T),. 1

Now we study some lemmas which will be essential for the characterization of all
ideals in the ternary semiring Z; . From these lemmas we have some methods by
which we can determine if an ideal in Z; contains a T},-ideal.

Lemma 3.1. Let I be an ideal in the ternary semiring Z, . If a € I, m € Z , where
m # 0, and S(—(m — 1)a, —ma) C I, then there exists an n € Zy such that T,, C I.

Proof. Suppose x € Zy . If x = cda for some c,d € Z , then clearly x € I. Next
suppose that x < —(m —1)a and z # cda for ¢,d € Zg . Since there exists k <m—1
such that —(k — 1)a < x < —ka, we have —(k — 1)a — b = z for some b € Z;
with b > a. Clearly, b > a implies that —(m — 1)a — b € S(—(m — 1)a, —ma) C 1.
Therefore, z = —(k — 1)a —b = —(k — m)a + (—(m — 1)a — b) € I. Consequently,
T_(m—-1)a C I and hence the proof of the lemma follows. 1

Lemma 3.2. Let I be an ideal in Zg . If there exists a € I such that a + (—1) € I,
then there exists an n such that T, C I.

Proof. If I is a T),-ideal, then the lemma is obvious. Suppose [ is not a T),-ideal and
a is the greatest element in I such that a + (—1) € I. Since [ is an ideal, a series of
simple calculations shows that the following elements belong to I:

—(=Da+(=1),=(-1)a

—(=2)a+(=2), =(=2)a+(-1), =(-2)a

—(=3)a+(=3), =(=3)a+(=2), =(=3)a + (=1), =(=3)a

~(a)a+(a) = —(a—1)a, ., —(a)a + (=3), —(@a + (~2), —(a)a + (~1), —(a)a.



72 S. Kar

The last row of elements is S(—(a — 1)a, —a?) and hence S(—(a — 1)a, —a?) C I.
Thus there exists an n € Z; such that T}, C I, by using Lemma 3.1. 1

Lemma 3.3. Leta € Z;, and b € Zy, where a # 0 and b # 0. If d € Z~ such that
—d is the greatest common divisor of a and b, then there exists s € Zy and t € Zy,
such that (—=1)sa = (—=1)tb+d or (=1)tb = (—1)sa + d.

Proof. From elementary number theory, it is well known that —d = s’(—a) +t'(—b)
for some integers s’ and ¢’. Since 0 < —d < —a, 0 < —d < —b and (—a), (—b) and
(—d) are all positive, it follows that s’ > 0and ' <Qor s’ <Oandt¢ >0. If s >0
and t' <0, then —d = §'(—a) +t'(=b) = (—=1)s'(—a) = (-1)t'b+d = (-1)(—=5")a =
(=1)t'b+d. Thus (—1)sa = (—1)tb+ d, where s = —s' < 0 and t = ¢’ < 0. On the
other hand, if s’ < 0 and ¢’ > 0, then (—1)tb = (—=1)sa + d, where s = s’ < 0 and
t=—t'<0. 1

Lemma 3.4. Let I be an ideal in Zy, a € I and b € I. If a and b are relatively
prime, then there exists an n such that T, C I.

Proof. Since a and b are relatively prime, the Lemma 3.3 guarantees the existence
of s € Zy and t € Zy such that (—1)sa = (—=1)tb+ (—1) or (—=1)tb = (—1)sa+ (—1).
Since I is an ideal it is clear that (—1)sa € I and (—1)tb € I. Consequently,
(=Dsa+ (1) € I or (—1)tb+ (—1) € I and the lemma follows from Lemma 3.2. 1

Remark 3.2. It is easy to see that for m # n, T}, and T,, differ by at most a
finite number of elements. Since Z;, = T_;, it follows that Z, differs from a 7),-
ideal by at most a finite number of elements. Consequently, if I is an ideal in Z;
containing a Ty,-ideal, then T;, C I C Zy and it follows that Z; and I differ by
at most a finite number of elements. It will be shown that an ideal I in Z; not
containing a T,-ideal differs from the multiples of some negative integer d < —1
by at most a finite number of elements. Consequently, if I is an ideal in Z; not
containing a T,-ideal, then there exist m € Z; and d € Z; , where d < —1, such
that (=1)dT,, C I C dZyZy =< d >.

In view of the above remarks, the ideals in Z; are classified according to the
following definition.

Definition 3.1. An ideal I in Zy is called a T-ideal if Ty, C I for some k € Zj .
All other ideals in Zg are called M-ideals.

Note 3.2. It is clear that Z; is a T-ideal and {0} is an M-ideal.

Lemma 3.5. FEvery non-empty subset of the set of all negative integers Z~ has a
greatest element. In particular, Z~ itself has the greatest element (—1).

Remark 3.3. The above Lemma 3.5 gives the dual notion of the well-known Well-
Ordering Property of the set of all natural numbers ZT.

The following theorem gives a characterization of T-ideals in the ternary semiring
Zy and will be used to show that Z; is a Noetherian ternary semiring.

Theorem 3.4. An ideal I in Z; is a T-ideal if and only if I has a finite basis and
I = K UTy, where Ty, is the mazimal T,,-ideal contained in I and K ={t € 1:k <
t < 0}.
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Proof. Suppose I is a T-ideal and T,, C I. Let S ={n € Zy : T,, C I}. Since [ is a
T-ideal, it follows that .S is a non-empty subset of Z; and by Lemma, 3.5, S contains
a greatest element, say k. Now by Theorem 3.1, T,, C T} for each n € S and it is clear
that Ty, is the maximal T},-ideal contained in I. Letting K = {t € I : k < ¢ < 0}, we
have I = K UTy. According to Theorem 3.3, S(2k, k) is a finite basis for T;. Since
K is a finite subset of I, S(2k, k) U K is a finite basis for I.

The converse of the theorem is obvious. 1

Now we have the following theorem analogous to Theorem 3.1.

Theorem 3.5. Ifn € Z; and d € Z; , then (—1)dT,, is an ideal in Z; such that
(i) (-1)dT-1 = dZyZy =< d >, (-1)dT,, = T), if and only if d = —1 and
(=1)dT,, = {0} if and only if d = 0.

(ii) m < n if and only if (—1)dT,, C (—1)dT,.

(ii) (-1)dTy, U (—=1)dT,, = (—1)dT,, where p = max{m,n}.

(iv) (-1)dT,, N (=1)dT,, = (—1)dTy, where ¢ = min{m,n}.

(v) ({(=1)dT;, :n € Zy } = {0}.

Proof. Suppose x € (—1)dT,, and y € (—1)dT,,. Then there exist kK < n and ¢ <n

such that © = (—=1)kd and y = (—1)gd. Clearly, k + ¢ < 2n < n and hence

z+y = (—1)kd+(—1)gd = (=1)(k+q)d € (—1)dT,,. If r,s € Zg , where r # 0,5 # 0,

then rsk < n and rsz = rs(—1)kd = (—1)(rsk)d € (=1)dT,,. Therefore, (—1)dT}, is

an ideal in Z; . 1
The proof of properties (i) to (v) are straightforward and therefore omitted.

Note 3.3. (-1)dT_; = (-1)dZ, = dZyZ, =< d > is a k-ideal of the ternary
semiring Zg . In [6], we have proved that dZj Z, is a maximal k-ideal and hence a
prime k-ideal of Z if and only if d is prime.

It will be shown that for any ideal I in Z, there exist n € Z; and d € Z; such that
(=1)dT, is contained in I. Consequently, (—1)dT,-ideal is the basic type of ideal in
Zy and the study of ideals in the ternary semiring Z, is reduced to the problem of
finding a maximal (—1)dT,-ideal for each ideal in Zy. It has already observed in
the previous Theorem 3.5 that (—1)dT,, = T, if d = —1 and (—1)dT,, = {0} if d = 0.
Consequently, it remains only to study the case for d < —1. For this purpose, in the
remainder of this section it will be assumed that d < —1 unless otherwise stated.

The following three lemmas are analogous to the well-known properties of ideals
in the ring of integers Z.

Lemma 3.6. Ifp € Z,, q € Z, and p divides q, then (—1)qT,, C (—1)pT,.

Proof. Suppose a € (—1)¢T,,. Then there exists k < n such that a = (—1)kq. Since
p divides g, there exists ¢ < —1 such that ¢ = (—1)tp. Consequently, a = (—1)kq =
(=Dk(=Dtp = (-1)(=kt)p € (—1)pT,, since —kt < n, and hence it follows that
(*l)an - (71)an~ 1
Lemma 3.7. If (—1)dT, C (—=1)bT,, then b divides d.

Proof. Suppose (—1)dT, C (—1)bT, . Since (—1)cd € (—1)bT,, there exists p < a
such that (—1)ed = (—1)pb. This implies that b divides (—1)cd. Now by definition of
(—=1)dT, it follows that (—1)(c+(—1))d € (—1)bT, and hence there exists ¢ < a such
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that (—1)(c+(—1))d = (—1)gb. Consequently, b divides (—1)(c+(—1))d = (—1)ed+d
and in view of the fact that b divides (—1)cd, it follows that b divides d. 1

Corollary 3.1. If (—1)dT. C (—1)bT,, then d < b.

Proof. From the Lemma 3.7 it follows that b divides d and hence d < b, since b and
d both are negative integers. 1

Lemma 3.8. If (—1)bT, N (—1)dT, # {0}, then there exist p € Zy and q € Zg such
that (—1)qT, C (—=1)bT, N (~1)dTs.

Proof. Let x € (—1)bT, N (—1)dT.. Since (—1)bTy, is an ideal of Z; , x € (—1)0T, =
(=D)zT_y C (—1)bTy. Similarly, (—1)zT_; C (—1)dT.. Consequently, (—1)aT_; C
(=1)bT, N (—1)dT. and hence the proof of the lemma follows. 1

The following lemmas are essential to show that the ternary semiring Z; is Noe-
therian on (—1)dT,,-ideals.

Lemma 3.9. Any ascending sequence {(—1)bT,;} of ideals in the ternary semiring
Zg s finite.

Proof. Let {(—1)bT,,} be an ascending sequence of ideals in the ternary semiring
Zy . Then it is finite since by Theorem 3.5, the increasing sequence {a;} of negative

integers is finite. Thus there exists o € Z; such that a, = a, for each n < a.
Therefore, (—1)bT,, = (—1)bT;, for each n < a and hence the lemma follows. 1

Lemma 3.10. Any ascending sequence {(—1)b;T,} of ideals in the ternary semiring
Zgy is finite.

Proof. Let {(—1)b;T,} be an ascending sequence of ideals in the ternary semiring
Zq . Then it is finite since by Corollary 3.1, the increasing sequence {b;} of negative
integers is finite. Hence there exists an a € Z; such that b, = b,, for each n < a.
Thus it follows that (—1)b,T, = (—=1)b,T, for each n < a and hence the lemma is
proved. 1

Theorem 3.6. The ternary semiring Z, satisfies the ascending chain condition on
(=1)dT,-ideals.

Proof. Let {(—1)b;T,,} be an ascending chain of ideals in the ternary semiring Z .
Then by Lemma 3.10, it follows that there exists a € Z; such that b, = b; for
i < . Again by Lemma 3.9, it follows that there exists 3 € Z; such that ag = a;
for j < B. If k = min{e, 8}, then (=1)byT,, = (—=1)byTq, for p < k. Hence the
ternary semiring Z; satisfies the ascending chain condition on (—1)dT,,-ideals. 1

For z € Zy, y € Zy and d € Z; where d < —1, we denote by Sg(z,y) the set
{ke€Zy :x<k<yand k= (—1)md for some m € Z; }.

Theorem 3.7. Sy(—2nd, —nd) is a finite basis for (—1)dT,.

Proof. Let p = (—1)qd € (—1)dT,,. If p € S4(—2nd,—nd) or p = and for some
a € Zy, then p is generated by Sq(—2nd, —nd). Suppose p € Sq(—2nd, —nd) and
p # and for a € Zy . Since p < —2nd and there exists k < —2 such that knd < p <
(k + 1)nd, it follows that there exists an m = —td > —nd with ¢ € Z; such that
(k+1)nd+m = p. Now m > —nd implies that —nd+m = —nd —td = —(n+t)d €
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Sq(—2nd, —nd). Therefore, p = (k + 2)nd + (—nd +m) and hence Sy(—2nd, —nd) is
a finite basis for (—1)dT,. 1

Lemma 3.11. Let I be an ideal in Zy, a € I and d divide a, where d < —1. If
there exists m € Z, such that Sq(—(m — 1)a, —ma) C I, then there exists n € Zg
such that (—1)dT,, C I.

Proof. If d divides a, then there exists b € Z; such that a = —bd and it follows that
Sia(—(m—1)a,—ma) = S4((mb—b)d, mbd). We shall show that (—1)dT_,,_1y, C 1.
To show this we have to show that © = —yd € I, where y < —(m — 1)b. Clearly, if
x = —yd, where y = —(m — 1)b, then x € Sy(—(m — 1)a, —ma) C I. Next suppose
that © = —yd, where y < —(m — 1)b. Then it is clear that z < —(m — 1)a and there
exists k < —1 such that (k — 1)ma < x < kma. Consequently, there exists r € Z;
such that r > —ma and kma+r = z. Again kma+r = —kmbd+r = x = —yd implies
that r = —cd for some ¢ = (y—kmb) € Z; . Also —(m—1)a < —ma+r < —ma and it
is easy to see that —ma+r = mbd+(—cd) = —(—mb+c)d € Sg(—(m—1)a, —ma) C 1.
Therefore, —ma+r € I and (k+1)ma € I together imply that © = —yd = kma+r =
(k+1)ma+ (—ma+r) € I. This implies that for each y < —(m —1)b, —yd € I and
hence letting n = —(m — 1)b it is clear that (—1)dT,, C I. |

Lemma 3.12. Let I be an ideal in Zy, a € I andb € I. If a and b are not relatively
prime, then there exists n € Zg and d € Z~ such that (—1)dT,, C I, where —d is
the greatest common divisor of a and b.

Proof. Since —d is the greatest common divisor of a and b, b = —cd for some
¢ € Zy and by Lemma 3.3, it follows that there exist s € Z; and ¢t € Z; such that
(—1)sa = (—1)tb+d or (—1)tb = (—1)sa + d. Since I is an ideal of Z, it is clear
that (—1)sa € I and (—1)tb € I. Consequently, if (—1)sa = (—1)tb+ d, a series of
simple calculations show that the following elements belong to I:

(=1)tb+d, (—1)tb.

(=2)tb + 2d, (—2)tb+ d, (—2)tb.

(=3)tb + 3d, (—3)tb+ 2d, ( 3)tb +d, (—3)tb.

—c2td + (—e)d, ..., —c*td + 3d, —c*td + 2d, —c*td + d, —c?td.

Substituting b = —cd in the last row, we have

cth+ (—c)d, ..., ctb+ 3d, ctb + 2d, ctb+ d, ctb.

Since —c?td = (—ct)ed and —c*td + (—c)d = (—ct)ed + (—c)d = ((—ct)c — c¢)d,
the last row is Sy([(—ct)c — d|d, (—ct)ed) = Sq(—(—ct — 1)b, —(—ct)b) = Sq(—(m —

1)b, —mb), where m = —ct. Consequently, by Lemma 3.11, it follows that there
exists n € Z; such that (—1)dT;, C I. On the other hand, if (—1)tb = (—1)sa + d,
then by similar argument we have the same result. 1

Theorem 3.8. If I is an M-ideal in Zy , then there exist n € Zg and d € Z~ such
that (—1)dT,, C I.

Proof. If a € I and b € I where a and b are relatively prime, then Lemma 3.4 implies
that Ty C I for some k, which is a contradiction to the fact that I is an M-ideal.
Consequently, if @ € I and b € I and they are not relatively prime, then by Lemma
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3.12, there exist n € Z; and d € Z~ such that (—1)dT,, C I, where —d is the
greatest common divisor of a and b. 1

The following theorem gives a structure and characterization of M-ideals in the
ternary semiring Z, and is necessary to show that the ternary semiring Z, is Noe-
therian.

Theorem 3.9. An ideal I in Z; is an M-ideal if and only if I has a finite basis and
I=LU(-1)¢T, , where ¢ < —1, (—1)¢T, is a mazimal (—1)dT,,-ideal contained in
I,and L={tel:—pg<t<O0}.

Proof. Let I be an M-ideal in Z;. Then by Theorem 3.8, it follows that there
exists n € Z; such that (—1)dT,, C I. Let S = {d € Z; : —d is the greatest
common divisor of some a € I and b € I} and ¢ be the greatest element in S. Then
Lemma 3.12 guarantees that W = {n € Zy : (=1)¢T,, C I} is a non-empty subset
of Zy . Consequently, by Lemma 3.5, it follows that W has a greatest element and
if p is the greatest element of W, then it is clear that (—1)¢T, C I. Suppose there
exists (—1)bT, C I such that (—1)¢7, C (—1)bT,. Now it follows from Lemma
3.7 that b divides ¢ and hence b > ¢. Since —b is the greatest common divisor of
(=1)ba and (—1)b(a — 1), we have b € S and it follows that b < ¢q. Consequently,
b = q. Again by using Theorem 3.5, we have p < a and since a € W it follows that
p > a. Consequently, a = p and hence (—1)¢T}, = (—1)bT,. Therefore, (—1)¢T, is a
maximal ideal in I. Let x € I, x < —pg and k € Z; such that —k be the greatest
common divisor of # and —pg. Then x = —ky for some y € Z;. Now k£ € S and
it can be shown that ¢ divides k. Thus there exists » € Z; such that k£ = —rg.
Consequently, © = —ky = —(—rq)y = —(—ry)q < —pq implies that —ry < p and
hence z € (—1)¢T,. Now if L = {t € I : —pg < t < 0}, then it is clear that
I =LU(—1)¢T,. Again from Theorem 3.7, it follows that S,(—2pg, —pg) is a finite
basis for (—1)¢T,. Since L is a finite subset of I, we have L U S,(—2pg, —pq) is a
finite basis for I.

The converse of the theorem is obvious. 1

Definition 3.4. An ideal I in a ternary semiring S is called almost principal if
there exists a finite set J C S such that IUJ = P, where P is a principal ideal in S.
A ternary semiring S is called an almost principal ideal ternary semiring if every
ideal in S is almost principal.

Theorem 3.10. The ternary semiring Zy 1s an almost principal ideal ternary
semiring.

Proof. Let I be an ideal in Z . If I is a T-ideal, then by Theorem 3.4, I = K U T,
where K = {t €I :n <t <0} Let S = {t € Z; : t ¢ I}. Then from Remark
3.2, it follows that S; is a finite subset of Zg and T U S = Z; =< -1 >, is a
principal ideal. If I is an M-ideal, then by Theorem 3.9, I = L U (—1)dT,,, where
L={tel:—nd<t<0} LetSy={(—1)td:t € Zy and (—1)td ¢ I}. Then from
Remark 3.2, it follows that Ss is a finite subset of Z; and IUSy = dZy Zy =< d >, is
a principal ideal. In either case [ is an almost principal ideal and hence the theorem
follows. 1

Definition 3.5. A ternary semiring S which satisfies the ascending chain condition
for ideals is called a Noetherian ternary semiring.
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The following is the characterization theorem for Noetherian ternary semiring.

Theorem 3.11. Let S be a ternary semiring. Then S is Noetherian if and only if
every ideal of S has a finite basis.

Proof. The proof of the theorem is similar to that of ring theory and therefore we
omit it. I

Since any ideal in the ternary semiring Z, is either a T-ideal or an M-ideal,
Theorem 3.4 and Theorem 3.9 give a classification and structure for all ideals in the
ternary semiring Z . These results can now be used to obtain the following theorem:

Theorem 3.12. The ternary semiring Zg is a Noetherian ternary semiring.

Proof. In view of Theorem 3.4 and Theorem 3.9, any ideal in the ternary semiring
Zg has a finite basis and it follows from Theorem 3.11 that the ternary semiring Z;
is a Noetherian ternary semiring. 1
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