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Abstract. In this paper, we study the ideal theory in the ternary semiring
Z−0 of non-positive integers and obtain some results regarding the ideals of the

ternary semiring Z−0 . Finally we show that Z−0 is a Noetherian ternary semiring
and also almost principal ideal ternary semiring.
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1. Introduction

In [2], we have introduced the notion of ternary semiring which generalizes the
notion of ternary ring introduced by W. G. Lister [15]. The set Z−0 of all non-
positive integers is an example of a ternary semiring with usual binary addition and
ternary multiplication. In [4, 5, 6] we have characterized respectively the prime,
semiprime and maximal ideals of the ternary semiring Z−0 . Some works on ternary
semiring may be found in [2, 3, 7, 8, 9, 10, 13, 14].

Our main purpose of this paper is to study the ideal theory in the ternary semiring
Z−0 . In Section 2, we give some basic definitions and examples. In Section 3, we
study the ideal theory in the ternary semiring Z−0 and prove that Z−0 is a Noetherian
ternary semiring.

2. Preliminaries

Definition 2.1. A non-empty set S together with a binary operation, called addition
and a ternary multiplication, denoted by juxtaposition, is said to be a ternary semi-
ring if S is an additive commutative semigroup satisfying the following conditions:

(i) (abc)de = a(bcd)e = ab(cde), (ii) (a+ b)cd = acd+ bcd,
(iii) a(b+ c)d = abd+ acd, (iv) ab(c+ d) = abc+ abd,

for all a, b, c, d, e ∈ S.
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Definition 2.2. Let S be a ternary semiring. If there exists an element 0 ∈ S such
that 0 + x = x and 0xy = x0y = xy0 = 0 for all x, y ∈ S then ‘0’ is called the zero
element or simply the zero of the ternary semiring S. In this case we say that S is
a ternary semiring with zero.

Example 2.1. Let Z−0 be the set of all negative integers with zero. Then with the
usual binary addition and ternary multiplication, Z−0 forms a ternary semiring with
zero.

Definition 2.3. An additive subsemigroup T of a ternary semiring S is called a
ternary subsemiring if t1t2t3 ∈ T for all t1, t2, t3 ∈ T .

Definition 2.4. An additive subsemigroup I of a ternary semiring S is called a left
(right, lateral) ideal of S if s1s2i (respectively is1s2, s1is2) ∈ I for all s1, s2 ∈ S and
i ∈ I. If I is a left, a right, a lateral ideal of S, then I is called an ideal of S.

Definition 2.5. An ideal I of a ternary semiring S is called a k-ideal if x+ y ∈ I;
x ∈ S, y ∈ I imply that x ∈ I.

Definition 2.6. Let I be an ideal of a ternary semiring S. A subset B of I is called
a basis for I if every element of I can be written in the form

∑n
i=1 risibi , where

ri, si ∈ S and bi ∈ B.
If the set B is finite, then B is called a finite basis for I.

Through out the rest of the paper, Z denotes the set of all integers, Z+ denotes the
set of all positive integers, Z− denotes the set of all negative integers, Z+

0 = Z+∪{0}
and Z−0 = Z− ∪ {0}.

3. Ideal theory in the ternary semiring Z−0
In this section we study the ideal theory in the ternary semiring of non-positive
integers Z−0 and classify them. The ring of integers Z plays a vital role in the
theory of rings and it is well known that the ring of integers Z is a principal ideal
ring (PIR) and hence a Noetherian ring. In [1], Allen and Dale proved that the
semiring of nonnegative integers Z+

0 is a Noetherian semiring. Again we note that
the semiring Z+

0 is not a principal ideal semiring but Allen and Dale [1] proved that
Z+

0 is an almost principal ideal semiring. In [4], we have proved that the ternary
semiring Z−0 is a principal k-ideal ternary semiring but not principal ideal ternary
semiring. We show that Z−0 is an almost principal ideal ternary semiring. We also
show that Z−0 is a Noetherian ternary semiring.

Let n ∈ Z−0 and Tn = {t ∈ Z−0 |t ≤ n} ∪ {0}. Then we have the following
elementary results concerning Tn.

Theorem 3.1. Tn is an ideal in Z−0 such that
(i) T0 = T−1 = Z−0 .

(ii) m ≤ n ≤ −1 if and only if Tm ⊆ Tn.
(iii) Tm ∪ Tn = Tp, where p = max{m,n}.
(iv) Tm ∩ Tn = Tq, where q = min{m,n}.
(v)

⋂
{Ti : i ∈ Z−0 } = {0}.
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Proof. We first prove that Tn is an ideal of Z−0 . Let a, b ∈ Tn. Then a ≤ n and b ≤ n.
So a + b ≤ 2n ≤ n. Again, if r, s ∈ Z−0 , where r 6= 0, s 6= 0; then rsa ≤ rsn ≤ n.
Therefore, a+ b ∈ Tn and rsa ∈ Tn. Consequently, Tn is an ideal of Z−0 .

The proof of properties (i) to (v) are straightforward and therefore omitted.

Remark 3.1. Note that Tn(n 6= 0,−1) is not a k-ideal of the ternary semiring Z−0 .

Theorem 3.2. Z−0 satisfies the ascending chain condition on Tn-ideals.

Proof. Let {Tnα} be an ascending chain of Tn-ideals in Z−0 . Then it is finite since
by Theorem 3.1, the increasing sequence {nα} of negative integers is finite. Thus
there exists j ∈ Z−0 such that ni = nj for each i ≤ j. Therefore, Tni = Tnj for each
i ≤ j and hence Z−0 satisfies the ascending chain condition on Tn-ideals.

For a, b ∈ Z−0 the notation S(a, b) will be used to denote the set {t ∈ Z−0 |a ≤ t ≤
b}.

Theorem 3.3. If n < −1, then S(2n, n) is a finite basis for Tn.

Proof. Let x ∈ Tn. If x ∈ S(2n, n) or x = cdn for some c, d ∈ Z−0 , then x is
generated by S(2n, n). Let x < 2n and x 6= cdn for any c, d ∈ Z−0 . Then there exists
a k < −2 such that −kn < x < −(k + 1)n. However, this guarantees the existence
of an m > n such that −(k + 1)n + m = x, and it follows that n + m ∈ S(2n, n).
Therefore, x = −(k + 1)n + m = −(k + 2)n + n + m, where n ∈ S(2n, n) and
n+m ∈ S(2n, n). Thus it follows that S(2n, n) is a basis for Tn.

Now we study some lemmas which will be essential for the characterization of all
ideals in the ternary semiring Z−0 . From these lemmas we have some methods by
which we can determine if an ideal in Z−0 contains a Tn-ideal.

Lemma 3.1. Let I be an ideal in the ternary semiring Z−0 . If a ∈ I,m ∈ Z−0 , where
m 6= 0, and S(−(m− 1)a,−ma) ⊂ I, then there exists an n ∈ Z−0 such that Tn ⊂ I.

Proof. Suppose x ∈ Z−0 . If x = cda for some c, d ∈ Z−0 , then clearly x ∈ I. Next
suppose that x < −(m−1)a and x 6= cda for c, d ∈ Z−0 . Since there exists k ≤ m−1
such that −(k − 1)a < x < −ka, we have −(k − 1)a − b = x for some b ∈ Z−0
with b > a. Clearly, b > a implies that −(m − 1)a − b ∈ S(−(m − 1)a,−ma) ⊂ I.
Therefore, x = −(k − 1)a − b = −(k −m)a + (−(m − 1)a − b) ∈ I. Consequently,
T−(m−1)a ⊂ I and hence the proof of the lemma follows.

Lemma 3.2. Let I be an ideal in Z−0 . If there exists a ∈ I such that a+ (−1) ∈ I,
then there exists an n such that Tn ⊂ I.

Proof. If I is a Tn-ideal, then the lemma is obvious. Suppose I is not a Tn-ideal and
a is the greatest element in I such that a+ (−1) ∈ I. Since I is an ideal, a series of
simple calculations shows that the following elements belong to I:
−(−1)a+ (−1),−(−1)a
−(−2)a+ (−2),−(−2)a+ (−1),−(−2)a
−(−3)a+ (−3),−(−3)a+ (−2),−(−3)a+ (−1),−(−3)a
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−(a)a+ (a) = −(a− 1)a, ...,−(a)a+ (−3),−(a)a+ (−2),−(a)a+ (−1),−(a)a.
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The last row of elements is S(−(a− 1)a,−a2) and hence S(−(a− 1)a,−a2) ⊂ I.
Thus there exists an n ∈ Z−0 such that Tn ⊂ I, by using Lemma 3.1.

Lemma 3.3. Let a ∈ Z−0 and b ∈ Z−0 , where a 6= 0 and b 6= 0. If d ∈ Z− such that
−d is the greatest common divisor of a and b, then there exists s ∈ Z−0 and t ∈ Z−0
such that (−1)sa = (−1)tb+ d or (−1)tb = (−1)sa+ d.

Proof. From elementary number theory, it is well known that −d = s′(−a) + t′(−b)
for some integers s′ and t′. Since 0 ≤ −d ≤ −a, 0 ≤ −d ≤ −b and (−a), (−b) and
(−d) are all positive, it follows that s′ ≥ 0 and t′ ≤ 0 or s′ ≤ 0 and t′ ≥ 0. If s′ ≥ 0
and t′ ≤ 0, then −d = s′(−a) + t′(−b)⇒ (−1)s′(−a) = (−1)t′b+ d⇒ (−1)(−s′)a =
(−1)t′b+ d. Thus (−1)sa = (−1)tb+ d, where s = −s′ ≤ 0 and t = t′ ≤ 0. On the
other hand, if s′ ≤ 0 and t′ ≥ 0, then (−1)tb = (−1)sa + d, where s = s′ ≤ 0 and
t = −t′ ≤ 0.

Lemma 3.4. Let I be an ideal in Z−0 , a ∈ I and b ∈ I. If a and b are relatively
prime, then there exists an n such that Tn ⊂ I.

Proof. Since a and b are relatively prime, the Lemma 3.3 guarantees the existence
of s ∈ Z−0 and t ∈ Z−0 such that (−1)sa = (−1)tb+ (−1) or (−1)tb = (−1)sa+ (−1).
Since I is an ideal it is clear that (−1)sa ∈ I and (−1)tb ∈ I. Consequently,
(−1)sa+ (−1) ∈ I or (−1)tb+ (−1) ∈ I and the lemma follows from Lemma 3.2.

Remark 3.2. It is easy to see that for m 6= n, Tm and Tn differ by at most a
finite number of elements. Since Z−0 = T−1, it follows that Z−0 differs from a Tn-
ideal by at most a finite number of elements. Consequently, if I is an ideal in Z−0
containing a Tn-ideal, then Tn ⊂ I ⊂ Z−0 and it follows that Z−0 and I differ by
at most a finite number of elements. It will be shown that an ideal I in Z−0 not
containing a Tn-ideal differs from the multiples of some negative integer d < −1
by at most a finite number of elements. Consequently, if I is an ideal in Z−0 not
containing a Tn-ideal, then there exist m ∈ Z−0 and d ∈ Z−0 , where d < −1, such
that (−1)dTm ⊂ I ⊂ dZ−0 Z−0 =< d >.

In view of the above remarks, the ideals in Z−0 are classified according to the
following definition.

Definition 3.1. An ideal I in Z−0 is called a T -ideal if Tk ⊂ I for some k ∈ Z−0 .
All other ideals in Z−0 are called M -ideals.

Note 3.2. It is clear that Z−0 is a T -ideal and {0} is an M -ideal.

Lemma 3.5. Every non-empty subset of the set of all negative integers Z− has a
greatest element. In particular, Z− itself has the greatest element (−1).

Remark 3.3. The above Lemma 3.5 gives the dual notion of the well-known Well-
Ordering Property of the set of all natural numbers Z+.

The following theorem gives a characterization of T -ideals in the ternary semiring
Z−0 and will be used to show that Z−0 is a Noetherian ternary semiring.

Theorem 3.4. An ideal I in Z−0 is a T -ideal if and only if I has a finite basis and
I = K ∪ Tk, where Tk is the maximal Tn-ideal contained in I and K = {t ∈ I : k <
t < 0}.
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Proof. Suppose I is a T -ideal and Tn ⊂ I. Let S = {n ∈ Z−0 : Tn ⊂ I}. Since I is a
T -ideal, it follows that S is a non-empty subset of Z−0 and by Lemma 3.5, S contains
a greatest element, say k. Now by Theorem 3.1, Tn ⊂ Tk for each n ∈ S and it is clear
that Tk is the maximal Tn-ideal contained in I. Letting K = {t ∈ I : k < t < 0}, we
have I = K ∪ Tk. According to Theorem 3.3, S(2k, k) is a finite basis for Tk. Since
K is a finite subset of I, S(2k, k) ∪K is a finite basis for I.

The converse of the theorem is obvious.
Now we have the following theorem analogous to Theorem 3.1.

Theorem 3.5. If n ∈ Z−0 and d ∈ Z−0 , then (−1)dTn is an ideal in Z−0 such that
(i) (−1)dT−1 = dZ−0 Z−0 =< d >, (−1)dTn = Tn if and only if d = −1 and

(−1)dTn = {0} if and only if d = 0.
(ii) m ≤ n if and only if (−1)dTm ⊆ (−1)dTn.
(iii) (−1)dTm ∪ (−1)dTn = (−1)dTp, where p = max{m,n}.
(iv) (−1)dTm ∩ (−1)dTn = (−1)dTq, where q = min{m,n}.
(v)

⋂
{(−1)dTn : n ∈ Z−0 } = {0}.

Proof. Suppose x ∈ (−1)dTn and y ∈ (−1)dTn. Then there exist k ≤ n and q ≤ n
such that x = (−1)kd and y = (−1)qd. Clearly, k + q ≤ 2n ≤ n and hence
x+y = (−1)kd+(−1)qd = (−1)(k+q)d ∈ (−1)dTn. If r, s ∈ Z−0 , where r 6= 0, s 6= 0,
then rsk ≤ n and rsx = rs(−1)kd = (−1)(rsk)d ∈ (−1)dTn. Therefore, (−1)dTn is
an ideal in Z−0 .

The proof of properties (i) to (v) are straightforward and therefore omitted.

Note 3.3. (−1)dT−1 = (−1)dZ−0 = dZ−0 Z−0 =< d > is a k-ideal of the ternary
semiring Z−0 . In [6], we have proved that dZ−0 Z−0 is a maximal k-ideal and hence a
prime k-ideal of Z−0 if and only if d is prime.

It will be shown that for any ideal I in Z−0 there exist n ∈ Z−0 and d ∈ Z−0 such that
(−1)dTn is contained in I. Consequently, (−1)dTn-ideal is the basic type of ideal in
Z−0 and the study of ideals in the ternary semiring Z−0 is reduced to the problem of
finding a maximal (−1)dTn-ideal for each ideal in Z−0 . It has already observed in
the previous Theorem 3.5 that (−1)dTn = Tn if d = −1 and (−1)dTn = {0} if d = 0.
Consequently, it remains only to study the case for d < −1. For this purpose, in the
remainder of this section it will be assumed that d < −1 unless otherwise stated.

The following three lemmas are analogous to the well-known properties of ideals
in the ring of integers Z.

Lemma 3.6. If p ∈ Z−0 , q ∈ Z−0 and p divides q, then (−1)qTn ⊆ (−1)pTn.

Proof. Suppose a ∈ (−1)qTn. Then there exists k ≤ n such that a = (−1)kq. Since
p divides q, there exists t ≤ −1 such that q = (−1)tp. Consequently, a = (−1)kq =
(−1)k(−1)tp = (−1)(−kt)p ∈ (−1)pTn, since −kt ≤ n, and hence it follows that
(−1)qTn ⊆ (−1)pTn.

Lemma 3.7. If (−1)dTc ⊆ (−1)bTa, then b divides d.

Proof. Suppose (−1)dTc ⊆ (−1)bTa . Since (−1)cd ∈ (−1)bTa, there exists p ≤ a
such that (−1)cd = (−1)pb. This implies that b divides (−1)cd. Now by definition of
(−1)dTc, it follows that (−1)(c+(−1))d ∈ (−1)bTa and hence there exists q ≤ a such
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that (−1)(c+(−1))d = (−1)qb. Consequently, b divides (−1)(c+(−1))d = (−1)cd+d
and in view of the fact that b divides (−1)cd, it follows that b divides d.

Corollary 3.1. If (−1)dTc ⊆ (−1)bTa, then d ≤ b.

Proof. From the Lemma 3.7 it follows that b divides d and hence d ≤ b, since b and
d both are negative integers.

Lemma 3.8. If (−1)bTa ∩ (−1)dTc 6= {0}, then there exist p ∈ Z−0 and q ∈ Z−0 such
that (−1)qTp ⊂ (−1)bTa ∩ (−1)dTc.

Proof. Let x ∈ (−1)bTa ∩ (−1)dTc. Since (−1)bTa is an ideal of Z−0 , x ∈ (−1)bTa ⇒
(−1)xT−1 ⊂ (−1)bTa. Similarly, (−1)xT−1 ⊂ (−1)dTc. Consequently, (−1)xT−1 ⊂
(−1)bTa ∩ (−1)dTc and hence the proof of the lemma follows.

The following lemmas are essential to show that the ternary semiring Z−0 is Noe-
therian on (−1)dTn-ideals.

Lemma 3.9. Any ascending sequence {(−1)bTaj} of ideals in the ternary semiring
Z−0 is finite.

Proof. Let {(−1)bTaj} be an ascending sequence of ideals in the ternary semiring
Z−0 . Then it is finite since by Theorem 3.5, the increasing sequence {aj} of negative
integers is finite. Thus there exists α ∈ Z−0 such that aα = an for each n ≤ α.
Therefore, (−1)bTα = (−1)bTn for each n ≤ α and hence the lemma follows.

Lemma 3.10. Any ascending sequence {(−1)biTa} of ideals in the ternary semiring
Z−0 is finite.

Proof. Let {(−1)biTa} be an ascending sequence of ideals in the ternary semiring
Z−0 . Then it is finite since by Corollary 3.1, the increasing sequence {bi} of negative
integers is finite. Hence there exists an α ∈ Z−0 such that bα = bn for each n ≤ α.
Thus it follows that (−1)bαTa = (−1)bnTa for each n ≤ α and hence the lemma is
proved.

Theorem 3.6. The ternary semiring Z−0 satisfies the ascending chain condition on
(−1)dTn-ideals.

Proof. Let {(−1)biTai} be an ascending chain of ideals in the ternary semiring Z−0 .
Then by Lemma 3.10, it follows that there exists α ∈ Z−0 such that bα = bi for
i ≤ α. Again by Lemma 3.9, it follows that there exists β ∈ Z−0 such that aβ = aj
for j ≤ β. If k = min{α, β}, then (−1)bkTak = (−1)bpTap for p ≤ k. Hence the
ternary semiring Z−0 satisfies the ascending chain condition on (−1)dTn-ideals.

For x ∈ Z−0 , y ∈ Z−0 and d ∈ Z−0 where d < −1, we denote by Sd(x, y) the set
{k ∈ Z−0 : x ≤ k ≤ y and k = (−1)md for some m ∈ Z−0 }.

Theorem 3.7. Sd(−2nd,−nd) is a finite basis for (−1)dTn.

Proof. Let p = (−1)qd ∈ (−1)dTn. If p ∈ Sd(−2nd,−nd) or p = and for some
a ∈ Z−0 , then p is generated by Sd(−2nd,−nd). Suppose p 6∈ Sd(−2nd,−nd) and
p 6= and for a ∈ Z−0 . Since p < −2nd and there exists k < −2 such that knd < p <
(k + 1)nd, it follows that there exists an m = −td > −nd with t ∈ Z−0 such that
(k+ 1)nd+m = p. Now m > −nd implies that −nd+m = −nd− td = −(n+ t)d ∈
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Sd(−2nd,−nd). Therefore, p = (k+ 2)nd+ (−nd+m) and hence Sd(−2nd,−nd) is
a finite basis for (−1)dTn.

Lemma 3.11. Let I be an ideal in Z−0 , a ∈ I and d divide a, where d < −1. If
there exists m ∈ Z−0 such that Sd(−(m − 1)a,−ma) ⊂ I, then there exists n ∈ Z−0
such that (−1)dTn ⊂ I.

Proof. If d divides a, then there exists b ∈ Z−0 such that a = −bd and it follows that
Sd(−(m−1)a,−ma) = Sd((mb− b)d,mbd). We shall show that (−1)dT−(m−1)b ⊂ I.
To show this we have to show that x = −yd ∈ I, where y ≤ −(m − 1)b. Clearly, if
x = −yd, where y = −(m − 1)b, then x ∈ Sd(−(m − 1)a,−ma) ⊂ I. Next suppose
that x = −yd, where y < −(m− 1)b. Then it is clear that x < −(m− 1)a and there
exists k ≤ −1 such that (k − 1)ma < x < kma. Consequently, there exists r ∈ Z−0
such that r > −ma and kma+r = x. Again kma+r = −kmbd+r = x = −yd implies
that r = −cd for some c = (y−kmb) ∈ Z−0 . Also −(m−1)a < −ma+r < −ma and it
is easy to see that−ma+r = mbd+(−cd) = −(−mb+c)d ∈ Sd(−(m−1)a,−ma) ⊂ I.
Therefore, −ma+r ∈ I and (k+1)ma ∈ I together imply that x = −yd = kma+r =
(k+ 1)ma+ (−ma+ r) ∈ I. This implies that for each y ≤ −(m− 1)b, −yd ∈ I and
hence letting n = −(m− 1)b it is clear that (−1)dTn ⊂ I.

Lemma 3.12. Let I be an ideal in Z−0 , a ∈ I and b ∈ I. If a and b are not relatively
prime, then there exists n ∈ Z−0 and d ∈ Z− such that (−1)dTn ⊂ I, where −d is
the greatest common divisor of a and b.

Proof. Since −d is the greatest common divisor of a and b, b = −cd for some
c ∈ Z−0 and by Lemma 3.3, it follows that there exist s ∈ Z−0 and t ∈ Z−0 such that
(−1)sa = (−1)tb + d or (−1)tb = (−1)sa + d. Since I is an ideal of Z−0 , it is clear
that (−1)sa ∈ I and (−1)tb ∈ I. Consequently, if (−1)sa = (−1)tb + d, a series of
simple calculations show that the following elements belong to I:

(−1)tb+ d, (−1)tb.
(−2)tb+ 2d, (−2)tb+ d, (−2)tb.
(−3)tb+ 3d, (−3)tb+ 2d, (−3)tb+ d, (−3)tb.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−c2td+ (−c)d, ..., −c2td+ 3d, −c2td+ 2d, −c2td+ d, −c2td.
Substituting b = −cd in the last row, we have
ctb+ (−c)d, ..., ctb+ 3d, ctb+ 2d, ctb+ d, ctb.
Since −c2td = (−ct)cd and −c2td + (−c)d = (−ct)cd + (−c)d = ((−ct)c − c)d,

the last row is Sd([(−ct)c − c]d, (−ct)cd) = Sd(−(−ct − 1)b,−(−ct)b) = Sd(−(m −
1)b,−mb), where m = −ct. Consequently, by Lemma 3.11, it follows that there
exists n ∈ Z−0 such that (−1)dTn ⊂ I. On the other hand, if (−1)tb = (−1)sa + d,
then by similar argument we have the same result.

Theorem 3.8. If I is an M -ideal in Z−0 , then there exist n ∈ Z−0 and d ∈ Z− such
that (−1)dTn ⊂ I.

Proof. If a ∈ I and b ∈ I where a and b are relatively prime, then Lemma 3.4 implies
that Tk ⊂ I for some k, which is a contradiction to the fact that I is an M -ideal.
Consequently, if a ∈ I and b ∈ I and they are not relatively prime, then by Lemma
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3.12, there exist n ∈ Z−0 and d ∈ Z− such that (−1)dTn ⊂ I, where −d is the
greatest common divisor of a and b.

The following theorem gives a structure and characterization of M -ideals in the
ternary semiring Z−0 and is necessary to show that the ternary semiring Z−0 is Noe-
therian.

Theorem 3.9. An ideal I in Z−0 is an M -ideal if and only if I has a finite basis and
I = L ∪ (−1)qTp , where q < −1, (−1)qTp is a maximal (−1)dTn-ideal contained in
I, and L = {t ∈ I : −pq < t < 0}.
Proof. Let I be an M -ideal in Z−0 . Then by Theorem 3.8, it follows that there
exists n ∈ Z−0 such that (−1)dTn ⊂ I. Let S = {d ∈ Z−0 : −d is the greatest
common divisor of some a ∈ I and b ∈ I} and q be the greatest element in S. Then
Lemma 3.12 guarantees that W = {n ∈ Z−0 : (−1)qTn ⊂ I} is a non-empty subset
of Z−0 . Consequently, by Lemma 3.5, it follows that W has a greatest element and
if p is the greatest element of W , then it is clear that (−1)qTp ⊂ I. Suppose there
exists (−1)bTa ⊂ I such that (−1)qTp ⊆ (−1)bTa. Now it follows from Lemma
3.7 that b divides q and hence b ≥ q. Since −b is the greatest common divisor of
(−1)ba and (−1)b(a − 1), we have b ∈ S and it follows that b ≤ q. Consequently,
b = q. Again by using Theorem 3.5, we have p ≤ a and since a ∈ W it follows that
p ≥ a. Consequently, a = p and hence (−1)qTp = (−1)bTa. Therefore, (−1)qTp is a
maximal ideal in I. Let x ∈ I, x < −pq and k ∈ Z−0 such that −k be the greatest
common divisor of x and −pq. Then x = −ky for some y ∈ Z−0 . Now k ∈ S and
it can be shown that q divides k. Thus there exists r ∈ Z−0 such that k = −rq.
Consequently, x = −ky = −(−rq)y = −(−ry)q < −pq implies that −ry < p and
hence x ∈ (−1)qTp. Now if L = {t ∈ I : −pq < t < 0}, then it is clear that
I = L ∪ (−1)qTp. Again from Theorem 3.7, it follows that Sq(−2pq,−pq) is a finite
basis for (−1)qTp. Since L is a finite subset of I, we have L ∪ Sq(−2pq,−pq) is a
finite basis for I.

The converse of the theorem is obvious.

Definition 3.4. An ideal I in a ternary semiring S is called almost principal if
there exists a finite set J ⊂ S such that I ∪J = P , where P is a principal ideal in S.
A ternary semiring S is called an almost principal ideal ternary semiring if every
ideal in S is almost principal.

Theorem 3.10. The ternary semiring Z−0 is an almost principal ideal ternary
semiring.

Proof. Let I be an ideal in Z−0 . If I is a T -ideal, then by Theorem 3.4, I = K ∪ Tn,
where K = {t ∈ I : n < t < 0}. Let S1 = {t ∈ Z−0 : t 6∈ I}. Then from Remark
3.2, it follows that S1 is a finite subset of Z−0 and I ∪ S1 = Z−0 =< −1 >, is a
principal ideal. If I is an M -ideal, then by Theorem 3.9, I = L ∪ (−1)dTn, where
L = {t ∈ I : −nd < t < 0}. Let S2 = {(−1)td : t ∈ Z−0 and (−1)td 6∈ I}. Then from
Remark 3.2, it follows that S2 is a finite subset of Z−0 and I∪S2 = dZ−0 Z−0 =< d >, is
a principal ideal. In either case I is an almost principal ideal and hence the theorem
follows.

Definition 3.5. A ternary semiring S which satisfies the ascending chain condition
for ideals is called a Noetherian ternary semiring.
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The following is the characterization theorem for Noetherian ternary semiring.

Theorem 3.11. Let S be a ternary semiring. Then S is Noetherian if and only if
every ideal of S has a finite basis.

Proof. The proof of the theorem is similar to that of ring theory and therefore we
omit it.

Since any ideal in the ternary semiring Z−0 is either a T -ideal or an M -ideal,
Theorem 3.4 and Theorem 3.9 give a classification and structure for all ideals in the
ternary semiring Z−0 . These results can now be used to obtain the following theorem:

Theorem 3.12. The ternary semiring Z−0 is a Noetherian ternary semiring.

Proof. In view of Theorem 3.4 and Theorem 3.9, any ideal in the ternary semiring
Z−0 has a finite basis and it follows from Theorem 3.11 that the ternary semiring Z−0
is a Noetherian ternary semiring.
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