Ideal Theory in the Ternary Semiring \mathbb{Z}_{0}^{-}

S. KAR
Department of Mathematics, Jadavpur University, Kolkata-700032, West Bengal, India karsukhendu@yahoo.co.in

Abstract

In this paper, we study the ideal theory in the ternary semiring \mathbb{Z}_{0}^{-}of non-positive integers and obtain some results regarding the ideals of the ternary semiring \mathbb{Z}_{0}^{-}. Finally we show that \mathbb{Z}_{0}^{-}is a Noetherian ternary semiring and also almost principal ideal ternary semiring.

2010 Mathematics Subject Classification: 16Y30, 16Y60 Keywords and phrases: Ternary semiring, left, right and lateral ideal, Noetherian ternary semiring, almost principal ideal ternary semiring.

1. Introduction

In [2], we have introduced the notion of ternary semiring which generalizes the notion of ternary ring introduced by W. G. Lister [15]. The set \mathbb{Z}_{0}^{-}of all nonpositive integers is an example of a ternary semiring with usual binary addition and ternary multiplication. In $[4,5,6]$ we have characterized respectively the prime, semiprime and maximal ideals of the ternary semiring \mathbb{Z}_{0}^{-}. Some works on ternary semiring may be found in $[2,3,7,8,9,10,13,14]$.

Our main purpose of this paper is to study the ideal theory in the ternary semiring \mathbb{Z}_{0}^{-}. In Section 2, we give some basic definitions and examples. In Section 3, we study the ideal theory in the ternary semiring \mathbb{Z}_{0}^{-}and prove that \mathbb{Z}_{0}^{-}is a Noetherian ternary semiring.

2. Preliminaries

Definition 2.1. A non-empty set S together with a binary operation, called addition and a ternary multiplication, denoted by juxtaposition, is said to be a ternary semiring if S is an additive commutative semigroup satisfying the following conditions:
(i) $(a b c) d e=a(b c d) e=a b(c d e)$,
(ii) $(a+b) c d=a c d+b c d$,
(iii) $a(b+c) d=a b d+a c d$,
(iv) $a b(c+d)=a b c+a b d$,
for all $a, b, c, d, e \in S$.

[^0]Definition 2.2. Let S be a ternary semiring. If there exists an element $0 \in S$ such that $0+x=x$ and $0 x y=x 0 y=x y 0=0$ for all $x, y \in S$ then ' 0 ' is called the zero element or simply the zero of the ternary semiring S. In this case we say that S is a ternary semiring with zero.

Example 2.1. Let \mathbb{Z}_{0}^{-}be the set of all negative integers with zero. Then with the usual binary addition and ternary multiplication, \mathbb{Z}_{0}^{-}forms a ternary semiring with zero.

Definition 2.3. An additive subsemigroup T of a ternary semiring S is called a ternary subsemiring if $t_{1} t_{2} t_{3} \in T$ for all $t_{1}, t_{2}, t_{3} \in T$.

Definition 2.4. An additive subsemigroup I of a ternary semiring S is called a left (right, lateral) ideal of S if $s_{1} s_{2} i$ (respectively $\left.i s_{1} s_{2}, s_{1} i s_{2}\right) \in I$ for all $s_{1}, s_{2} \in S$ and $i \in I$. If I is a left, a right, a lateral ideal of S, then I is called an ideal of S.

Definition 2.5. An ideal I of a ternary semiring S is called a k-ideal if $x+y \in I$; $x \in S, y \in I$ imply that $x \in I$.

Definition 2.6. Let I be an ideal of a ternary semiring S. A subset B of I is called a basis for I if every element of I can be written in the form $\sum_{i=1}^{n} r_{i} s_{i} b_{i}$, where $r_{i}, s_{i} \in S$ and $b_{i} \in B$.

If the set B is finite, then B is called a finite basis for I.
Through out the rest of the paper, \mathbb{Z} denotes the set of all integers, \mathbb{Z}^{+}denotes the set of all positive integers, \mathbb{Z}^{-}denotes the set of all negative integers, $\mathbb{Z}_{0}^{+}=\mathbb{Z}^{+} \cup\{0\}$ and $\mathbb{Z}_{0}^{-}=\mathbb{Z}^{-} \cup\{0\}$.

3. Ideal theory in the ternary semiring \mathbb{Z}_{0}^{-}

In this section we study the ideal theory in the ternary semiring of non-positive integers \mathbb{Z}_{0}^{-}and classify them. The ring of integers \mathbb{Z} plays a vital role in the theory of rings and it is well known that the ring of integers \mathbb{Z} is a principal ideal ring (PIR) and hence a Noetherian ring. In [1], Allen and Dale proved that the semiring of nonnegative integers \mathbb{Z}_{0}^{+}is a Noetherian semiring. Again we note that the semiring \mathbb{Z}_{0}^{+}is not a principal ideal semiring but Allen and Dale [1] proved that \mathbb{Z}_{0}^{+}is an almost principal ideal semiring. In [4], we have proved that the ternary semiring \mathbb{Z}_{0}^{-}is a principal k-ideal ternary semiring but not principal ideal ternary semiring. We show that \mathbb{Z}_{0}^{-}is an almost principal ideal ternary semiring. We also show that \mathbb{Z}_{0}^{-}is a Noetherian ternary semiring.

Let $n \in \mathbb{Z}_{0}^{-}$and $T_{n}=\left\{t \in \mathbb{Z}_{0}^{-} \mid t \leq n\right\} \cup\{0\}$. Then we have the following elementary results concerning T_{n}.

Theorem 3.1. T_{n} is an ideal in \mathbb{Z}_{0}^{-}such that
(i) $T_{0}=T_{-1}=\mathbb{Z}_{0}^{-}$.
(ii) $m \leq n \leq-1$ if and only if $T_{m} \subseteq T_{n}$.
(iii) $T_{m} \cup T_{n}=T_{p}$, where $p=\max \{m, n\}$.
(iv) $T_{m} \cap T_{n}=T_{q}$, where $q=\min \{m, n\}$.
(v) $\bigcap\left\{T_{i}: i \in \mathbb{Z}_{0}^{-}\right\}=\{0\}$.

Proof. We first prove that T_{n} is an ideal of \mathbb{Z}_{0}^{-}. Let $a, b \in T_{n}$. Then $a \leq n$ and $b \leq n$. So $a+b \leq 2 n \leq n$. Again, if $r, s \in \mathbb{Z}_{0}^{-}$, where $r \neq 0, s \neq 0$; then $r s a \leq r s n \leq n$. Therefore, $a+b \in T_{n}$ and $r s a \in T_{n}$. Consequently, T_{n} is an ideal of \mathbb{Z}_{0}^{-}.

The proof of properties (i) to (v) are straightforward and therefore omitted.
Remark 3.1. Note that $T_{n}(n \neq 0,-1)$ is not a k-ideal of the ternary semiring \mathbb{Z}_{0}^{-}.
Theorem 3.2. \mathbb{Z}_{0}^{-}satisfies the ascending chain condition on T_{n}-ideals.
Proof. Let $\left\{T_{n_{\alpha}}\right\}$ be an ascending chain of T_{n}-ideals in \mathbb{Z}_{0}^{-}. Then it is finite since by Theorem 3.1, the increasing sequence $\left\{n_{\alpha}\right\}$ of negative integers is finite. Thus there exists $j \in \mathbb{Z}_{0}^{-}$such that $n_{i}=n_{j}$ for each $i \leq j$. Therefore, $T_{n_{i}}=T_{n_{j}}$ for each $i \leq j$ and hence \mathbb{Z}_{0}^{-}satisfies the ascending chain condition on T_{n}-ideals.

For $a, b \in \mathbb{Z}_{0}^{-}$the notation $S(a, b)$ will be used to denote the set $\left\{t \in \mathbb{Z}_{0}^{-} \mid a \leq t \leq\right.$ b\}.
Theorem 3.3. If $n<-1$, then $S(2 n, n)$ is a finite basis for T_{n}.
Proof. Let $x \in T_{n}$. If $x \in S(2 n, n)$ or $x=c d n$ for some $c, d \in \mathbb{Z}_{0}^{-}$, then x is generated by $S(2 n, n)$. Let $x<2 n$ and $x \neq c d n$ for any $c, d \in \mathbb{Z}_{0}^{-}$. Then there exists a $k<-2$ such that $-k n<x<-(k+1) n$. However, this guarantees the existence of an $m>n$ such that $-(k+1) n+m=x$, and it follows that $n+m \in S(2 n, n)$. Therefore, $x=-(k+1) n+m=-(k+2) n+n+m$, where $n \in S(2 n, n)$ and $n+m \in S(2 n, n)$. Thus it follows that $S(2 n, n)$ is a basis for T_{n}.

Now we study some lemmas which will be essential for the characterization of all ideals in the ternary semiring \mathbb{Z}_{0}^{-}. From these lemmas we have some methods by which we can determine if an ideal in \mathbb{Z}_{0}^{-}contains a T_{n}-ideal.
Lemma 3.1. Let I be an ideal in the ternary semiring \mathbb{Z}_{0}^{-}. If $a \in I, m \in \mathbb{Z}_{0}^{-}$, where $m \neq 0$, and $S(-(m-1) a,-m a) \subset I$, then there exists an $n \in \mathbb{Z}_{0}^{-}$such that $T_{n} \subset I$.
Proof. Suppose $x \in \mathbb{Z}_{0}^{-}$. If $x=c d a$ for some $c, d \in \mathbb{Z}_{0}^{-}$, then clearly $x \in I$. Next suppose that $x<-(m-1) a$ and $x \neq c d a$ for $c, d \in \mathbb{Z}_{0}^{-}$. Since there exists $k \leq m-1$ such that $-(k-1) a<x<-k a$, we have $-(k-1) a-b=x$ for some $b \in \mathbb{Z}_{0}^{-}$ with $b>a$. Clearly, $b>a$ implies that $-(m-1) a-b \in S(-(m-1) a,-m a) \subset I$. Therefore, $x=-(k-1) a-b=-(k-m) a+(-(m-1) a-b) \in I$. Consequently, $T_{-(m-1) a} \subset I$ and hence the proof of the lemma follows.
Lemma 3.2. Let I be an ideal in \mathbb{Z}_{0}^{-}. If there exists $a \in I$ such that $a+(-1) \in I$, then there exists an n such that $T_{n} \subset I$.
Proof. If I is a T_{n}-ideal, then the lemma is obvious. Suppose I is not a T_{n}-ideal and a is the greatest element in I such that $a+(-1) \in I$. Since I is an ideal, a series of simple calculations shows that the following elements belong to I :

$$
\begin{aligned}
& -(-1) a+(-1),-(-1) a \\
& -(-2) a+(-2),-(-2) a+(-1),-(-2) a \\
& -(-3) a+(-3),-(-3) a+(-2),-(-3) a+(-1),-(-3) a \\
& -(a) a+(a)=-(a-1) a, \ldots,-(a) a+(-3),-(a) a+(-2),-(a) a+(-1),-(a) a .
\end{aligned}
$$

The last row of elements is $S\left(-(a-1) a,-a^{2}\right)$ and hence $S\left(-(a-1) a,-a^{2}\right) \subset I$. Thus there exists an $n \in \mathbb{Z}_{0}^{-}$such that $T_{n} \subset I$, by using Lemma 3.1.

Lemma 3.3. Let $a \in \mathbb{Z}_{0}^{-}$and $b \in \mathbb{Z}_{0}^{-}$, where $a \neq 0$ and $b \neq 0$. If $d \in \mathbb{Z}^{-}$such that $-d$ is the greatest common divisor of a and b, then there exists $s \in \mathbb{Z}_{0}^{-}$and $t \in \mathbb{Z}_{0}^{-}$ such that $(-1) s a=(-1) t b+d$ or $(-1) t b=(-1) s a+d$.
Proof. From elementary number theory, it is well known that $-d=s^{\prime}(-a)+t^{\prime}(-b)$ for some integers s^{\prime} and t^{\prime}. Since $0 \leq-d \leq-a, 0 \leq-d \leq-b$ and $(-a),(-b)$ and $(-d)$ are all positive, it follows that $s^{\prime} \geq 0$ and $t^{\prime} \leq 0$ or $s^{\prime} \leq 0$ and $t^{\prime} \geq 0$. If $s^{\prime} \geq 0$ and $t^{\prime} \leq 0$, then $-d=s^{\prime}(-a)+t^{\prime}(-b) \Rightarrow(-1) s^{\prime}(-a)=(-1) t^{\prime} b+d \Rightarrow(-1)\left(-s^{\prime}\right) a=$ $(-1) t^{\prime} b+d$. Thus $(-1) s a=(-1) t b+d$, where $s=-s^{\prime} \leq 0$ and $t=t^{\prime} \leq 0$. On the other hand, if $s^{\prime} \leq 0$ and $t^{\prime} \geq 0$, then $(-1) t b=(-1) s a+d$, where $s=s^{\prime} \leq 0$ and $t=-t^{\prime} \leq 0$.
Lemma 3.4. Let I be an ideal in $\mathbb{Z}_{0}^{-}, a \in I$ and $b \in I$. If a and b are relatively prime, then there exists an n such that $T_{n} \subset I$.

Proof. Since a and b are relatively prime, the Lemma 3.3 guarantees the existence of $s \in \mathbb{Z}_{0}^{-}$and $t \in \mathbb{Z}_{0}^{-}$such that $(-1) s a=(-1) t b+(-1)$ or $(-1) t b=(-1) s a+(-1)$. Since I is an ideal it is clear that $(-1) s a \in I$ and $(-1) t b \in I$. Consequently, $(-1) s a+(-1) \in I$ or $(-1) t b+(-1) \in I$ and the lemma follows from Lemma 3.2.
Remark 3.2. It is easy to see that for $m \neq n, T_{m}$ and T_{n} differ by at most a finite number of elements. Since $\mathbb{Z}_{0}^{-}=T_{-1}$, it follows that \mathbb{Z}_{0}^{-}differs from a T_{n} ideal by at most a finite number of elements. Consequently, if I is an ideal in \mathbb{Z}_{0}^{-} containing a T_{n}-ideal, then $T_{n} \subset I \subset \mathbb{Z}_{0}^{-}$and it follows that \mathbb{Z}_{0}^{-}and I differ by at most a finite number of elements. It will be shown that an ideal I in \mathbb{Z}_{0}^{-}not containing a T_{n}-ideal differs from the multiples of some negative integer $d<-1$ by at most a finite number of elements. Consequently, if I is an ideal in \mathbb{Z}_{0}^{-}not containing a T_{n}-ideal, then there exist $m \in \mathbb{Z}_{0}^{-}$and $d \in \mathbb{Z}_{0}^{-}$, where $d<-1$, such that $(-1) d T_{m} \subset I \subset d \mathbb{Z}_{0}^{-} \mathbb{Z}_{0}^{-}=<d>$.

In view of the above remarks, the ideals in \mathbb{Z}_{0}^{-}are classified according to the following definition.

Definition 3.1. An ideal I in \mathbb{Z}_{0}^{-}is called a T-ideal if $T_{k} \subset I$ for some $k \in \mathbb{Z}_{0}^{-}$. All other ideals in \mathbb{Z}_{0}^{-}are called M-ideals.
Note 3.2. It is clear that \mathbb{Z}_{0}^{-}is a T-ideal and $\{0\}$ is an M-ideal.
Lemma 3.5. Every non-empty subset of the set of all negative integers \mathbb{Z}^{-}has a greatest element. In particular, \mathbb{Z}^{-}itself has the greatest element (-1).
Remark 3.3. The above Lemma 3.5 gives the dual notion of the well-known WellOrdering Property of the set of all natural numbers \mathbb{Z}^{+}.

The following theorem gives a characterization of T-ideals in the ternary semiring \mathbb{Z}_{0}^{-}and will be used to show that \mathbb{Z}_{0}^{-}is a Noetherian ternary semiring.
Theorem 3.4. An ideal I in \mathbb{Z}_{0}^{-}is a T-ideal if and only if I has a finite basis and $I=K \cup T_{k}$, where T_{k} is the maximal T_{n}-ideal contained in I and $K=\{t \in I: k<$ $t<0\}$.

Proof. Suppose I is a T-ideal and $T_{n} \subset I$. Let $S=\left\{n \in \mathbb{Z}_{0}^{-}: T_{n} \subset I\right\}$. Since I is a T-ideal, it follows that S is a non-empty subset of \mathbb{Z}_{0}^{-}and by Lemma 3.5, S contains a greatest element, say k. Now by Theorem 3.1, $T_{n} \subset T_{k}$ for each $n \in S$ and it is clear that T_{k} is the maximal T_{n}-ideal contained in I. Letting $K=\{t \in I: k<t<0\}$, we have $I=K \cup T_{k}$. According to Theorem 3.3, $S(2 k, k)$ is a finite basis for T_{k}. Since K is a finite subset of $I, S(2 k, k) \cup K$ is a finite basis for I.

The converse of the theorem is obvious.
Now we have the following theorem analogous to Theorem 3.1.
Theorem 3.5. If $n \in \mathbb{Z}_{0}^{-}$and $d \in \mathbb{Z}_{0}^{-}$, then $(-1) d T_{n}$ is an ideal in \mathbb{Z}_{0}^{-}such that
(i) $(-1) d T_{-1}=d \mathbb{Z}_{0}^{-} \mathbb{Z}_{0}^{-}=<d>,(-1) d T_{n}=T_{n}$ if and only if $d=-1$ and $(-1) d T_{n}=\{0\}$ if and only if $d=0$.
(ii) $m \leq n$ if and only if $(-1) d T_{m} \subseteq(-1) d T_{n}$.
(iii) $(-1) d T_{m} \cup(-1) d T_{n}=(-1) d T_{p}$, where $p=\max \{m, n\}$.
(iv) $(-1) d T_{m} \cap(-1) d T_{n}=(-1) d T_{q}$, where $q=\min \{m, n\}$.
(v) $\bigcap\left\{(-1) d T_{n}: n \in \mathbb{Z}_{0}^{-}\right\}=\{0\}$.

Proof. Suppose $x \in(-1) d T_{n}$ and $y \in(-1) d T_{n}$. Then there exist $k \leq n$ and $q \leq n$ such that $x=(-1) k d$ and $y=(-1) q d$. Clearly, $k+q \leq 2 n \leq n$ and hence $x+y=(-1) k d+(-1) q d=(-1)(k+q) d \in(-1) d T_{n}$. If $r, s \in \mathbb{Z}_{0}^{-}$, where $r \neq 0, s \neq 0$, then $r s k \leq n$ and $r s x=r s(-1) k d=(-1)(r s k) d \in(-1) d T_{n}$. Therefore, $(-1) d T_{n}$ is an ideal in \mathbb{Z}_{0}^{-}.

The proof of properties (i) to (v) are straightforward and therefore omitted.
Note 3.3. $(-1) d T_{-1}=(-1) d \mathbb{Z}_{0}^{-}=d \mathbb{Z}_{0}^{-} \mathbb{Z}_{0}^{-}=<d>$ is a k-ideal of the ternary semiring \mathbb{Z}_{0}^{-}. In [6], we have proved that $d \mathbb{Z}_{0}^{-} \mathbb{Z}_{0}^{-}$is a maximal k-ideal and hence a prime k-ideal of \mathbb{Z}_{0}^{-}if and only if d is prime.

It will be shown that for any ideal I in \mathbb{Z}_{0}^{-}there exist $n \in \mathbb{Z}_{0}^{-}$and $d \in \mathbb{Z}_{0}^{-}$such that $(-1) d T_{n}$ is contained in I. Consequently, $(-1) d T_{n}$-ideal is the basic type of ideal in \mathbb{Z}_{0}^{-}and the study of ideals in the ternary semiring \mathbb{Z}_{0}^{-}is reduced to the problem of finding a maximal $(-1) d T_{n}$-ideal for each ideal in \mathbb{Z}_{0}^{-}. It has already observed in the previous Theorem 3.5 that $(-1) d T_{n}=T_{n}$ if $d=-1$ and $(-1) d T_{n}=\{0\}$ if $d=0$. Consequently, it remains only to study the case for $d<-1$. For this purpose, in the remainder of this section it will be assumed that $d<-1$ unless otherwise stated.

The following three lemmas are analogous to the well-known properties of ideals in the ring of integers \mathbb{Z}.

Lemma 3.6. If $p \in \mathbb{Z}_{0}^{-}, q \in \mathbb{Z}_{0}^{-}$and p divides q, then $(-1) q T_{n} \subseteq(-1) p T_{n}$.
Proof. Suppose $a \in(-1) q T_{n}$. Then there exists $k \leq n$ such that $a=(-1) k q$. Since p divides q, there exists $t \leq-1$ such that $q=(-1) t p$. Consequently, $a=(-1) k q=$ $(-1) k(-1) t p=(-1)(-k t) p \in(-1) p T_{n}$, since $-k t \leq n$, and hence it follows that $(-1) q T_{n} \subseteq(-1) p T_{n}$.

Lemma 3.7. If $(-1) d T_{c} \subseteq(-1) b T_{a}$, then b divides d.
Proof. Suppose $(-1) d T_{c} \subseteq(-1) b T_{a}$. Since $(-1) c d \in(-1) b T_{a}$, there exists $p \leq a$ such that $(-1) c d=(-1) p b$. This implies that b divides $(-1) c d$. Now by definition of $(-1) d T_{c}$, it follows that $(-1)(c+(-1)) d \in(-1) b T_{a}$ and hence there exists $q \leq a$ such
that $(-1)(c+(-1)) d=(-1) q b$. Consequently, b divides $(-1)(c+(-1)) d=(-1) c d+d$ and in view of the fact that b divides $(-1) c d$, it follows that b divides d.

Corollary 3.1. If $(-1) d T_{c} \subseteq(-1) b T_{a}$, then $d \leq b$.
Proof. From the Lemma 3.7 it follows that b divides d and hence $d \leq b$, since b and d both are negative integers.
Lemma 3.8. If $(-1) b T_{a} \cap(-1) d T_{c} \neq\{0\}$, then there exist $p \in \mathbb{Z}_{0}^{-}$and $q \in \mathbb{Z}_{0}^{-}$such that $(-1) q T_{p} \subset(-1) b T_{a} \cap(-1) d T_{c}$.

Proof. Let $x \in(-1) b T_{a} \cap(-1) d T_{c}$. Since $(-1) b T_{a}$ is an ideal of $\mathbb{Z}_{0}^{-}, x \in(-1) b T_{a} \Rightarrow$ $(-1) x T_{-1} \subset(-1) b T_{a}$. Similarly, $(-1) x T_{-1} \subset(-1) d T_{c}$. Consequently, $(-1) x T_{-1} \subset$ $(-1) b T_{a} \cap(-1) d T_{c}$ and hence the proof of the lemma follows.

The following lemmas are essential to show that the ternary semiring \mathbb{Z}_{0}^{-}is Noetherian on $(-1) d T_{n}$-ideals.

Lemma 3.9. Any ascending sequence $\left\{(-1) b T_{a_{j}}\right\}$ of ideals in the ternary semiring \mathbb{Z}_{0}^{-}is finite.
Proof. Let $\left\{(-1) b T_{a_{j}}\right\}$ be an ascending sequence of ideals in the ternary semiring \mathbb{Z}_{0}^{-}. Then it is finite since by Theorem 3.5, the increasing sequence $\left\{a_{j}\right\}$ of negative integers is finite. Thus there exists $\alpha \in \mathbb{Z}_{0}^{-}$such that $a_{\alpha}=a_{n}$ for each $n \leq \alpha$. Therefore, $(-1) b T_{\alpha}=(-1) b T_{n}$ for each $n \leq \alpha$ and hence the lemma follows.
Lemma 3.10. Any ascending sequence $\left\{(-1) b_{i} T_{a}\right\}$ of ideals in the ternary semiring \mathbb{Z}_{0}^{-}is finite.

Proof. Let $\left\{(-1) b_{i} T_{a}\right\}$ be an ascending sequence of ideals in the ternary semiring \mathbb{Z}_{0}^{-}. Then it is finite since by Corollary 3.1, the increasing sequence $\left\{b_{i}\right\}$ of negative integers is finite. Hence there exists an $\alpha \in \mathbb{Z}_{0}^{-}$such that $b_{\alpha}=b_{n}$ for each $n \leq \alpha$. Thus it follows that $(-1) b_{\alpha} T_{a}=(-1) b_{n} T_{a}$ for each $n \leq \alpha$ and hence the lemma is proved.

Theorem 3.6. The ternary semiring \mathbb{Z}_{0}^{-}satisfies the ascending chain condition on $(-1) d T_{n}$-ideals.
Proof. Let $\left\{(-1) b_{i} T_{a_{i}}\right\}$ be an ascending chain of ideals in the ternary semiring \mathbb{Z}_{0}^{-}. Then by Lemma 3.10, it follows that there exists $\alpha \in \mathbb{Z}_{0}^{-}$such that $b_{\alpha}=b_{i}$ for $i \leq \alpha$. Again by Lemma 3.9, it follows that there exists $\beta \in \mathbb{Z}_{0}^{-}$such that $a_{\beta}=a_{j}$ for $j \leq \beta$. If $k=\min \{\alpha, \beta\}$, then $(-1) b_{k} T_{a_{k}}=(-1) b_{p} T_{a_{p}}$ for $p \leq k$. Hence the ternary semiring \mathbb{Z}_{0}^{-}satisfies the ascending chain condition on $(-1) d T_{n}$-ideals.

For $x \in \mathbb{Z}_{0}^{-}, y \in \mathbb{Z}_{0}^{-}$and $d \in \mathbb{Z}_{0}^{-}$where $d<-1$, we denote by $S_{d}(x, y)$ the set $\left\{k \in \mathbb{Z}_{0}^{-}: x \leq k \leq y\right.$ and $k=(-1) m d$ for some $\left.m \in \mathbb{Z}_{0}^{-}\right\}$.
Theorem 3.7. $S_{d}(-2 n d,-n d)$ is a finite basis for $(-1) d T_{n}$.
Proof. Let $p=(-1) q d \in(-1) d T_{n}$. If $p \in S_{d}(-2 n d,-n d)$ or $p=$ and for some $a \in \mathbb{Z}_{0}^{-}$, then p is generated by $S_{d}(-2 n d,-n d)$. Suppose $p \notin S_{d}(-2 n d,-n d)$ and $p \neq a n d$ for $a \in \mathbb{Z}_{0}^{-}$. Since $p<-2 n d$ and there exists $k<-2$ such that $k n d<p<$ $(k+1) n d$, it follows that there exists an $m=-t d>-n d$ with $t \in \mathbb{Z}_{0}^{-}$such that $(k+1) n d+m=p$. Now $m>-n d$ implies that $-n d+m=-n d-t d=-(n+t) d \in$
$S_{d}(-2 n d,-n d)$. Therefore, $p=(k+2) n d+(-n d+m)$ and hence $S_{d}(-2 n d,-n d)$ is a finite basis for $(-1) d T_{n}$.

Lemma 3.11. Let I be an ideal in $\mathbb{Z}_{0}^{-}, a \in I$ and d divide a, where $d<-1$. If there exists $m \in \mathbb{Z}_{0}^{-}$such that $S_{d}(-(m-1) a,-m a) \subset I$, then there exists $n \in \mathbb{Z}_{0}^{-}$ such that $(-1) d T_{n} \subset I$.
Proof. If d divides a, then there exists $b \in \mathbb{Z}_{0}^{-}$such that $a=-b d$ and it follows that $S_{d}(-(m-1) a,-m a)=S_{d}((m b-b) d, m b d)$. We shall show that $(-1) d T_{-(m-1) b} \subset I$. To show this we have to show that $x=-y d \in I$, where $y \leq-(m-1) b$. Clearly, if $x=-y d$, where $y=-(m-1) b$, then $x \in S_{d}(-(m-1) a,-m a) \subset I$. Next suppose that $x=-y d$, where $y<-(m-1) b$. Then it is clear that $x<-(m-1) a$ and there exists $k \leq-1$ such that $(k-1) m a<x<k m a$. Consequently, there exists $r \in \mathbb{Z}_{0}^{-}$ such that $r>-m a$ and $k m a+r=x$. Again $k m a+r=-k m b d+r=x=-y d$ implies that $r=-c d$ for some $c=(y-k m b) \in \mathbb{Z}_{0}^{-}$. Also $-(m-1) a<-m a+r<-m a$ and it is easy to see that $-m a+r=m b d+(-c d)=-(-m b+c) d \in S_{d}(-(m-1) a,-m a) \subset I$. Therefore, $-m a+r \in I$ and $(k+1) m a \in I$ together imply that $x=-y d=k m a+r=$ $(k+1) m a+(-m a+r) \in I$. This implies that for each $y \leq-(m-1) b,-y d \in I$ and hence letting $n=-(m-1) b$ it is clear that $(-1) d T_{n} \subset I$.
Lemma 3.12. Let I be an ideal in $\mathbb{Z}_{0}^{-}, a \in I$ and $b \in I$. If a and b are not relatively prime, then there exists $n \in \mathbb{Z}_{0}^{-}$and $d \in \mathbb{Z}^{-}$such that $(-1) d T_{n} \subset I$, where $-d$ is the greatest common divisor of a and b.
Proof. Since $-d$ is the greatest common divisor of a and $b, b=-c d$ for some $c \in \mathbb{Z}_{0}^{-}$and by Lemma 3.3, it follows that there exist $s \in \mathbb{Z}_{0}^{-}$and $t \in \mathbb{Z}_{0}^{-}$such that $(-1) s a=(-1) t b+d$ or $(-1) t b=(-1) s a+d$. Since I is an ideal of \mathbb{Z}_{0}^{-}, it is clear that $(-1) s a \in I$ and $(-1) t b \in I$. Consequently, if $(-1) s a=(-1) t b+d$, a series of simple calculations show that the following elements belong to I :

$$
\begin{aligned}
& (-1) t b+d,(-1) t b . \\
& (-2) t b+2 d,(-2) t b+d,(-2) t b . \\
& (-3) t b+3 d,(-3) t b+2 d,(-3) t b+d,(-3) t b .
\end{aligned}
$$

$$
-c^{2} t d+(-c) d, \ldots,-c^{2} t d+3 d,-c^{2} t d+2 d,-c^{2} t d+d,-c^{2} t d
$$

Substituting $b=-c d$ in the last row, we have
$c t b+(-c) d, \ldots, c t b+3 d, c t b+2 d, c t b+d, c t b$.
Since $-c^{2} t d=(-c t) c d$ and $-c^{2} t d+(-c) d=(-c t) c d+(-c) d=((-c t) c-c) d$, the last row is $S_{d}([(-c t) c-c] d,(-c t) c d)=S_{d}(-(-c t-1) b,-(-c t) b)=S_{d}(-(m-$ 1) $b,-m b$), where $m=-c t$. Consequently, by Lemma 3.11, it follows that there exists $n \in \mathbb{Z}_{0}^{-}$such that $(-1) d T_{n} \subset I$. On the other hand, if $(-1) t b=(-1) s a+d$, then by similar argument we have the same result.
Theorem 3.8. If I is an M-ideal in \mathbb{Z}_{0}^{-}, then there exist $n \in \mathbb{Z}_{0}^{-}$and $d \in \mathbb{Z}^{-}$such that $(-1) d T_{n} \subset I$.

Proof. If $a \in I$ and $b \in I$ where a and b are relatively prime, then Lemma 3.4 implies that $T_{k} \subset I$ for some k, which is a contradiction to the fact that I is an M-ideal. Consequently, if $a \in I$ and $b \in I$ and they are not relatively prime, then by Lemma
3.12, there exist $n \in \mathbb{Z}_{0}^{-}$and $d \in \mathbb{Z}^{-}$such that $(-1) d T_{n} \subset I$, where $-d$ is the greatest common divisor of a and b.

The following theorem gives a structure and characterization of M-ideals in the ternary semiring \mathbb{Z}_{0}^{-}and is necessary to show that the ternary semiring \mathbb{Z}_{0}^{-}is Noetherian.

Theorem 3.9. An ideal I in \mathbb{Z}_{0}^{-}is an M-ideal if and only if I has a finite basis and $I=L \cup(-1) q T_{p}$, where $q<-1,(-1) q T_{p}$ is a maximal $(-1) d T_{n}$-ideal contained in I, and $L=\{t \in I:-p q<t<0\}$.
Proof. Let I be an M-ideal in \mathbb{Z}_{0}^{-}. Then by Theorem 3.8, it follows that there exists $n \in \mathbb{Z}_{0}^{-}$such that $(-1) d T_{n} \subset I$. Let $S=\left\{d \in \mathbb{Z}_{0}^{-}:-d\right.$ is the greatest common divisor of some $a \in I$ and $b \in I\}$ and q be the greatest element in S. Then Lemma 3.12 guarantees that $W=\left\{n \in \mathbb{Z}_{0}^{-}:(-1) q T_{n} \subset I\right\}$ is a non-empty subset of \mathbb{Z}_{0}^{-}. Consequently, by Lemma 3.5, it follows that W has a greatest element and if p is the greatest element of W, then it is clear that $(-1) q T_{p} \subset I$. Suppose there exists $(-1) b T_{a} \subset I$ such that $(-1) q T_{p} \subseteq(-1) b T_{a}$. Now it follows from Lemma 3.7 that b divides q and hence $b \geq q$. Since $-b$ is the greatest common divisor of $(-1) b a$ and $(-1) b(a-1)$, we have $b \in S$ and it follows that $b \leq q$. Consequently, $b=q$. Again by using Theorem 3.5, we have $p \leq a$ and since $a \in W$ it follows that $p \geq a$. Consequently, $a=p$ and hence $(-1) q T_{p}=(-1) b T_{a}$. Therefore, $(-1) q T_{p}$ is a maximal ideal in I. Let $x \in I, x<-p q$ and $k \in \mathbb{Z}_{0}^{-}$such that $-k$ be the greatest common divisor of x and $-p q$. Then $x=-k y$ for some $y \in \mathbb{Z}_{0}^{-}$. Now $k \in S$ and it can be shown that q divides k. Thus there exists $r \in \mathbb{Z}_{0}^{-}$such that $k=-r q$. Consequently, $x=-k y=-(-r q) y=-(-r y) q<-p q$ implies that $-r y<p$ and hence $x \in(-1) q T_{p}$. Now if $L=\{t \in I:-p q<t<0\}$, then it is clear that $I=L \cup(-1) q T_{p}$. Again from Theorem 3.7, it follows that $S_{q}(-2 p q,-p q)$ is a finite basis for $(-1) q T_{p}$. Since L is a finite subset of I, we have $L \cup S_{q}(-2 p q,-p q)$ is a finite basis for I.

The converse of the theorem is obvious.
Definition 3.4. An ideal I in a ternary semiring S is called almost principal if there exists a finite set $J \subset S$ such that $I \cup J=P$, where P is a principal ideal in S. A ternary semiring S is called an almost principal ideal ternary semiring if every ideal in S is almost principal.

Theorem 3.10. The ternary semiring \mathbb{Z}_{0}^{-}is an almost principal ideal ternary semiring.

Proof. Let I be an ideal in \mathbb{Z}_{0}^{-}. If I is a T-ideal, then by Theorem $3.4, I=K \cup T_{n}$, where $K=\{t \in I: n<t<0\}$. Let $S_{1}=\left\{t \in \mathbb{Z}_{0}^{-}: t \notin I\right\}$. Then from Remark 3.2, it follows that S_{1} is a finite subset of \mathbb{Z}_{0}^{-}and $I \cup S_{1}=\mathbb{Z}_{0}^{-}=<-1>$, is a principal ideal. If I is an M-ideal, then by Theorem 3.9, $I=L \cup(-1) d T_{n}$, where $L=\{t \in I:-n d<t<0\}$. Let $S_{2}=\left\{(-1) t d: t \in \mathbb{Z}_{0}^{-}\right.$and $\left.(-1) t d \notin I\right\}$. Then from Remark 3.2, it follows that S_{2} is a finite subset of \mathbb{Z}_{0}^{-}and $I \cup S_{2}=d \mathbb{Z}_{0}^{-} \mathbb{Z}_{0}^{-}=<d>$, is a principal ideal. In either case I is an almost principal ideal and hence the theorem follows.

Definition 3.5. A ternary semiring S which satisfies the ascending chain condition for ideals is called a Noetherian ternary semiring.

The following is the characterization theorem for Noetherian ternary semiring.
Theorem 3.11. Let S be a ternary semiring. Then S is Noetherian if and only if every ideal of S has a finite basis.

Proof. The proof of the theorem is similar to that of ring theory and therefore we omit it.

Since any ideal in the ternary semiring \mathbb{Z}_{0}^{-}is either a T-ideal or an M-ideal, Theorem 3.4 and Theorem 3.9 give a classification and structure for all ideals in the ternary semiring \mathbb{Z}_{0}^{-}. These results can now be used to obtain the following theorem:
Theorem 3.12. The ternary semiring \mathbb{Z}_{0}^{-}is a Noetherian ternary semiring.
Proof. In view of Theorem 3.4 and Theorem 3.9, any ideal in the ternary semiring \mathbb{Z}_{0}^{-}has a finite basis and it follows from Theorem 3.11 that the ternary semiring \mathbb{Z}_{0}^{-} is a Noetherian ternary semiring.

Acknowledgement. The author is grateful to Professor T. K. Dutta for his valuable suggestions and continuous help through out the preparation of this paper.

References

[1] P. J. Allen and L. Dale, Ideal theory in the semiring Z^{+}, Publ. Math. Debrecen 22 (1975), no. 3-4, 219-224.
[2] T. K. Dutta and S. Kar, On regular ternary semirings, in Advances in Algebra, 343-355, World Sci. Publ., River Edge, NJ, 2003.
[3] T. K. Dutta and S. Kar, A note on regular ternary semirings, Kyungpook Math. J. 46 (2006), no. 3, 357-365.
[4] T. K. Dutta and S. Kar, On prime ideals and prime radical of ternary semirings, Bull. Calcutta Math. Soc. 97 (2005), no. 5, 445-454.
[5] T. K. Dutta and S. Kar, On semiprime ideals and irreducible ideals of ternary semirings, Bull. Calcutta Math. Soc. 97 (2005), no. 5, 467-476.
[6] T. K. Dutta and S. Kar, On ternary semifields, Discuss. Math. Gen. Algebra Appl. 24 (2004), no. 2, 185-198.
[7] T. K. Dutta and S. Kar, On the Jacobson radical of a ternary semiring, Southeast Asian Bull. Math. 28 (2004), no. 1, 1-13.
[8] T. K. Dutta and S. Kar, A note on the Jacobson radicals of ternary semirings, Southeast Asian Bull. Math. 29 (2005), no. 2, 321-331.
[9] T. K. Dutta and S. Kar, Two types of Jacobson radicals of ternary semirings, Southeast Asian Bull. Math. 29 (2005), no. 4, 677-687.
[10] T. K. Dutta and S. Kar, On matrix ternary semirings, Int. J. Math. Anal. 1 (2006), no. 1, 81-95.
[11] J. S. Golan, Semirings and Their Applications, Kluwer Acad. Publ., Dordrecht, 1999.
[12] U. Hebisch and H. J. Weinert, Semirings: Algebraic Theory and Applications in Computer Science, Translated from the 1993 German original, World Sci. Publ., River Edge, NJ, 1998.
[13] S. Kar, On quasi-ideals and bi-ideals in ternary semirings, Int. J. Math. Math. Sci. 2005, no. 18, 3015-3023.
[14] S. Kar, On structure space of ternary semirings, Southeast Asian Bull. Math. 31 (2007), no. 3, 537-545.
[15] W. G. Lister, Ternary rings, Trans. Amer. Math. Soc. 154 (1971), 37-55.

[^0]: Communicated by Ang Miin Huey.
 Received: March 10, 2008; Revised: July 30, 2009.

