Entire Functions That Share Fixed-Points

${ }^{1}$ Jia Dou, ${ }^{2}$ Xiao-Guang Qi and ${ }^{3}$ Lian-Zhong Yang
${ }^{1}$ Quancheng Middle School, Jinan, Shandong, China and Shandong Normal University, School of Mathematics, Jinan, Shandong, 250000, P. R. China
${ }^{2,3}$ School of Mathematics, Shandong University Jinan, Shandong, 250100, P. R. China
${ }^{1}$ doujia.1983@163.com, ${ }^{2}$ xiaogqi@mail.sdu.edu.cn, ${ }^{3}$ lzyang@sdu.edu.cn

Abstract

In this paper, we study the uniqueness problem on entire functions sharing fixed points with the same multiplicities. We generalize some previous results.

2010 Mathematics Subject Classification: 30D35, 30D20
Keywords and phrases: Uniqueness, fixed point, sharing value, entire solutions.

1. Introduction and main results

In this paper, a meromorphic function will mean meromorphic in the whole complex plane. We shall use the following standard notations of value distribution theory [9]: $T(r, f), m(r, f), N(r, f), \bar{N}(r, f), \cdots$ We denote by $S(r, f)$ any function satisfying $S(r, f)=o(T(r, f))$, as $r \rightarrow \infty$ possibly outside a set r of finite linear measure.

We say that two meromorphic functions f and g share a small function a IM (ignoring multiplicities) when $f-a$ and $g-a$ have the same zeros. If f and g have the same zeros with the same multiplicities, then we say that f and g share a CM (counting multiplicities).

Let p be a positive integer and $a \in \mathbb{C}$. We denote by $N_{p}\left(r, \frac{1}{f-a}\right)$ the counting function of the zeros of $f-a$ where an m-fold zero is counted m times if $m \leq p$ and p times if $m>p$. We say that a finite value z_{0} is a fixed point of f if $f\left(z_{0}\right)=z_{0}$.

In answer to one famous question, Hayman [4], Fang and Hua [1], and Yang and Hua [8] obtained the following result.
Theorem 1.1. Let f and g be two non-constant entire functions, and let $n \geq 6$ be a positive integer. If $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share $1 C M$, then either $f(z)=c_{1} e^{c z}, g(z)=$ $c_{2} e^{-c z}$, where c_{1}, c_{2} and c are three constants satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$ or $f=t g$ for a constant t such that $t^{n+1}=1$.

In [3], Fang also got the following results.
Communicated by V. Ravichandran.
Received: March 12, 2009; Revised: November 18, 2009.

Theorem 1.2. Let f and g be two non-constant entire functions, and let n, k be two positive integers with $n>2 k+4$. If $\left(f^{n}\right)^{(k)}$ and $\left(g^{n}\right)^{(k)}$ share $1 C M$, then either $f(z)=c_{1} e^{c z}, g(z)=c_{2} e^{-c z}$, where c_{1}, c_{2} and c are three constants satisfying $(-1)^{k}\left(c_{1} c_{2}\right)^{n}(n c)^{2 k}=1$ or $f=t g$ for a constant tsuch that $t^{n}=1$.

Theorem 1.3. Let f and g be two non-constant entire functions, and let n, k be two positive integers with $n \geq 2 k+8$. If $\left(f^{n}(f-1)\right)^{(k)}$ and $\left(g^{n}(g-1)\right)^{(k)}$ share 1 $C M$, then $f=g$.

Recently, Zhang, Chen and Lin [11] proved the following result, which generalized some previous results.

Theorem 1.4. Let $f(z)$ and $g(z)$ be two entire functions; let n, m and k be three positive integers with $n \geq 3 m+2 k+5$, and let $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+$ $a_{1} z+a_{0}$ or $P(z)=C$, where $a_{0} \neq 0, a_{1} \ldots, a_{m-1}, a_{m} \neq 0, C \neq 0$ are complex constants. If $\left[f^{n} P(f)\right]^{(k)}$ and $\left[g^{n} P(g)\right]^{(k)}$ share 1 CM, then the following conclusions hold:
(i) If $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{1} z+a_{0}$, then $f(z)=t g(z)$ for a constant t that satisfies $t^{d}=1$, where $d=(n+m, \ldots, n+m-i, \ldots, n)$, $a_{m-i} \neq 0$ for some $i=0,1, \ldots, m$; or f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where $R\left(\omega_{1}, \omega_{2}\right)=\omega_{1}^{n}\left(a_{m} \omega_{1}^{m}+a_{m-1} \omega_{1}^{m-1}+\cdots+a_{1} \omega_{1}+a_{0}\right)-$ $\omega_{2}^{n}\left(a_{m} \omega_{2}^{m}+a_{m-1} \omega_{2}^{m-1}+\cdots+a_{1} \omega_{2}+a_{0}\right)$;
(ii) If $P(z)=C$, then $f=t g$ for a constant t that satisfies $t^{n}=1$, or $f(z)=$ $b_{1} / \sqrt[n]{C} e^{b z}, g(z)=b_{2} / \sqrt[n]{C} e^{-b z}$ for three constants b_{1}, b_{2} and b that satisfy $(-1)^{k}\left(b_{1} b_{2}\right)^{n}(n b)^{2 k}=-1$.

Corresponding to the above results, some authors considered the uniqueness problems of entire functions that have fixed points, see Fang and Qiu [2], Lin and Yi [7]. In the present paper, we consider the existence of fixed points of $\left(f^{n} P(f)\right)^{(k)}$ and the corresponding uniqueness theorems, where n, k are positive integers and $P(z)$ is a nonzero polynomial, and we obtain the following results which generalize the above theorems.

Theorem 1.5. Let $f(z)$ be a transcendental entire function, n, k, m be three positive integers with $n \geq k+2$, and let $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{1} z+a_{0}$ or $P(z)=C$, where $a_{0}, a_{1} \ldots, a_{m-1}, a_{m} \neq 0, C \neq 0$ are complex constants. Then $\left[f^{n} P(f)\right]^{(k)}$ has infinitely many fixed points.
Remark 1.1. It is easy to see that a polynomial $Q(z)$ with degree $n \geq 1$ has exactly n fixed points (counting multiplicities), but a transcendental entire function may have no fixed points. For example, the function $f=e^{\alpha(z)}+z$ has no any fixed points, where $\alpha(z)$ is an entire function.

Here and forth, we define an integer m^{*}, according to the nonzero polynomial $P(z)$ in Theorem 1.6, by

$$
m^{*}= \begin{cases}m, & P(z) \neq C \\ 0, & P(z)=C\end{cases}
$$

Theorem 1.6. Suppose that $P(z)$ is given by Theorem 1.5. Let $f(z)$ and $g(z)$ be two transcendental entire functions, and let n, m and k be three positive integers with $n>2 k+m^{*}+4$. If $\left[f^{n} P(f)\right]^{(k)}$ and $\left[g^{n} P(g)\right]^{(k)}$ share $z C M$, then the following conclusions hold:
(i) If $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{1} z+a_{0}$ is not a monomial, then $f(z)=\operatorname{tg}(z)$ for a constant t that satisfies $t^{d}=1$, where $d=(n+m, \ldots, n+$ $m-i, \ldots, n), a_{m-i} \neq 0$ for some $i=0,1, \ldots, m$; or f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where $R\left(\omega_{1}, \omega_{2}\right)=\omega_{1}^{n}\left(a_{m} \omega_{1}^{m}+a_{m-1} \omega_{1}^{m-1}+\right.$ $\left.\cdots+a_{1} \omega_{1}+a_{0}\right)-\omega_{2}^{n}\left(a_{m} \omega_{2}^{m}+a_{m-1} \omega_{2}^{m-1}+\cdots+a_{1} \omega_{2}+a_{0}\right)$;
(ii) If $P(z)=C$ or $P(z)=a_{m} z^{m}$, then $f=t g$ for a constant t that satisfies $t^{n+m^{*}}=1$, or $f(z)=b_{1} e^{b z^{2}}, g(z)=b_{2} e^{-b z^{2}}$ for three constants b_{1}, b_{2} and b that satisfy $4 a_{m}^{2}\left(b_{1} b_{2}\right)^{n+m}((n+m) b)^{2}=-1$, or $4 C^{2}\left(b_{1} b_{2}\right)^{n}(n b)^{2}=-1$.

Remark 1.2. The condition of $n \geq 3 m+2 k+5$ in Theorem 1.4 is replaced by $n>2 k+4+m^{*}$ in Theorem 1.6.

2. Some lemmas

Lemma 2.1. [9] Let f be a non-constant meromorphic function, and $a_{0}, a_{1}, a_{2}, \ldots a_{n}$ be small functions of f such that $a_{n} \neq 0$. Then

$$
T\left(r, a_{n} f^{n}+a_{n-1} f^{n-1}+\cdots a_{1} f+a_{0}\right)=n T(r, f)+S(r, f)
$$

Lemma 2.2. [6] Let f be a non-constant meromorphic function, and p, k be positive integers. Then

$$
\begin{gather*}
N_{p}\left(\frac{h^{\prime}}{h}\right) \leq T\left(r, f^{(k)}\right)-T(r, f)+N_{p+k}\left(r, \frac{1}{f}\right)+S(r, f), \tag{2.1}\\
N_{p}\left(\frac{h^{\prime}}{h}\right) \leq k \bar{N}(r, f)+N_{p+k}\left(r, \frac{1}{f}\right)+S(r, f) . \tag{2.2}
\end{gather*}
$$

Lemma 2.3. [10] Let

$$
\begin{equation*}
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right) \tag{2.3}
\end{equation*}
$$

where F and G are two non-constant meromorphic functions. If F and G share 1 $C M$ and $H \not \equiv 0$, then

$$
\begin{align*}
T(r, F)+T(r, G) \leq & 2\left(N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, F)+N_{2}(r, G)\right) \\
& +S(r, F)+S(r, G) \tag{2.4}
\end{align*}
$$

Lemma 2.4. [9] Let f be a non-constant meromorphic function, and $a_{1}(z), a_{2}(z)$ and $a_{3}(z)$ be distinct small functions of f. Then

$$
T(r, f)<\sum_{j=1}^{3} \bar{N}\left(r, \frac{1}{f-a_{j}}\right)+S(r, f)
$$

Lemma 2.5. [5] Suppose that f is a non-constant meromorphic function, $k \geq 2$ is an integer. If

$$
N(r, f)+N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{(k)}}\right)=S\left(r, \frac{f^{\prime}}{f}\right)
$$

then $f=e^{a z+b}$, where $a \neq 0, b$ are constants.
Lemma 2.6. Let $f(z)$ and $g(z)$ be two transcendental entire functions, n, k be two positive integers with $n>k+2$, and let $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{1} z+a_{0}$ or $P(z)=C$, where $a_{0}, a_{1} \ldots, a_{m-1}, a_{m} \neq 0, C \neq 0$ are complex constants. If $\left[f^{n}(z) P(f)\right]^{(k)}\left[g^{n}(z) P(g)\right]^{(k)} \equiv z^{2}$, then $P(z)$ is reduced to a nonzero monomial, that is, $P(z)=a_{m} z^{m}$ or $P(z)=C$.

Proof. If $P(z)$ is not reduced to a nonzero monomial, then $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+$ $\cdots a_{i} z^{i}$, where a_{i} is the last nonzero complex constant for $i=0,1, \ldots, m-1$. Since

$$
\begin{aligned}
& {\left[f^{n}\left(a_{m} f^{m}+a_{m-1} f^{m-1}+\cdots a_{i} f^{i}\right)\right]^{(k)}\left[g^{n}\left(a_{m} g^{m}+a_{m-1} g^{m-1}+\cdots a_{i} g^{i}\right)\right]^{(k)}} \\
& \equiv z^{2} .
\end{aligned}
$$

Suppose that z_{0} is a p-fold zero of f, we know that z_{0} must be a $(n p+i p-k)$-fold zero of $\left[f^{n}\left(a_{m} f^{m}+a_{m-1} f^{m-1}+\cdots a_{i} f^{i}\right)\right]^{(k)}$. Noting that g is an entire function and $n>k+2$, it follows from (2.5) that z_{0} is a zero of z^{2} with the order at least 3 , which is impossible. Thus f has no zeros. Let $f(z)=e^{\beta(z)}$, where $\beta(z)$ is a non-constant entire function. Then

$$
\begin{gather*}
\left(f^{m+n}\right)^{(k)}=\left(e^{(m+n) \beta}\right)^{(k)}=P_{m}\left(\beta^{\prime}, \beta^{\prime \prime}, \ldots \beta^{(k)}\right) e^{(m+n) \beta}, \tag{2.6}\\
\left(f^{n+i}\right)^{(k)}=\left(e^{(n+i) \beta}\right)^{(k)}=P_{i}\left(\beta^{\prime}, \beta^{\prime \prime}, \ldots \beta^{(k)}\right) e^{(n+i) \beta}, \tag{2.7}
\end{gather*}
$$

where P_{m} and P_{i} are differential polynomials in $\beta^{\prime}, \beta^{\prime \prime}, \ldots \beta^{(k)}$. Obviously, $P_{m} \not \equiv 0$, $P_{i} \not \equiv 0, T\left(r, P_{m}\right)=S(r, f)$ and $T\left(r, P_{i}\right)=S(r, f)$. We obtain from (2.5) to (2.7) that

$$
N\left(r, \frac{1}{a_{m} P_{m} e^{(m-i) \beta}+a_{m-1} P_{m-1} e^{(m-1-i) \beta}+\cdots a_{i} P_{i}}\right)=S(r, f) .
$$

By Lemma 2.4 and Lemma 2.1, we have

$$
\begin{aligned}
& (m-i) T(r, f) \\
& =T\left(r, a_{m} P_{m} e^{(m-i) \beta}+a_{m-1} P_{m-1} e^{(m-1-i) \beta}+\cdots a_{i+1} P_{i+1} e^{\beta}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{a_{m} P_{m} e^{(m-i) \beta}+a_{m-1} P_{m-1} e^{(m-1-i) \beta}+\cdots a_{i+1} P_{i+1} e^{\beta}}\right) \\
& \quad+\bar{N}\left(r, \frac{1}{a_{m} P_{m} e^{(m-i) \beta}+a_{m-1} P_{m-1} e^{(m-1-i) \beta}+\cdots+a_{i+1} P_{i+1} e^{\beta}+a_{i} P_{i}}\right) \\
& \quad+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{a_{m} P_{m} e^{(m-i-1) \beta}+a_{m-1} P_{m-1} e^{(m-2-i) \beta}+\cdots a_{i+1} P_{i+1}}\right)+S(r, f) \\
& \leq(m-i-1) T(r, f)+S(r, f),
\end{aligned}
$$

which is a contradiction. This completes the proof of Lemma 2.6.

Lemma 2.7. Assume that the assumptions of Lemma 2.6 hold, then $f(z)=b_{1} e^{b z^{2}}$, $g(z)=b_{2} e^{-b z^{2}}$ for three constants b_{1}, b_{2} and b that satisfy $4 a_{m}^{2}\left(b_{1} b_{2}\right)^{n+m}((n+$ $m) b)^{2}=-1$, or $4 C^{2}\left(b_{1} b_{2}\right)^{n}(n b)^{2}=-1$.

Proof. From Lemma 2.6, we get $P(z)=a_{m} z^{m}$ or $P(z)=C$, we distinguish two cases.
Case A. $P(z)=a_{m} z^{m}$. In this case, we have $\left(a_{m} f^{m+n}\right)^{(k)}\left(a_{m} g^{m+n}\right)^{(k)} \equiv z^{2}$.
If $k=1$, then

$$
\begin{equation*}
a_{m}^{2}\left(f^{m+n}\right)^{\prime}\left(g^{m+n}\right)^{\prime} \equiv z^{2} . \tag{2.8}
\end{equation*}
$$

Since f and g are entire functions and $n>k+2$, by using the similar arguments as in the proof of Lemma 2.6, we deduce from (2.8) that f and g have no zeros. Let $f=e^{\alpha(z)}, g=e^{\beta(z)}$, where $\alpha(z), \beta(z)$ are non-constant entire functions. Set

$$
\begin{equation*}
h(z)=\frac{1}{f(z) g(z)}, \tag{2.9}
\end{equation*}
$$

we know that $h(z)=e^{\gamma(z)}$, where $\gamma(z)$ is an entire function. We claim that $\gamma(z)$ is a constant. In fact, suppose $\gamma(z)$ is a non-constant entire function, then $h(z)$ is a transcendental entire function. From (2.8), we get

$$
\begin{equation*}
(m+n)^{2} a_{m}^{2}\left(f^{n+m-1}\right) f^{\prime}\left(g^{n+m-1}\right) g^{\prime} \equiv z^{2} . \tag{2.10}
\end{equation*}
$$

From (2.9) and (2.10), we have

$$
\begin{equation*}
\left(\frac{g^{\prime}}{g}+\frac{1}{2} \frac{h^{\prime}}{h}\right)^{2}=\frac{1}{4}\left(\frac{h^{\prime}}{h}\right)^{2}-\frac{z^{2} h^{m+n}}{(m+n)^{2} a_{m}^{2}} . \tag{2.11}
\end{equation*}
$$

Let $\xi=\frac{g^{\prime}}{g}+\frac{1}{2} \frac{h^{\prime}}{h}$, then (2.11) becomes

$$
\begin{equation*}
\xi^{2}=\frac{1}{4}\left(\frac{h^{\prime}}{h}\right)^{2}-\frac{z^{2} h^{m+n}}{(m+n)^{2} a_{m}^{2}} . \tag{2.12}
\end{equation*}
$$

If $\xi \equiv 0$, from (2.12), we get

$$
\begin{equation*}
h^{m+n}=\frac{(m+n)^{2} a_{m}^{2}}{4 z^{2}}\left(\frac{h^{\prime}}{h}\right)^{2} \tag{2.13}
\end{equation*}
$$

Since $h(z)=e^{\gamma(z)}$, we obtain from (2.13) that

$$
\begin{aligned}
(m+n) T(r, h) & =(m+n) m(r, h)+S(r, h) \\
& \leq m\left(r, \frac{1}{4 z^{2}}\right)+2 m\left(r, \frac{h^{\prime}}{h}\right)+S(r, h)=S(r, h)
\end{aligned}
$$

Hence h is a constant, which is a contradiction. Therefore $\xi \not \equiv 0$. Differentiating (2.12), we have

$$
\begin{align*}
2 \xi \xi^{\prime} & =\frac{1}{2} \frac{h^{\prime}}{h}\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{2 z}{a_{m}^{2}(m+n)^{2}} h^{m+n}-\frac{1}{a_{m}^{2}(m+n)} z^{2} h^{m+n-1} h^{\prime} \\
& =\frac{1}{2} \frac{h^{\prime}}{h}\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{1}{a_{m}^{2}(m+n)^{2}} h^{m+n-1}\left(2 z h+(m+n) z^{2} h^{\prime}\right) . \tag{2.14}
\end{align*}
$$

From (2.12) and (2.14), we obtain
(2.15) $\frac{1}{a_{m}^{2}(m+n)^{2}} h^{m+n}\left(2 z+(m+n) z^{2} \frac{h^{\prime}}{h}-2 z^{2} \frac{\xi^{\prime}}{\xi}\right)=\frac{1}{2} \frac{h^{\prime}}{h}\left(\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{h^{\prime}}{h} \frac{\xi^{\prime}}{\xi}\right)$.

If $2 z+(m+n) z^{2} \frac{h^{\prime}}{h}-2 z^{2} \frac{\xi^{\prime}}{\xi} \equiv 0$, then, we deduce from (2.15) that either $\frac{h^{\prime}}{h} \equiv 0$ or $\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{h^{\prime}}{h} \frac{\xi^{\prime}}{\xi} \equiv 0$. If $\frac{h^{\prime}}{h} \equiv 0$, then h is a constant, which is a contradiction. If $\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{h^{\prime}}{h} \frac{\xi^{\prime}}{\xi} \equiv 0$, we have

$$
\begin{equation*}
\frac{h^{\prime}}{h}=\frac{\xi}{d}, \tag{2.16}
\end{equation*}
$$

where $d(\neq 0)$ is a constant. Thus we get from (2.12) and (2.16) that

$$
\begin{equation*}
\frac{z^{2} h^{m+n}}{a_{m}^{2}(m+n)^{2}}=\left(\frac{1}{4}-d^{2}\right)\left(\frac{h^{\prime}}{h}\right)^{2} \tag{2.17}
\end{equation*}
$$

Hence, $(m+n) T(r, h)=S(r, h)$, which is also a contradiction.
Now we assume that $2 z+(m+n) z^{2} \frac{h^{\prime}}{h}-2 z^{2} \frac{\xi^{\prime}}{\xi} \not \equiv 0$. Since $h=e^{\gamma(z)}$ and $\xi=\frac{g^{\prime}}{g}+\frac{1}{2} \frac{h^{\prime}}{h}$, from (2.12) and (2.15), we have

$$
N\left(r, \frac{h^{\prime}}{h}\right)=S(r, h), \quad N(r, \xi)=S(r, h)
$$

and

$$
\begin{align*}
(m+n) T(r, h)= & (m+n) m(r, h) \leq m\left(r, \frac{1}{2 z+(m+n) z^{2} \frac{h^{\prime}}{h}-2 z^{2} \frac{\xi^{\prime}}{\xi}}\right) \\
& +m\left(r, \frac{h^{\prime}}{h}\left(\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{h^{\prime}}{h} \frac{\xi^{\prime}}{\xi}\right)\right)+O(1) \\
\leq & m\left(r, \frac{h^{\prime}}{h}\left(\left(\frac{h^{\prime}}{h}\right)^{\prime}-\frac{h^{\prime}}{h} \frac{\xi^{\prime}}{\xi}\right)\right)+m\left(r, 2 z+(m+n) z^{2} \frac{h^{\prime}}{h}-2 z^{2} \frac{\xi^{\prime}}{\xi}\right) \\
& +N\left(r, 2 z+(m+n) z^{2} \frac{h^{\prime}}{h}-2 z^{2} \frac{\xi^{\prime}}{\xi}\right) \\
\leq & N\left(r, \frac{\xi^{\prime}}{\xi}\right)+S(r, h)+S(r, \xi) \\
(2.18) \leq & T(r, \xi)+S(r, h)+S(r, \xi) . \tag{2.18}
\end{align*}
$$

Note that $h=e^{\gamma(z)}$ is a transcendental entire function, we get from (2.12) that

$$
\begin{aligned}
2 T(r, \xi) & =T\left(r, \xi^{2}\right)+S(r, \xi)=T\left(r, \frac{1}{4}\left(\frac{h^{\prime}}{h}\right)^{2}-\frac{z^{2} h^{m+n}}{a_{m}^{2}(m+n)^{2}}\right)+S(r, \xi) \\
& =N\left(r, \frac{1}{4}\left(\frac{h^{\prime}}{h}\right)^{2}-\frac{z^{2} h^{m+n}}{a_{m}^{2}(m+n)^{2}}\right)
\end{aligned}
$$

$$
\begin{align*}
& +m\left(r, \frac{1}{4}\left(\frac{h^{\prime}}{h}\right)^{2}-\frac{z^{2} h^{m+n}}{a_{m}^{2}(m+n)^{2}}\right)+S(r, \xi) \\
\leq & (m+n) m(r, h)+N\left(r,\left(\frac{h^{\prime}}{h}\right)^{2}\right)+S(r, h)+S(r, \xi) \\
\leq & (m+n) T(r, h)+S(r, h)+S(r, \xi) . \tag{2.19}
\end{align*}
$$

Combining with (2.18), we have

$$
\frac{(m+n)}{2} T(r, h)=S(r, h),
$$

which is a contradiction. Thus, $\gamma(z)$ is a constant, and so $h(z)=e^{\gamma(z)}$ is also a constant. From (2.9), we obtain

$$
\begin{equation*}
f(z) g(z)=e^{\alpha(z)} e^{\beta(z)}=c_{0}, \tag{2.20}
\end{equation*}
$$

where $c_{0}(\neq 0)$ is a constant. So we have

$$
\begin{equation*}
\beta(z)=-\alpha(z)+c_{1}, \tag{2.21}
\end{equation*}
$$

for a constant c_{1}. Substituting $f=e^{\alpha(z)}, g=e^{\beta(z)}$ into (2.10), we get from (2.20) and (2.21) that

$$
f(z)=b_{1} e^{b z^{2}}, g(z)=b_{2} e^{-b z^{2}}
$$

where b_{1}, b_{2} and b are three constants that satisfy $4 a_{m}^{2}\left(b_{1} b_{2}\right)^{n+m}((m+n) b)^{2}=-1$.
If $k \geq 2$, then

$$
\begin{equation*}
a_{m}^{2}\left(f^{n+m}\right)^{(k)}\left(g^{n+m}\right)^{(k)}=z^{2} . \tag{2.22}
\end{equation*}
$$

Since f and g are entire functions and $n>k+2$, by using the arguments similar to the proof of Lemma 2.6, we know from (2.8) that f and g have no zeros. Let

$$
\begin{equation*}
f=e^{\alpha(z)}, \quad g=e^{\beta(z)} \tag{2.23}
\end{equation*}
$$

where $\alpha(z), \beta(z)$ are non-constant entire functions. By (2.22), we have

$$
\begin{equation*}
N\left(r, \frac{1}{\left(f^{m+n}\right)^{(k)}}\right) \leq N\left(r, \frac{1}{z^{2}}\right)=O(\log r) \tag{2.24}
\end{equation*}
$$

Combining with (2.23) and (2.24), we obtain

$$
N\left(r, f^{m+n}\right)+N\left(r, \frac{1}{f^{m+n}}\right)+N\left(r, \frac{1}{\left(f^{m+n}\right)^{(k)}}\right)=O(\log r)
$$

By $(2.23), T\left(r, \frac{\left(f^{m+n}\right)^{\prime}}{f^{m+n}}\right)=T\left(r,(m+n) \alpha^{\prime}\right)$. If α is transcendental, We know from Lemma 2.5 that $f=e^{\alpha}=e^{a z+b}$ for some constants $a \neq 0$ and b, which is impossible. Hence α must be a polynomial, and so β is also a polynomial. We suppose that $\operatorname{deg}(\alpha)=p$ and $\operatorname{deg}(\beta)=q$. If $p=q=1$, we have

$$
\begin{equation*}
f=e^{A z+B}, \quad g=e^{C z+D}, \tag{2.25}
\end{equation*}
$$

where A, B, C and D are constants that satisfy $A C \neq 0$. Substituting (2.25) into (2.22), we obtain

$$
a_{m}^{2}(m+n)^{2 k}(A C)^{k} e^{(m+n)(A+C) z+(m+n)(B+D)}=z^{2}
$$

which is impossible. Thus $\max \{p, q\}>1$. Without loss of generality, we suppose that $p>1$. Then $\left(f^{m+n}\right)^{(k)}=Q_{1}(z) e^{(m+n) \alpha}$, where $Q_{1}(z)$ is a polynomial of degree $k p-k \geq k \geq 2$. From (2.22), we have $p=k=2$ and $q=1$. Suppose that

$$
f^{m+n}=e^{(m+n)\left(A_{1} z^{2}+B_{1} z+C_{1}\right)}, \quad g^{m+n}=e^{(m+n)\left(D_{1} z+E_{1}\right)},
$$

where $A_{1}, B_{1}, C_{1}, D_{1}, E_{1}$ are constants such that $A_{1} D_{1} \neq 0$. Then we have

$$
\begin{align*}
\left(f^{m+n}\right)^{\prime \prime}= & (m+n)\left(4(m+n) A_{1}^{2} z^{2}+4(m+n) A_{1} B_{1} z+(m+n) B_{1}^{2}\right. \\
+ & \left.2 A_{1}\right) e^{(m+n)\left(A_{1} z^{2}+B_{1} z+C_{1}\right)}, \tag{2.26}\\
& \left(g^{m+n}\right)^{\prime \prime}=(m+n)^{2} D_{1}^{2} e^{(m+n)\left(D_{1} z+E_{1}\right)} . \tag{2.27}
\end{align*}
$$

Substituting (2.26) and (2.27) into (2.22), we have

$$
Q_{2}(z) e^{(m+n)\left(A_{1} z^{2}+\left(B_{1}+D_{1}\right) z+C_{1}+E_{1}\right)}=z^{2}
$$

where $Q_{2}(z)$ is a polynomial of degree 2 . Since $A_{1} \neq 0$, we get a contradiction.
Case B. $P(z)=C$. In this case, by the similar arguments mentioned in the Case A, f and g must satisfy $f(z)=b_{1} e^{b z^{2}}, g(z)=b_{2} e^{-b z^{2}}$, where b_{1}, b_{2}, b are constants that satisfy $4 C^{2}\left(b_{1} b_{2}\right)^{n}(n b)^{2}=-1$. Lemma 2.7 follows.

Lemma 2.8. Let f and g be two non-constant entire functions, n, m and k be three positive integers, and let $F=\left(f^{n}(z) P(f)\right)^{(k)}$, $G=\left(g^{n}(z) P(g)\right)^{(k)}$, where $P(z)$ is given by Theorem 1.5 and not a monomial. If there exist two nonzero constants a_{1} and a_{2} such that $\bar{N}\left(r, \frac{1}{F-a_{1}}\right)=\bar{N}\left(r, \frac{1}{G}\right)$ and $\bar{N}\left(r, \frac{1}{G-a_{2}}\right)=\bar{N}\left(r, \frac{1}{F}\right)$, then $n \leq 2 k+2+m$.

Proof. By the second fundamental theorem, we have

$$
\begin{align*}
T(r, F) & \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F-a_{1}}\right)+S(r, F) \\
& \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right)+S(r, F) \\
& \leq N_{1}\left(r, \frac{1}{F}\right)+N_{1}\left(r, \frac{1}{G}\right)+S(r, F) \tag{2.28}
\end{align*}
$$

From (2.28), Lemma 2.1 and Lemma 2.2, we obtain

$$
\begin{aligned}
T(r, F) \leq & T(r, F)-T\left(r, f^{n}(z) P(f)\right)+N_{k+1}\left(r, \frac{1}{f^{n}(z) P(f)}\right) \\
& +N_{k+1}\left(r, \frac{1}{g^{n}(z) P(g)}\right)+S(r, f)+S(r, g)
\end{aligned}
$$

Hence

$$
\begin{align*}
(n+m) T(r, f) \leq & N_{k+1}\left(r, \frac{1}{f^{n}(z) P(f)}\right)+N_{k+1}\left(r, \frac{1}{g^{n}(z) P(g)}\right) \\
& +S(r, f)+S(r, g) \leq(k+1)\left(\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{g}\right)\right) \\
& +m(T(r, f)+T(r, g))+S(r, f)+S(r, g) \tag{2.29}
\end{align*}
$$

By the similar reasoning, we have

$$
\begin{align*}
(n+m) T(r, g) \leq & (k+1)\left(\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{g}\right)\right) \\
& +m(T(r, f)+T(r, g))+S(r, f)+S(r, g) \tag{2.30}
\end{align*}
$$

From (2.29) and (2.30), we have

$$
(n-2 k-2-m)(T(r, f)+T(r, g)) \leq S(r, f)+S(r, g)
$$

which implies that $n \leq 2 k+2+m$. Lemma 2.8 is thus proved.
By the arguments much similar to the proof of Lemma 2.8, we have the following lemma.

Lemma 2.9. Let f and g be two non-constant entire functions, n, m and k be three positive integers, and let $F=\left(f^{n}(z) P(f)\right)^{(k)}, G=\left(g^{n}(z) P(g)\right)^{(k)}$, where $P(z)$ is given by Theorem 1.5 and $P(z)=a_{m} z^{m}$ or $P(z)=C$. If there exist two nonzero constants a_{1} and a_{2} such that $\bar{N}\left(r, \frac{1}{F-a_{1}}\right)=\bar{N}\left(r, \frac{1}{G}\right)$ and $\bar{N}\left(r, \frac{1}{G-a_{2}}\right)=\bar{N}\left(r, \frac{1}{F}\right)$, then $n \leq 2 k+2-m^{*}$.

3. Proof of theorems

Proof of Theorem 1.5. Set $F=f^{n}(z) P(f)$, by Lemma 2.4, we have

$$
\begin{equation*}
T\left(r, F^{(k)}\right) \leq \bar{N}\left(r, \frac{1}{F^{(k)}}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}-z}\right)+S(r, f) . \tag{3.1}
\end{equation*}
$$

Case 1. $P(f)=a_{m} f^{m}+a_{m-1} f^{m-1}+\cdots a_{1} f+a_{0}$, where $a_{m} \neq 0$. By (3.1) and Lemma 2.2 with $p=1$, we obtain

$$
\begin{align*}
T\left(r, F^{(k)}\right) & \leq N_{1}\left(r, \frac{1}{F^{(k)}}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}-z}\right)+S(r, f) \\
& \leq T\left(r, F^{(k)}\right)-T(r, F)+N_{k+1}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}-z}\right)+S(r, f) \tag{3.2}
\end{align*}
$$

and so

$$
\begin{aligned}
T(r, F) \leq & N_{k+1}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}-z}\right)+S(r, f) \\
\leq & N_{k+1}\left(r, \frac{1}{f^{n}}\right)+N_{k+1}\left(r, \frac{1}{a_{m} f^{m}+a_{m-1} f^{m-1}+\cdots a_{1} f+a_{0}}\right) \\
& +\bar{N}\left(r, \frac{1}{F^{(k)}-z}\right)+S(r, f) \\
\leq & (k+1+m) T(r, f)+\bar{N}\left(r, \frac{1}{F^{(k)}-z}\right)+S(r, f) .
\end{aligned}
$$

Noting that $T(r, F)=(m+n) T(r, f)+S(r, f)$ and $n \geq k+2$, we get $\left[f^{n}(z) P(f)\right]^{(k)}$ has infinitely many fixed points .

Case 2. $P(f)=C$, where $C \neq 0$. By using the same arguments as mentioned above, we have

$$
\begin{aligned}
T(r, F) & \leq N_{k+1}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}-z}\right)+S(r, f) \\
& \leq N_{k+1}\left(r, \frac{1}{C f^{n}}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}-z}\right)+S(r, f) \\
& \leq(k+1) T(r, f)+\bar{N}\left(r, \frac{1}{F^{(k)}-z}\right)+S(r, f)
\end{aligned}
$$

Note that $T(r, F)=n T(r, f)+S(r, f)$ and $n \geq k+2$, we obtain $\left[f^{n}(z) P(f)\right]^{(k)}$ has infinitely many fixed points. Theorem 1.5 follows.
Proof of Theorem 1.6. We consider the following two cases.
(i) $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{1} z+a_{0}$ is not a monomial. Let

$$
\begin{equation*}
F=\frac{\left(f^{n}(z) P(f)\right)^{(k)}}{z}, \quad G=\frac{\left(g^{n}(z) P(g)\right)^{(k)}}{z} \tag{3.3}
\end{equation*}
$$

Then F and G are transcendental meromorphic functions that share 1 CM. Let H be given by (2.3). If $H \not \equiv 0$, by Lemma 2.3, we know that (2.4) holds. From Lemma 2.2, we have

$$
\begin{align*}
N_{2}\left(r, \frac{1}{F}\right) \leq & N_{2}\left(r, \frac{1}{\left(f^{n}(z) P(f)\right)^{(k)}}\right)+S(r, f) \\
\leq & T\left(r,\left(f^{n}(z) P(f)\right)^{(k)}\right)-(m+n) T(r, f) \\
& +N_{k+2}\left(r, \frac{1}{f^{n}(z) P(f)}\right)+S(r, f) \\
= & T(r, F)-(m+n) T(r, f)+N_{k+2}\left(r, \frac{1}{f^{n}(z) P(f)}\right)+S(r, f) \tag{3.4}
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
N_{2}\left(r, \frac{1}{G}\right) \leq T(r, G)-(m+n) T(r, g)+N_{k+2}\left(r, \frac{1}{g^{n}(z) P(g)}\right)+S(r, g) \tag{3.5}
\end{equation*}
$$

From (3.4) and (3.5), we obtain

$$
\begin{equation*}
N_{2}\left(r, \frac{1}{F}\right) \leq N_{k+2}\left(r, \frac{1}{f^{n}(z) P(f)}\right)+S(r, f) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{2}\left(r, \frac{1}{G}\right) \leq N_{k+2}\left(r, \frac{1}{g^{n}(z) P(g)}\right)+S(r, g) . \tag{3.7}
\end{equation*}
$$

Again, from (3.4) and (3.5), we have

$$
\begin{aligned}
(m+n)(T(r, f)+T(r, g)) \leq & T(r, F)+T(r, G)-N_{2}\left(r, \frac{1}{F}\right)-N_{2}\left(r, \frac{1}{G}\right) \\
& +N_{k+2}\left(r, \frac{1}{f^{n}(z) P(f)}\right)
\end{aligned}
$$

$$
+N_{k+2}\left(r, \frac{1}{g^{n}(z) P(g)}\right)+S(r, f)+S(r, g)
$$

Combining with (3.6), (3.7) and Lemma 2.3, we get

$$
\begin{aligned}
(m+n)(T(r, f)+T(r, g)) \leq & 2 N_{k+2}\left(r, \frac{1}{f^{n}(z) P(f)}\right) \\
& +2 N_{k+2}\left(r, \frac{1}{g^{n}(z) P(g)}\right)+S(r, f)+S(r, g) \\
\leq & (2 k+4)\left(\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{g}\right)\right)+2 N_{k+2}\left(r, \frac{1}{P(f)}\right) \\
& +2 N_{k+2}\left(r, \frac{1}{P(g)}\right)+S(r, f)+S(r, g) .
\end{aligned}
$$

Thus, we deduce that

$$
(m+n-2 k-4-2 m)(T(r, f)+T(r, g)) \leq S(r, f)+S(r, g)
$$

which contradicts the assumption that $n>2 k+4+m$. Therefore $H \equiv 0$. Integrating twice, we get from (2.3) that

$$
\begin{equation*}
\frac{1}{F-1}=\frac{A}{G-1}+B \tag{3.9}
\end{equation*}
$$

where $A(\neq 0)$ and B are constants. From (3.9), we have

$$
\begin{equation*}
F=\frac{(B+1) G+(A-B-1)}{B G+(A-B)}, \quad G=\frac{(B-A) F+(A-B-1)}{B F-(B+1)} . \tag{3.10}
\end{equation*}
$$

We consider the following three cases.
Case 1. Suppose that $B \neq 0,-1$. From (3.10) we have $\bar{N}\left(r, \frac{1}{F-\frac{B+1}{B}}\right)=\bar{N}(r, G)$. From the second fundamental theorem, we have

$$
\begin{align*}
T(r, F) & \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F-\frac{B+1}{B}}\right)+S(r, F) \\
& =\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, G)+S(r, F) \leq \bar{N}\left(r, \frac{1}{F}\right)+S(r, F) \tag{3.11}
\end{align*}
$$

By (3.11) and the same reasoning as in the proof of (3.4), we obtain

$$
\begin{aligned}
T(r, F) & \leq N_{1}\left(r, \frac{1}{F}\right)+S(r, f) \\
& \leq T(r, F)-(m+n) T(r, f)+N_{k+1}\left(r, \frac{1}{f^{n}(z) P(f)}\right)+S(r, f)
\end{aligned}
$$

Hence

$$
\begin{aligned}
(m+n) T(r, f) & \leq(k+1) \bar{N}\left(r, \frac{1}{f}\right)+N_{k+1}\left(r, \frac{1}{P(f)}\right)+S(r, f) \\
& \leq(k+m+1) T(r, f)+S(r, f)
\end{aligned}
$$

which contradicts $n>2 k+4+m$.

Case 2. Suppose that $B=0$. From (3.10) we have

$$
\begin{equation*}
F=\frac{G+(A-1)}{A}, \quad G=A F-(A-1) . \tag{3.12}
\end{equation*}
$$

If $A \neq 1$, we get from (3.12) that $\bar{N}\left(r, \frac{1}{F-\frac{A-1}{A}}\right)=\bar{N}\left(r, \frac{1}{G}\right)$ and $\bar{N}\left(r, \frac{1}{F}\right)=\bar{N}(r$, $\left.\frac{1}{G+(A-1)}\right)$. By Lemma 2.8, we have $n \leq 2 k+2+m$. This contradicts the assumption that $n>2 k+4+m$. Thus $A=1$ and $F=G$, that is,

$$
\left(f^{n} P(f)\right)^{(k)}=\left(g^{n} P(g)\right)^{(k)} .
$$

By integration, we have

$$
\left(f^{n}(z) P(f)\right)^{(k-1)}=\left(g^{n}(z) P(g)\right)^{(k-1)}+a_{k-1} .
$$

where a_{k-1} is a constant. If $a_{k-1} \neq 0$, we get from Lemma 2.8 that $n \leq 2 k+m$, which is a contradiction. Hence $a_{k-1}=0$. Repeating the same process for $k-1$ times, we obtain $f^{n}(z) P(f)=g^{n}(z) P(g)$, that is

$$
\begin{align*}
& f^{n}\left(a_{m} f^{m}+a_{m-1} f^{m-1}+\cdots+a_{1} f+a_{0}\right) \\
& =g^{n}\left(a_{m} g^{m}+a_{m-1} g^{m-1}+\cdots+a_{1} g+a_{0}\right) \tag{3.13}
\end{align*}
$$

Let $h=\frac{f}{g}$. If h is a constant, then substituting $f=g h$ into (3.13), we deduce

$$
a_{m} g^{n+m}\left(h^{n+m}-1\right)+a_{m-1} g^{n+m-1}\left(h^{n+m-1}-1\right)+\cdots+a_{0} g^{n}\left(h^{n}-1\right)=0
$$

which implies $h^{d}=1$, where $d=(n+m, \ldots, n+m-i, \ldots, n), a_{m-i} \neq 0$ for some $i=0,1, \ldots, m$. Thus $f(z) \equiv \operatorname{tg}(z)$ for a constant t such that $t^{d}=1$. If h is not a constant, then we know by (3.13) that f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where $R\left(\omega_{1}, \omega_{2}\right)=\omega_{1}^{n}\left(a_{m} \omega_{1}^{m}+a_{m-1} \omega_{1}^{m-1}+\cdots+a_{1} \omega_{1}+a_{0}\right)-$ $\omega_{2}^{n}\left(a_{m} \omega_{2}^{m}+a_{m-1} \omega_{2}^{m-1}+\cdots+a_{1} \omega_{2}+a_{0}\right)$.

Case 3. Suppose that $B=-1$. From (3.10) we obtain

$$
\begin{equation*}
F=\frac{A}{-G+(A+1)}, \quad G=\frac{(A+1) F-A}{F} . \tag{3.14}
\end{equation*}
$$

If $A \neq-1$, we obtain from (3.14) that $\bar{N}\left(r, \frac{1}{F-\frac{A}{A+1}}\right)=\bar{N}\left(r, \frac{1}{G}\right), \bar{N}(r, F)=\bar{N}(r$, $\frac{1}{G-A-1}$). By the same reasoning mentioned in Case 1 and Case 2, we get a contradiction. Hence $A=-1$. From (3.14), we have $F G=1$, that is

$$
\left(f^{n}(z) P(f)\right)^{(k)}\left(g^{n}(z) P(g)\right)^{(k)}=z^{2}
$$

by Lemma 2.6, this is impossible .
(ii) $P(z)=C$ or $P(z)=a_{m} z^{m}$, we distinguish two cases.

Case A. $P(z)=a_{m} z^{m}$. In this case, we have $F=\left(a_{m} f^{n+m}(z)\right)^{(k)}$ and $G=$ $\left(a_{m} g^{n+m}(z)\right)^{(k)}$. Let

$$
F_{1}=\frac{\left(a_{m} f^{n+m}(z)\right)^{(k)}}{z}, \quad G_{1}=\frac{\left(a_{m} g^{n+m}(z)\right)^{(k)}}{z}
$$

Then F_{1} and G_{1} share 1 CM . By the similar arguments mentioned in the proof of (i), we have $F_{1} \equiv G_{1}$ or $F_{1} G_{1} \equiv 1$.

If $F_{1} G_{1}=1$, we obtain from Lemma 2.7 that $f(z)=b_{1} e^{b z^{2}}, g(z)=b_{2} e^{-b z^{2}}$ for three constants b_{1}, b_{2} and b that satisfy $4 a_{m}^{2}\left(b_{1} b_{2}\right)^{n+m}((n+m) b)^{2}=-1$.

If $F_{1} \equiv G_{1}$, we get

$$
\left(a_{m} f^{n+m}\right)^{(k)}=\left(a_{m} g^{n+m}\right)^{(k)}
$$

By integration, we have

$$
\left(a_{m} f^{n+m}\right)^{(k-1)}=\left(a_{m} g^{n+m}\right)^{(k-1)}+a_{k-1}
$$

where a_{k-1} is a constant. If $a_{k-1} \neq 0$, we get from Lemma 2.9 that $n \leq 2 k+m$, which is a contradiction. Hence $a_{k-1}=0$. Repeating the same process for $k-1$ times, we obtain $a_{m} f^{n+m}=a_{m} g^{n+m}$, we get that $f \equiv t g$, where t is a constant that satisfies $t^{n+m}=1$.

Case B. $P(z)=C$. In this case, by the similar arguments mentioned in the Case A, f and g must satisfy $f(z)=b_{1} e^{b z^{2}}, g(z)=b_{2} e^{-b z^{2}}$, where b_{1}, b_{2} and b are three constants satisfying $4 C^{2}\left(b_{1} b_{2}\right)^{n}(n b)^{2}=-1$ or $f=t g$ for a constant t such that $t^{n}=1$. This completes the proof of Theorem 1.6.

References

[1] M.-L. Fang and X. Hua, Entire functions that share one value, Nanjing Daxue Xuebao Shuxue Bannian Kan 13 (1996), no. 1, 44-48.
[2] M.-L. Fang and H. Qiu, Meromorphic functions that share fixed-points, J. Math. Anal. Appl. 268 (2002), no. 2, 426-439.
[3] M.-L. Fang, Uniqueness and value-sharing of entire functions, Comput. Math. Appl. 44 (2002), no. 5-6, 823-831.
[4] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. (2) 70 (1959), 9-42.
[5] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs Clarendon Press, Oxford, 1964.
[6] W.-C. Lin and H.-X. Yi, Uniqueness theorems for meromorphic function, Indian J. Pure Appl. Math. 35 (2004), no. 2, 121-132.
[7] W.-C. Lin and H.-X. Yi, Uniqueness theorems for meromorphic functions concerning fixedpoints, Complex Var. Theory Appl. 49 (2004), no. 11, 793-806.
[8] C.-C. Yang and X. Hua, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22 (1997), no. 2, 395-406.
[9] C.-C. Yang and H.-X. Yi, Uniqueness Theory of Meromorphic Functions, Mathematics and its Applications, 557, Kluwer Acad. Publ., Dordrecht, 2003.
[10] J.-L. Zhang and L.-Z. Yang, Some results related to a conjecture of R. Brück, JIPAM. J. Inequal. Pure Appl. Math. 8 (2007), no. 1, Article 18, 11 pp. (electronic).
[11] X.-Y. Zhang, J.-F. Chen and W.-C. Lin, Entire or meromorphic functions sharing one value, Comput. Math. Appl. 56 (2008), no. 7, 1876-1883.

