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1. Introduction and main results

In this paper, a meromorphic function will mean meromorphic in the whole complex
plane. We shall use the following standard notations of value distribution theory
[9]: T(r, f),m(r, f), N(r, f),N(r, f),--- We denote by S(r, f) any function satisfying
S(r, f) = o(T(r, f)), as r — oo possibly outside a set r of finite linear measure.

We say that two meromorphic functions f and g share a small function a IM
(ignoring multiplicities) when f — a and g — a have the same zeros. If f and g have
the same zeros with the same multiplicities, then we say that f and g share a CM
(counting multiplicities).

Let p be a positive integer and a € C. We denote by N,(r, ﬁ) the counting
function of the zeros of f —a where an m-fold zero is counted m times if m < p and
p times if m > p. We say that a finite value zg is a fixed point of f if f(z9) = 2o.

In answer to one famous question, Hayman [4], Fang and Hua [1], and Yang and

Hua [8] obtained the following result.
Theorem 1.1. Let f and g be two non-constant entire functions, and let n > 6 be
a positive integer. If f™f" and g"g' share 1 CM, then either f(z) = c1e%,g(z) =
c2€™ %, where c1,co and ¢ are three constants satisfying (c1co)" e = —1 or f =tg
for a constant t such that t"t1 = 1.

In [3], Fang also got the following results.
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Theorem 1.2. Let f and g be two non-constant entire functions, and let n, k be
two positive integers with n > 2k + 4. If (f*)*) and (g*)® share 1 CM, then
either f(z) = c1e%,g(z) = cae™%*, where ¢1,co and ¢ are three constants satisfying
(—=1)¥(crco)(ne)?* =1 or f = tg for a constant tsuch that t" = 1.

Theorem 1.3. Let f and g be two non-constant entire functions, and let n,k be
two positive integers with n > 2k + 8. If (f*(f —1))* and (g"(g — 1))*) share 1
CM , then f =g.

Recently, Zhang, Chen and Lin [11] proved the following result, which generalized
some previous results.

Theorem 1.4. Let f(z) and g(z) be two entire functions; let n,m and k be three
positive integers with n > 3m + 2k + 5, and let P(2) = 2™ + Qp_12™ 1 4 -+ +
a1z + ag or P(z) = C, where ag # 0 ,a1...,am-1, am # 0, C # 0 are complex
constants. If [f*P(f)]*) and [g" P(g)]*® share 1 CM, then the following conclusions
hold:
() If P(2) = amz™ + am_12™"1 + -+ + a1z + ao, then f(z) = tg(z) for a
constant t that satisfies t¢ = 1, where d = (n+m,...,n +m —1,...,n),
m—; 7 0 for some i =0,1,....m; or f and g satisfy the algebraic equation
R(f,g9) =0, where R(wy,ws) = Wi (amwi™ + amflw{'“l +--+ajw +ag) —
Wg(amwgn + am—lwgb_l + -t ajws + aO);
(ii) If P(z) = C, then f = tg for a constant t that satisfies t™ = 1, or f(z) =
b/ Ceb*, g(z) = ba/ /Ce Y for three constants by, by and b that satisfy
(—1)F(bybo)™ (nb)?F = —1.

Corresponding to the above results, some authors considered the uniqueness prob-
lems of entire functions that have fixed points, see Fang and Qiu [2], Lin and Yi [7].
In the present paper, we consider the existence of fixed points of (f"P(f))*) and
the corresponding uniqueness theorems, where n, k are positive integers and P(z)
is a nonzero polynomial, and we obtain the following results which generalize the
above theorems.

Theorem 1.5. Let f(z) be a transcendental entire function, n, k, m be three positive
integers withn > k+2, and let P(2) = apmz™+am_12™ 1+ - -+ayz+ag or P(z) = C,
where ag ,a1...,am_1, Gm 7 0, C # 0 are complex constants. Then [f"P(f)](k) has
infinitely many fized points.

Remark 1.1. It is easy to see that a polynomial Q(z) with degree n > 1 has ex-
actly n fixed points (counting multiplicities), but a transcendental entire function
may have no fixed points. For example, the function f = e®(*) + = has no any fixed
points, where «(z) is an entire function.

Here and forth, we define an integer m*, according to the nonzero polynomial
P(z) in Theorem 1.6, by

0, P(z)=C

o — {m, P(z) £ C;
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Theorem 1.6. Suppose that P(z) is given by Theorem 1.5. Let f(z) and g(z) be
two transcendental entire functions, and let n,m and k be three positive integers
with n > 2k +m* +4. If [f*P(£)]® and [g"P(g)]"®) share = CM, then the following
conclusions hold:
(G) If P(2) = amz™ + am_12™"1 + -+ + a1z + ag is not a monomial, then
f(2) =tg(2) for a constant t that satisfies t* = 1, where d = (n+m,...,n+
M —d,...,M), Gm—y # 0 for some i = 0,1,...,m; or f and g satisfy the
algebraic equation R(f,g) = 0, where R(wy,wz) = WP (amwl® + 1wt +
st ajwy F ag) — wi(amwi + am,lwg%l + - 4 a1we + ap);
(ii) If P(z) = C or P(z) = amz™, then f = tg for a constant t that satisfies
"t =1, or f(2) = blebz2, g(z) = byeb% for three constants by, by and b
that satisfy 4a2,(b1ba)" ™ ((n + m)b)? = —1, or 4C?(byby)"(nb)? = —1.

Remark 1.2. The condition of n > 3m + 2k 4+ 5 in Theorem 1.4 is replaced by
n > 2k + 4+ m* in Theorem 1.6.

2. Some lemmas

Lemma 2.1. [9] Let f be a non-constant meromorphic function, and ag, a1, as, ... an
be small functions of f such that a, #0. Then

T(Ta anfn +an71fn_1 + - 'alf +a0) = nT(T7 f) + S(T,f)

Lemma 2.2. [6] Let f be a non-constant meromorphic function, and p, k be positive
integers. Then

en N () STESO) = T0 )+ N () + 500
(2.2) N, (l;’;) <EkN(r, f) + Npik (r, }) + S(r, f).

Lemma 2.3. [10] Let

F/I 2FI G// 2G/
(23) H_<F’_F—1>_<G’_G—1)’

where F' and G are two non-constant meromorphic functions. If F' and G share 1
CM and H # 0, then

T(r, F) + T(r, G) < 2N ( ;) Ny ( é) Ny (1, F) + No(r, G)
(2.4) +S(r, F) + 5(r, G).

Lemma 2.4. [9] Let [ be a non-constant meromorphic function, and ay(z), az(2)
and az(z) be distinct small functions of f. Then

T(r, f) < iN <r, f_laj) + S f).
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Lemma 2.5. [5] Suppose that f is a non-constant meromorphic function, k > 2 is

an integer. If
N(nf)—i—N(nch) +N(T,f(1k)> :S<r,];/>,

then f = e*** where a # 0, b are constants.

Lemma 2.6. Let f(z) and g(z) be two transcendental entire functions, n, k be two
positive integers with n > k +2, and let P(2) = 2™ + @p_12™ 1+ + a1z +ag
or P(z) = C, where ag ,a1...,am-1, am # 0, C # 0 are complex constants. If
[f™(2)P(£)]®)[g"(2)P(g)]*) = 22, then P(z) is reduced to a nonzero monomial,
that is, P(z) = amz™ or P(z) =C.

Proof. If P(z) is not reduced to a nonzero monomial, then P(2) = @, 2™ +a,, _12™ *+
.-+ a;2", where a; is the last nonzero complex constant for s =0,1,...,m — 1. Since

[fn(amfm + am—lfm71 + - azfz)}(k) [gn(amgm + am—lgmi1 + avgz)](k)
(2.5) =22
Suppose that zg is a p-fold zero of f, we know that zp must be a (np + ip — k)-fold
2610 Of [f™ (A f™ + Q1 [ 4+ a; f)]*). Noting that g is an entire function and
n > k+2, it follows from (2.5) that zg is a zero of z? with the order at least 3, which

is impossible. Thus f has no zeros. Let f(z) = ¢®(*), where (%) is a non-constant
entire function. Then

(2.6) (fm+n)(k) = (e(m+n)ﬁ)(/€) — Pm(ﬂ’,ﬁﬁ, o 6(/{:))e(m+n)ﬁ’

(27) (FrE) ™ = () E = P, 8, B )R,

where P, and P; are differential polynomials in 3, 3, ...3%). Obviously, P, # 0,
P, £0, T(r,Py) = S(r, f) and T(r, P;) = S(r, f). We obtain from (2.5) to (2.7)
that

1
N . . =5 .
(ry ampme(m—z)ﬁ + amflpmfle(miliz)ﬁ N a'LPz> (Ta f)

By Lemma 2.4 and Lemma 2.1, we have
(m —4)T(r, f)
= T(Ta aume(m—i)ﬁ + amflpmfle(m_l_i)ﬁ + e ai+1Pi+1eﬁ) + S(’I“, f)

_ 1
<N - -
- (r, Am P =98 a1 Py _qe(m=1=08 4 ... ai+1Pz‘+1€5>

— 1
N (r, amPrnem=08 + a1 Pp_qem=1-08 4 ... 4 q; 1 Pyl + aiR‘)
+5(r, f)
<N (r - 1 -
o ' aume(mizil)ﬁ + amflpmfle(m72il)ﬁ +- ai+1Pi+1
< (m_i_ 1)T(’I“,f) +S(T,f),

which is a contradiction. This completes the proof of Lemma 2.6. 1

)+ 500
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Lemma 2.7. Assume that the assumptions of Lemma 2.6 hold, then f(z) = blebz2,
g(z) = er_bzz for three constants by, by and b that satisfy 4a2,(b1by)" ™ ((n +
m)b)? = —1, or 4C?(b1be)"(nb)? = —1.

Proof. From Lemma 2.6, we get P(z) = a,,2™ or P(z) = C, we distinguish two cases.

Case A. P(2) = a,,2™. In this case, we have (a,, f™+")*) (a,,gm+")*) = 22,
If £k =1, then

(28) a2 (fn) (g = 22,

Since f and g are entire functions and n > k 4 2, by using the similar arguments
as in the proof of Lemma 2.6, we deduce from (2.8) that f and g have no zeros. Let
f=e*?) g =¢85 where a(z), 3(z) are non-constant entire functions. Set

o
f(2)g(2)’

we know that h(z) = ¢7(*), where v(z) is an entire function. We claim that (z) is
a constant. In fact, suppose y(z) is a non-constant entire function, then h(z) is a
transcendental entire function. From (2.8), we get

(2.9) h(z) =

(2.10) (m+n)2al, (f**" ) (g g = 2
From (2.9) and (2.10), we have
2.11) AR LA ¥ G AN i

’ g 2h/) 4\h (m+n)2a2,’
Let & = % + %%, then (2.11) becomes
(2.12) g-1(L L

’ 4\ h (m+mn)2a2,’
If £ =0, from (2.12), we get

+ n)2a2 Y 2

2.13 b — ()T (7T
(2.13) 422 h

Since h(z) = €7*), we obtain from (2.13) that
(m+n)T(r,h) = (m+n)m(r,h) + S(r, h)
1 I
<m (r, 422> +2m (r, h) + S(r,h) = S(r, h).

Hence h is a constant, which is a contradiction. Therefore £ # 0. Differentiating
(2.12), we have

1A (R 22 1
geel — - () - % gmi4n - 2pman—lys
« (h) ZminE’  @mam "

1 h‘l h‘l ' 1 m—+n—1 AN
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From (2.12) and (2.14), we obtain

1 m+n Qh, 25, flhil E /72/5

If 2z + (m + n)z2% - 2z2% = 0, then, we deduce from (2.15) that either %’ =0
! ! !’ ’ ’
or (%) — %% =0. If % = 0, then h is a constant, which is a contradiction. If
! ! ! ’
(%) - %% = 0, we have
noo¢
2.16 — ==
(2.16) c_t
where d(# 0) is a constant. Thus we get from (2.12) and (2.16) that
21 m+n 1 N\ 2
. s ) (0!
a2, (m+ n)? 4 h

Hence, (m +n)T(r,h) = S(r, h), which is also a contradiction.
Now we assume that 22+(m+n)22%7222% # 0. Since h = €7(*) and € = i

h/
Ry
from (2.12) and (2.15), we have

b

N (r, ”) = S(rh), N(r€) = S(rh),

h
and
1
(m + m)T(r. ) = (m+ )m(r.h) < m ( T T AT 25)
1% 1% ! e
() )
<m (r,f;; ((f;:) - Zi)) +m (r,2z + (m—l—n)zQ%/ - 222§>
+N (7“, 2z 4 (m+ n)zQ%/ - 2z2£/)
<N (r, g) + S(r,h) + 5(r,§)
(2.18) <T(r,&) +5(r,h) + 5(r,6).

Note that h = ¢7(?) is a transcendental entire function, we get from (2.12) that

2T (r, &) = T(r, &%) + S(r, &) =T <r, i (’;’) W) +5(r,§)

_a%n(m—i—n)2
7\ 2 21 m+n
- N T,l RN _&2hm™
4\ h az, (m+n)?
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1 (h\?  2pmn
+m (7",4 (h) - W) +S(T,€)
N 2
< (m+n)m(r,h) + N (7“, (Z) > + S(r,h) + S(r,€)
(2.19) < (m+n)T(r,h)+ S(r,h)+ S(r,§).
Combining with (2.18), we have
(m +n)
2

which is a contradiction. Thus, ¥(z) is a constant, and so h(z) = €?*) is also a
constant. From (2.9), we obtain

T(r,h) = S(r,h),

(2.20) f(2)g(z) = e = ¢,
where ¢(# 0) is a constant. So we have
(2.21) B(z) = —a(z) + c1,

for a constant ¢;. Substituting f = e*(*), g = ¢#(*) into (2.10), we get from (2.20)
and (2.21) that

flz)= byeb”, g(z) = bye =",
where by, by and b are three constants that satisfy 4a2, (b1bo)" "™ ((m + n)b)? = —1.
If £ > 2, then

(2.22) a2, (frrmy®) (grtmyk) = 52,

Since f and g are entire functions and n > k 4 2, by using the arguments similar to
the proof of Lemma 2.6, we know from (2.8) that f and g have no zeros. Let

(2.23) Foeo®) o)
where a(z), 6(z) are non-constant entire functions. By (2.22), we have
1 1

Combining with (2.23) and (2.24), we obtain

N(r, f™™) + N (r, fmlen) +N (7‘, (fmjn)(k)) = O(logr).

By (2.23), T'(r, %) = T(r,(m+ n)a’). If a is transcendental, We know from
Lemma 2.5 that f = e® = e***? for some constants a # 0 and b, which is impossible.
Hence « must be a polynomial, and so 3 is also a polynomial. We suppose that
deg(a) = p and deg(f) = ¢q. If p = g = 1, we have

(2.25) f=ettB g =D

where A, B,C and D are constants that satisfy AC' # 0. Substituting (2.25) into
(2.22), we obtain

a2 (m +n)Qk(Ac)ke(m+n)(A+C)z+(m+n)(B+D) _ 22

m )
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which is impossible. Thus max{p,q} > 1. Without loss of generality, we suppose
that p > 1. Then (f™+™)*) = Q,(2)e(™*T™e where Q;(2) is a polynomial of degree
kp—k >k > 2. From (2.22), we have p =k = 2 and ¢ = 1. Suppose that

fm+n — e(m+n)(A1z2+Blz+Cl) gm+n — e(m+n)(D1z+E1)
) 9

where Aq, By, C4, D1, Eq are constants such that A;D; # 0. Then we have
(f™™) = (m+n)(4(m +n)A22% + 4(m +n) A B1z + (m +n)B?
(2.26) + 2141)e(m—i-n)(Alz2+Blz+C'1)7

(2.27) (g™ )" = (m + n)2 DM+ (Drz+ )
Substituting (2.26) and (2.27) into (2.22), we have

Q2(Z)e(m+n)(A1z2+(B1+D1)z+C1+E1) — 22,

where QQ2(z) is a polynomial of degree 2. Since A; # 0, we get a contradiction.

Case B. P(z) = C. In this case, by the similar arguments mentioned in the Case

A, f and g must satisfy f(z) = bie??”, g(2) = bae "%, where by, by, b are constants
that satisfy 402 (b1by)"(nb)? = —1. Lemma 2.7 follows. 1

Lemma 2.8. Let f and g be two non-constant entire functions, n, m and k be
three positive integers, and let F = (f"(2)P(f))®, G = (g"(2)P(9))*), where
P(z) is given by Theorem 1.5 and not a monomial. If there exist two nonzero

constants ay and ay such that N(r, F%al) =N (r,%) and N(r, 5+ a2) =N(r, %),
then n <2k +2+m.
Proof. By the second fundamental theorem, we have
_ 1 — 1
< i
T(r,F) <N (r, F) +N(T, F—a1> +S(r, F)
<V (rn +N 1 +S(r, F)
— T7 F T‘) G T7
(2.28) <N (L) e n (n L) + 50, F)
. SN\ T Ia 1\ 7" G T, .
From (2.28), Lemma 2.1 and Lemma 2.2, we obtain
1
T(r,F) < T(r, F P(f)) + N, <>
(r, F) <T(r, F) = T(r, f"(2) P(f)) + N2 P
+ N (s ) 450+ ().
Hence
()T ) < N (n 57 )+N (" = 575)
n+m)T(r, f) < T T
PN T g () PG)
— 1 — 1
+S(r, f)+S(r,g) < (k+1) (N (n f) +N (r, g))
(2.29) +m(T(r, f) +T(r,g)) + S(r, f) + 5(r,9).
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By the similar reasoning, we have

(n+m)T(r,g) < (k+1) (N (’"v ]10) N (r’ 3/))

(2.30) +m(T(r, f)+T(r,g)) +S(r, f) + S(r, 9).
From (2.29) and (2.30), we have
(n =2k =2-—m)(T(r, f) + T(r,g9)) < S(r, ) + 5(r,9),
which implies that n < 2k + 2 + m. Lemma 2.8 is thus proved. 1

By the arguments much similar to the proof of Lemma 2.8, we have the following
lemma.

Lemma 2.9. Let f and g be two non-constant entire functions, n, m and k be three
positive integers, and let F = (f*(2)P(f))®), G = (¢"(2)P(9))*, where P(z) is
given by Theorem 1.5 and P(z) = a,2™ or P(z) = C. If there exist two nonzero
constants ay and ay such that N(r, 72—) = N (r, &) and N(r )=N(r,%),

) F—aq ’G a2 »F
thenn <2k+2-—m

3. Proof of theorems

Proof of Theorem 1.5. Set F' = f"(z)P(f), by Lemma 2.4, we have

(3.1) T F®) < N (n Fik)) LN (r, F(k)l_z> +80r, ).

Case 1. P(f) = amf™ + am_1f™ 4+ ---a1f + ao, where a,, # 0. By (3.1) and
Lemma 2.2 with p = 1, we obtain

T(r, F®) < N, ( %k)> +N< F(k)l—z) +S(r, f)

(3.2) <T(r, F(k)) —T(r,F)+ Ng11 (T, ;) + (T, F(’f)l—z) + S(r, f),

=

and so

T(r, F) < Npt1 (7’,1) +N(T’F(k)1—z> +5(r, f)

B!

1
< N, N,
> k+1< n>+ k+1<’ mfm+am1fm1+...a1f+a0>

— 1
+N (T, F(k)—z) +S(T7 f)

< (k14 mT )+ (1 — ) + 50.0)

\

Noting that T(r, F) = (m4n)T(r, f) + S(r, f) and n > k +2, we get [f"(2)P(f)]*
has infinitely many fixed points .
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Case 2. P(f) = C, where C # 0. By using the same arguments as mentioned above,
we have

1 — 1
T(r,F) < N4 <T’F> +N <T’F(k)—z) +5(r, f)

1 — 1
< Nt (r’C’f”) +N(T’F(’€)—z> +S(r, f)

< (h+ DT, f)+ N ( F(k)l_) S ).

Note that T'(r, F) = nT(r, f) + S(r, f) and n > k 4 2, we obtain [f"(z)P(f)]*) has
infinitely many fixed points. Theorem 1.5 follows. 1

Proof of Theorem 1.6. We consider the following two cases.
(i) P(2) = amz™ + am_12™"1 + -+ + a1z + ag is not a monomial. Let

3 P UTRPOI® @ EP@)®

z z

Then F and G are transcendental meromorphic functions that share 1 CM. Let H
be given by (2.3). If H # 0, by Lemma 2.3, we know that (2.4) holds. From Lemma
2.2, we have

1 1
2 ( F) =N ( <fn<z>P<f>><k>) 50 1)
< T(r, () PH™) — (m+ n)T(r, f)

Nz (1 G )+ S00)

(3.4) =T(r,F)—(m+n)T(r, )+ Nki2 (T + S(r, f).

f"(z)lP(f))

Similarly, we have

(35) Ny (r &) <T(G) — (m+n)T(rg)+ Nesa (1 ——e ) + S(rg).
G g"(2)P(9)

From (3.4) and (3.5), we obtain

(3.6) Ny (n ;) < Niio2 (r, fn(z)lp(f)) + S(r, f),
and
(3.7) No (r, é) < Nisa (n g(z)lp(g)> +5(r,g)-

Again, from (3.4) and (3.5), we have
()T )+ T(9) < T )+ T06) — N () = Mo ()

+ Niy2 (T

R



Entire Functions That Share Fixed-Points 365

1
+ Niyo (7", g"(z)P(g)) +S(r, f) + S(r, 9).

Combining with (3.6), (3.7) and Lemma 2.3, we get
(m + )T 1)+ T(:9) < 202 (R oy

+2Nk+2( ,L(Z)lp )+S(7“f)+S(rg)

o1 (3013 (4)) 20 o)

1
3.8 + 2N, (r,)—i—Sr, + S(r, g).
(33) wn (7 gy ) + S 1)+ 500
Thus, we deduce that
(m+n7 2k —4— 2m)(T(r,f) +T(Tag)) < S(Taf) +S(Tag)a

which contradicts the assumption that n > 2k+4+m. Therefore H = 0. Integrating
twice, we get from (2.3) that

1 A
(3.9) i G—1+B
where A(# 0) and B are constants. From (3.9), we have
(B+1)G+(A—-B-1) G_(B—A)F+(A—B—1)

BG + (A - B) ’ B BF — (B+1)

We consider the following three cases.

(3.10) F =

Case 1. Suppose that B # 0,—1. From (3.10) we have N (r, ﬁ) = N(r,G).
B
From the second fundamental theorem, we have

— 1 — 1
T(’/‘,F) S N (T, F) + N <T7_F—BB'!'1> +S(7’,F)
1N\ /1
(3.11) —N(T,F>+N(’)",G)+S(T,F)§N<7“,F>+S(T,F).
By (3.11) and the same reasoning as in the proof of (3.4), we obtain

T(r,F) < Ny (n ;) +S(r, f)

<T@ F)—(m+n)T(r,f)+ Ngt1 (7’ ) + S(r, f).

1
() P(f)
Hence

(m+n)T(r, f) < (k+1)N (7‘7 ;) + Nij1 (r, P(lf)) +S(r, f)

<(k+m+1T(r, f)+ S0, f),
which contradicts n > 2k +4 + m.
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Case 2. Suppose that B = 0. From (3.10) we have

(3.12) F:wv G=AF —(A—1).
If A # 1, we get from (312) that N (r, 7=t ) = N (1, &) and N (r, ) = N(r,
TTA

m). By Lemma 2.8, we have n < 2k + 2+ m. This contradicts the assumption
that n > 2k +4+m. Thus A =1 and F = G, that is,

(f"P(NHW = (9" P(g)™.

By integration, we have

(f"(2)P(MNED = (g"(2)P(9) "V + ap1.
where ag_1 is a constant. If ax_1 # 0, we get from Lemma 2.8 that n < 2k + m,
which is a contradiction. Hence ap_; = 0. Repeating the same process for k — 1
times, we obtain f"(z)P(f) = ¢g"(2)P(g), that is

S f™ + a1 f7 4+ ar f + ao)
(3.13) = g™ (amg™ + am_1g™ - +a1g + ap).
Let h = 5. If h is a constant, then substituting f = gh into (3.13), we deduce

amgn-l-m(hn—i-m _ 1) + amilgn—i-m—l(hn—i-m—l _ 1) L aogn(hn _ 1) _ 0,

which implies h? = 1, where d = (n +m,...,n+m —i,...,n), ay_; # 0 for
some i = 0,1,...,m. Thus f(z) = tg(z) for a constant ¢ such that ¢t = 1. If h is
not a constant, then we know by (3.13) that f and g satisfy the algebraic equa-
tion R(f,g) = 0, where R(wi,ws) = W (@mw}® + am_1w]" "t + - + aqw; + ag) —
Wi (amwy® + am,lwgnfl + - 4 a1we + ag).

Case 3. Suppose that B = —1. From (3.10) we obtain

B A C(A+1)F -4
(3.14) F - m, G —_ F .

If A # —1, we obtain from (3.14) that N (r 1 ) =N (r,&), N(r,F) = N(r,

’FiAiH
ﬁ). By the same reasoning mentioned in Case 1 and Case 2, we get a contra-
diction. Hence A = —1. From (3.14), we have FG = 1, that is

(f")P() P (g (2)P(g) P = 22,
by Lemma 2.6, this is impossible .

(ii) P(z) = C or P(z) = a,z™, we distinguish two cases.
Case A. P(z) = a,2™. In this case, we have F = (a,f"T™(2))*) and G =
(amg™t™(2))*). Let

gy (anf ™) L (gt

z z
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Then F} and G; share 1 CM. By the similar arguments mentioned in the proof of
(i), we have Fy} = G; or F1G; = 1.

If F;G; = 1, we obtain from Lemma 2.7 that f(z) = bye?*", g(z) = boe " for
three constants by, by and b that satisfy 4a2, (b1b2)" ™™ ((n +m)b)? = —1.

If Iy =G4, we get

(0,7rLfn+m)(k) = (amgn—l—m)(k).
By integration, we have
(amfn+m)(k_l) = (szgn+m)(k_1) +ag—1-

where ag_1 is a constant. If ax_1 # 0, we get from Lemma 2.9 that n < 2k + m,
which is a contradiction. Hence ap_; = 0. Repeating the same process for k — 1
times, we obtain a,, f*T" = a,,g" "™, we get that f = tg, where ¢ is a constant that
satisfies t"t™ = 1.

Case B. P(z) = C. In this case, by the similar arguments mentioned in the Case
A, f and g must satisfy f(z) = bie?*, g(z) = bae %", where by, by and b are three

constants satisfying 4C2(bybe)"(nb)? = —1 or f = tg for a constant t such that
t™ = 1. This completes the proof of Theorem 1.6. ]
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