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1. Introduction and main results

In this paper, a meromorphic function will mean meromorphic in the whole complex
plane. We shall use the following standard notations of value distribution theory
[9]: T (r, f),m(r, f), N(r, f), N(r, f), · · · We denote by S(r, f) any function satisfying
S(r, f) = o(T (r, f)), as r →∞ possibly outside a set r of finite linear measure.

We say that two meromorphic functions f and g share a small function a IM
(ignoring multiplicities) when f − a and g − a have the same zeros. If f and g have
the same zeros with the same multiplicities, then we say that f and g share a CM
(counting multiplicities).

Let p be a positive integer and a ∈ C. We denote by Np(r, 1
f−a ) the counting

function of the zeros of f − a where an m-fold zero is counted m times if m ≤ p and
p times if m > p. We say that a finite value z0 is a fixed point of f if f(z0) = z0.

In answer to one famous question, Hayman [4], Fang and Hua [1], and Yang and
Hua [8] obtained the following result.

Theorem 1.1. Let f and g be two non-constant entire functions, and let n ≥ 6 be
a positive integer. If fnf ′ and gng′share 1 CM, then either f(z) = c1e

cz, g(z) =
c2e
−cz, where c1, c2 and c are three constants satisfying (c1c2)n+1c2 = −1 or f = tg

for a constant t such that tn+1 = 1.

In [3], Fang also got the following results.
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Theorem 1.2. Let f and g be two non-constant entire functions, and let n, k be
two positive integers with n > 2k + 4. If (fn)(k) and (gn)(k)share 1 CM, then
either f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)k(c1c2)n(nc)2k = 1 or f = tg for a constant tsuch that tn = 1.

Theorem 1.3. Let f and g be two non-constant entire functions, and let n, k be
two positive integers with n ≥ 2k + 8. If (fn(f − 1))(k) and (gn(g − 1))(k) share 1
CM , then f = g.

Recently, Zhang, Chen and Lin [11] proved the following result, which generalized
some previous results.

Theorem 1.4. Let f(z) and g(z) be two entire functions; let n,m and k be three
positive integers with n ≥ 3m + 2k + 5, and let P (z) = amz

m + am−1z
m−1 + · · · +

a1z + a0 or P (z) = C, where a0 6= 0 ,a1. . . ,am−1, am 6= 0, C 6= 0 are complex
constants. If [fnP (f)](k) and [gnP (g)](k)share 1 CM, then the following conclusions
hold:

(i) If P (z) = amz
m + am−1z

m−1 + · · · + a1z + a0, then f(z) = tg(z) for a
constant t that satisfies td = 1, where d = (n + m, . . . , n + m − i, . . . , n),
am−i 6= 0 for some i = 0, 1, . . . ,m; or f and g satisfy the algebraic equation
R(f, g) ≡ 0, where R(ω1, ω2) = ωn1 (amωm1 + am−1ω

m−1
1 + · · ·+ a1ω1 + a0)−

ωn2 (amωm2 + am−1ω
m−1
2 + · · ·+ a1ω2 + a0);

(ii) If P (z) = C, then f = tg for a constant t that satisfies tn = 1, or f(z) =
b1/

n
√
Cebz, g(z) = b2/

n
√
Ce−bz for three constants b1, b2 and b that satisfy

(−1)k(b1b2)n(nb)2k = −1.

Corresponding to the above results, some authors considered the uniqueness prob-
lems of entire functions that have fixed points, see Fang and Qiu [2], Lin and Yi [7].
In the present paper, we consider the existence of fixed points of (fnP (f))(k) and
the corresponding uniqueness theorems, where n, k are positive integers and P (z)
is a nonzero polynomial, and we obtain the following results which generalize the
above theorems.

Theorem 1.5. Let f(z) be a transcendental entire function, n, k, m be three positive
integers with n ≥ k+2, and let P (z) = amz

m+am−1z
m−1+· · ·+a1z+a0 or P (z) = C,

where a0 ,a1. . . ,am−1, am 6= 0, C 6= 0 are complex constants. Then [fnP (f)](k) has
infinitely many fixed points.

Remark 1.1. It is easy to see that a polynomial Q(z) with degree n ≥ 1 has ex-
actly n fixed points (counting multiplicities), but a transcendental entire function
may have no fixed points. For example, the function f = eα(z) + z has no any fixed
points, where α(z) is an entire function.

Here and forth, we define an integer m∗, according to the nonzero polynomial
P (z) in Theorem 1.6, by

m∗ =

{
m, P (z) 6= C;
0, P (z) = C.



Entire Functions That Share Fixed-Points 357

Theorem 1.6. Suppose that P (z) is given by Theorem 1.5. Let f(z) and g(z) be
two transcendental entire functions, and let n,m and k be three positive integers
with n > 2k+m∗+ 4. If [fnP (f)](k) and [gnP (g)](k)share z CM, then the following
conclusions hold:

(i) If P (z) = amz
m + am−1z

m−1 + · · · + a1z + a0 is not a monomial, then
f(z) = tg(z) for a constant t that satisfies td = 1, where d = (n+m, . . . , n+
m − i, . . . , n), am−i 6= 0 for some i = 0, 1, . . . ,m; or f and g satisfy the
algebraic equation R(f, g) ≡ 0, where R(ω1, ω2) = ωn1 (amωm1 + am−1ω

m−1
1 +

· · ·+ a1ω1 + a0)− ωn2 (amωm2 + am−1ω
m−1
2 + · · ·+ a1ω2 + a0);

(ii) If P (z) = C or P (z) = amz
m, then f = tg for a constant t that satisfies

tn+m∗ = 1, or f(z) = b1e
bz2 , g(z) = b2e

−bz2 for three constants b1, b2 and b
that satisfy 4a2

m(b1b2)n+m((n+m)b)2 = −1, or 4C2(b1b2)n(nb)2 = −1.

Remark 1.2. The condition of n ≥ 3m + 2k + 5 in Theorem 1.4 is replaced by
n > 2k + 4 +m∗ in Theorem 1.6.

2. Some lemmas

Lemma 2.1. [9] Let f be a non-constant meromorphic function, and a0, a1, a2, . . . an
be small functions of f such that an 6= 0. Then

T (r, anfn + an−1f
n−1 + · · · a1f + a0) = nT (r, f) + S(r, f).

Lemma 2.2. [6] Let f be a non-constant meromorphic function, and p, k be positive
integers. Then

(2.1) Np

(
h′

h

)
≤ T (r, f (k))− T (r, f) +Np+k

(
r,

1
f

)
+ S(r, f),

(2.2) Np

(
h′

h

)
≤ kN(r, f) +Np+k

(
r,

1
f

)
+ S(r, f).

Lemma 2.3. [10] Let

(2.3) H =
(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
,

where F and G are two non-constant meromorphic functions. If F and G share 1
CM and H 6≡ 0, then

T (r, F ) + T (r,G) ≤ 2(N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N2 (r, F ) +N2(r,G))

+ S(r, F ) + S(r,G).(2.4)

Lemma 2.4. [9] Let f be a non-constant meromorphic function, and a1(z), a2(z)
and a3(z) be distinct small functions of f . Then

T (r, f) <
3∑
j=1

N

(
r,

1
f − aj

)
+ S(r, f).
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Lemma 2.5. [5] Suppose that f is a non-constant meromorphic function, k ≥ 2 is
an integer. If

N(r, f) +N

(
r,

1
f

)
+N

(
r,

1
f (k)

)
= S

(
r,
f ′

f

)
,

then f = eaz+b, where a 6= 0, b are constants.

Lemma 2.6. Let f(z) and g(z) be two transcendental entire functions, n, k be two
positive integers with n > k+ 2, and let P (z) = amz

m + am−1z
m−1 + · · ·+ a1z + a0

or P (z) = C, where a0 ,a1. . . ,am−1, am 6= 0, C 6= 0 are complex constants. If
[fn(z)P (f)](k)[gn(z)P (g)](k) ≡ z2, then P (z) is reduced to a nonzero monomial,
that is, P (z) = amz

m or P (z) = C.

Proof. If P (z) is not reduced to a nonzero monomial, then P (z) = amz
m+am−1z

m−1+
· · · aizi, where ai is the last nonzero complex constant for i = 0, 1, . . . ,m− 1. Since

[fn(amfm + am−1f
m−1 + · · · aif i)](k)[gn(amgm + am−1g

m−1 + · · · aigi)](k)

≡ z2.(2.5)

Suppose that z0 is a p-fold zero of f, we know that z0 must be a (np+ ip− k)-fold
zero of [fn(amfm+am−1f

m−1 + · · · aif i)](k). Noting that g is an entire function and
n > k+2, it follows from (2.5) that z0 is a zero of z2 with the order at least 3, which
is impossible. Thus f has no zeros. Let f(z) = eβ(z), where β(z) is a non-constant
entire function. Then

(2.6) (fm+n)(k) = (e(m+n)β)(k) = Pm(β′, β′′, . . . β(k))e(m+n)β ,

(2.7) (fn+i)(k) = (e(n+i)β)(k) = Pi(β′, β′′, . . . β(k))e(n+i)β ,

where Pm and Pi are differential polynomials in β′, β′′, . . . β(k). Obviously, Pm 6≡ 0,
Pi 6≡ 0, T (r, Pm) = S(r, f) and T (r, Pi) = S(r, f). We obtain from (2.5) to (2.7)
that

N

(
r,

1
amPme(m−i)β + am−1Pm−1e(m−1−i)β + · · · aiPi

)
= S(r, f).

By Lemma 2.4 and Lemma 2.1, we have

(m− i)T (r, f)

= T (r, amPme(m−i)β + am−1Pm−1e
(m−1−i)β + · · · ai+1Pi+1e

β) + S(r, f)

≤ N
(
r,

1
amPme(m−i)β + am−1Pm−1e(m−1−i)β + · · · ai+1Pi+1eβ

)
+N

(
r,

1
amPme(m−i)β + am−1Pm−1e(m−1−i)β + · · ·+ ai+1Pi+1eβ + aiPi

)
+ S(r, f)

≤ N
(
r,

1
amPme(m−i−1)β + am−1Pm−1e(m−2−i)β + · · · ai+1Pi+1

)
+ S(r, f)

≤ (m− i− 1)T (r, f) + S(r, f),

which is a contradiction. This completes the proof of Lemma 2.6.
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Lemma 2.7. Assume that the assumptions of Lemma 2.6 hold, then f(z) = b1e
bz2 ,

g(z) = b2e
−bz2 for three constants b1, b2 and b that satisfy 4a2

m(b1b2)n+m((n +
m)b)2 = −1, or 4C2(b1b2)n(nb)2 = −1.

Proof. From Lemma 2.6, we get P (z) = amz
m or P (z) = C, we distinguish two cases.

Case A. P (z) = amz
m. In this case, we have (amfm+n)(k)(amgm+n)(k) ≡ z2.

If k = 1, then

(2.8) a2
m(fm+n)′(gm+n)′ ≡ z2.

Since f and g are entire functions and n > k+ 2, by using the similar arguments
as in the proof of Lemma 2.6, we deduce from (2.8) that f and g have no zeros. Let
f = eα(z), g = eβ(z), where α(z), β(z) are non-constant entire functions. Set

(2.9) h(z) =
1

f(z)g(z)
,

we know that h(z) = eγ(z), where γ(z) is an entire function. We claim that γ(z) is
a constant. In fact, suppose γ(z) is a non-constant entire function, then h(z) is a
transcendental entire function. From (2.8), we get

(2.10) (m+ n)2a2
m(fn+m−1)f ′(gn+m−1)g′ ≡ z2.

From (2.9) and (2.10), we have

(2.11)
(
g′

g
+

1
2
h′

h

)2

=
1
4

(
h′

h

)2

− z2hm+n

(m+ n)2a2
m

.

Let ξ = g′

g + 1
2
h′

h , then (2.11) becomes

(2.12) ξ2 =
1
4

(
h′

h

)2

− z2hm+n

(m+ n)2a2
m

.

If ξ ≡ 0, from (2.12), we get

(2.13) hm+n =
(m+ n)2a2

m

4z2

(
h′

h

)2

.

Since h(z) = eγ(z), we obtain from (2.13) that

(m+ n)T (r, h) = (m+ n)m(r, h) + S(r, h)

≤ m
(
r,

1
4z2

)
+ 2m

(
r,
h′

h

)
+ S(r, h) = S(r, h).

Hence h is a constant, which is a contradiction. Therefore ξ 6≡ 0. Differentiating
(2.12), we have

2ξξ′ =
1
2
h′

h

(
h′

h

)′
− 2z
a2
m(m+ n)2

hm+n − 1
a2
m(m+ n)

z2hm+n−1h′

=
1
2
h′

h

(
h′

h

)′
− 1
a2
m(m+ n)2

hm+n−1(2zh+ (m+ n)z2h′).(2.14)
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From (2.12) and (2.14), we obtain

(2.15)
1

a2
m(m+ n)2

hm+n

(
2z + (m+ n)z2h

′

h
− 2z2 ξ

′

ξ

)
=

1
2
h′

h

((
h′

h

)′
− h′

h

ξ′

ξ

)
.

If 2z + (m + n)z2 h′

h − 2z2 ξ
′

ξ ≡ 0, then, we deduce from (2.15) that either h′

h ≡ 0

or
(
h′

h

)′
− h′

h
ξ′

ξ ≡ 0. If h′

h ≡ 0, then h is a constant, which is a contradiction. If(
h′

h

)′
− h′

h
ξ′

ξ ≡ 0, we have

(2.16)
h′

h
=
ξ

d
,

where d(6= 0) is a constant. Thus we get from (2.12) and (2.16) that

(2.17)
z2hm+n

a2
m(m+ n)2

=
(

1
4
− d2

)(
h′

h

)2

.

Hence, (m+ n)T (r, h) = S(r, h), which is also a contradiction.
Now we assume that 2z+(m+n)z2 h′

h −2z2 ξ
′

ξ 6≡ 0. Since h = eγ(z) and ξ = g′

g + 1
2
h′

h ,
from (2.12) and (2.15), we have

N

(
r,
h′

h

)
= S(r, h), N(r, ξ) = S(r, h),

and

(m+ n)T (r, h) = (m+ n)m(r, h) ≤ m

(
r,

1
2z + (m+ n)z2 h′

h − 2z2 ξ
′

ξ

)

+m

(
r,
h′

h

((
h′

h

)′
− h′

h

ξ′

ξ

))
+O(1)

≤ m

(
r,
h′

h

((
h′

h

)′
− h′

h

ξ′

ξ

))
+m

(
r, 2z + (m+ n)z2h

′

h
− 2z2 ξ

′

ξ

)
+N

(
r, 2z + (m+ n)z2h

′

h
− 2z2 ξ

′

ξ

)
≤ N

(
r,
ξ′

ξ

)
+ S(r, h) + S(r, ξ)

≤ T (r, ξ) + S(r, h) + S(r, ξ).(2.18)

Note that h = eγ(z) is a transcendental entire function, we get from (2.12) that

2T (r, ξ) = T (r, ξ2) + S(r, ξ) = T

(
r,

1
4

(
h′

h

)2

− z2hm+n

a2
m(m+ n)2

)
+ S(r, ξ)

= N

(
r,

1
4

(
h′

h

)2

− z2hm+n

a2
m(m+ n)2

)
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+m

(
r,

1
4

(
h′

h

)2

− z2hm+n

a2
m(m+ n)2

)
+ S(r, ξ)

≤ (m+ n)m(r, h) +N

(
r,

(
h′

h

)2
)

+ S(r, h) + S(r, ξ)

≤ (m+ n)T (r, h) + S(r, h) + S(r, ξ).(2.19)

Combining with (2.18), we have

(m+ n)
2

T (r, h) = S(r, h),

which is a contradiction. Thus, γ(z) is a constant, and so h(z) = eγ(z) is also a
constant. From (2.9), we obtain

(2.20) f(z)g(z) = eα(z)eβ(z) = c0,

where c0( 6= 0) is a constant. So we have

(2.21) β(z) = −α(z) + c1,

for a constant c1. Substituting f = eα(z), g = eβ(z) into (2.10), we get from (2.20)
and (2.21) that

f(z) = b1e
bz2 , g(z) = b2e

−bz2 ,

where b1, b2 and b are three constants that satisfy 4a2
m(b1b2)n+m((m+ n)b)2 = −1.

If k ≥ 2, then

(2.22) a2
m(fn+m)(k)(gn+m)(k) = z2.

Since f and g are entire functions and n > k+ 2, by using the arguments similar to
the proof of Lemma 2.6, we know from (2.8) that f and g have no zeros. Let

(2.23) f = eα(z), g = eβ(z),

where α(z), β(z) are non-constant entire functions. By (2.22), we have

(2.24) N

(
r,

1
(fm+n)(k)

)
≤ N

(
r,

1
z2

)
= O(log r).

Combining with (2.23) and (2.24), we obtain

N(r, fm+n) +N

(
r,

1
fm+n

)
+N

(
r,

1
(fm+n)(k)

)
= O(log r).

By (2.23), T (r, (fm+n)′

fm+n ) = T (r, (m + n)α′). If α is transcendental, We know from
Lemma 2.5 that f = eα = eaz+b for some constants a 6= 0 and b, which is impossible.
Hence α must be a polynomial, and so β is also a polynomial. We suppose that
deg(α) = p and deg(β) = q. If p = q = 1, we have

(2.25) f = eAz+B , g = eCz+D,

where A,B,C and D are constants that satisfy AC 6= 0. Substituting (2.25) into
(2.22), we obtain

a2
m(m+ n)2k(AC)ke(m+n)(A+C)z+(m+n)(B+D) = z2,



362 J. Dou, X. Qi and L. Yang

which is impossible. Thus max{p, q} > 1. Without loss of generality, we suppose
that p > 1. Then (fm+n)(k) = Q1(z)e(m+n)α, where Q1(z) is a polynomial of degree
kp− k ≥ k ≥ 2. From (2.22), we have p = k = 2 and q = 1. Suppose that

fm+n = e(m+n)(A1z
2+B1z+C1), gm+n = e(m+n)(D1z+E1),

where A1, B1, C1, D1, E1 are constants such that A1D1 6= 0. Then we have

(fm+n)′′ = (m+ n)(4(m+ n)A2
1z

2 + 4(m+ n)A1B1z + (m+ n)B2
1

+ 2A1)e(m+n)(A1z
2+B1z+C1),(2.26)

(2.27) (gm+n)′′ = (m+ n)2D2
1e

(m+n)(D1z+E1).

Substituting (2.26) and (2.27) into (2.22), we have

Q2(z)e(m+n)(A1z
2+(B1+D1)z+C1+E1) = z2,

where Q2(z) is a polynomial of degree 2. Since A1 6= 0, we get a contradiction.

Case B. P (z) = C. In this case, by the similar arguments mentioned in the Case
A, f and g must satisfy f(z) = b1e

bz2 , g(z) = b2e
−bz2 , where b1, b2, b are constants

that satisfy 4C2(b1b2)n(nb)2 = −1. Lemma 2.7 follows.

Lemma 2.8. Let f and g be two non-constant entire functions, n, m and k be
three positive integers, and let F = (fn(z)P (f))(k), G = (gn(z)P (g))(k), where
P (z) is given by Theorem 1.5 and not a monomial. If there exist two nonzero
constants a1 and a2 such that N(r, 1

F−a1
) = N

(
r, 1
G

)
and N(r, 1

G−a2
) = N

(
r, 1
F

)
,

then n ≤ 2k + 2 +m.

Proof. By the second fundamental theorem, we have

T (r, F ) ≤ N
(
r,

1
F

)
+N

(
r,

1
F − a1

)
+ S(r, F )

≤ N
(
r,

1
F

)
+N

(
r,

1
G

)
+ S(r, F )

≤ N1

(
r,

1
F

)
+N1

(
r,

1
G

)
+ S(r, F ).(2.28)

From (2.28), Lemma 2.1 and Lemma 2.2, we obtain

T (r, F ) ≤ T (r, F )− T (r, fn(z)P (f)) +Nk+1

(
r,

1
fn(z)P (f)

)
+Nk+1

(
r,

1
gn(z)P (g)

)
+ S(r, f) + S(r, g).

Hence

(n+m)T (r, f) ≤ Nk+1

(
r,

1
fn(z)P (f)

)
+Nk+1

(
r,

1
gn(z)P (g)

)
+ S(r, f) + S(r, g) ≤ (k + 1)

(
N

(
r,

1
f

)
+N

(
r,

1
g

))
+m(T (r, f) + T (r, g)) + S(r, f) + S(r, g).(2.29)
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By the similar reasoning, we have

(n+m)T (r, g) ≤ (k + 1)
(
N

(
r,

1
f

)
+N

(
r,

1
g

))
+m(T (r, f) + T (r, g)) + S(r, f) + S(r, g).(2.30)

From (2.29) and (2.30), we have

(n− 2k − 2−m)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which implies that n ≤ 2k + 2 +m. Lemma 2.8 is thus proved.

By the arguments much similar to the proof of Lemma 2.8, we have the following
lemma.

Lemma 2.9. Let f and g be two non-constant entire functions, n, m and k be three
positive integers, and let F = (fn(z)P (f))(k), G = (gn(z)P (g))(k), where P (z) is
given by Theorem 1.5 and P (z) = amz

m or P (z) = C. If there exist two nonzero
constants a1 and a2 such that N(r, 1

F−a1
) = N

(
r, 1
G

)
and N(r, 1

G−a2
) = N

(
r, 1
F

)
,

then n ≤ 2k + 2−m∗.

3. Proof of theorems

Proof of Theorem 1.5. Set F = fn(z)P (f), by Lemma 2.4, we have

(3.1) T (r, F (k)) ≤ N
(
r,

1
F (k)

)
+N

(
r,

1
F (k) − z

)
+ S(r, f).

Case 1. P (f) = amf
m + am−1f

m−1 + · · · a1f + a0, where am 6= 0. By (3.1) and
Lemma 2.2 with p = 1, we obtain

T (r, F (k)) ≤ N1

(
r,

1
F (k)

)
+N

(
r,

1
F (k) − z

)
+ S(r, f)

≤ T (r, F (k))− T (r, F ) +Nk+1

(
r,

1
F

)
+N

(
r,

1
F (k) − z

)
+ S(r, f),(3.2)

and so

T (r, F ) ≤ Nk+1

(
r,

1
F

)
+N

(
r,

1
F (k) − z

)
+ S(r, f)

≤ Nk+1

(
r,

1
fn

)
+Nk+1

(
r,

1
amfm + am−1fm−1 + · · · a1f + a0

)
+N

(
r,

1
F (k) − z

)
+ S(r, f)

≤ (k + 1 +m)T (r, f) +N

(
r,

1
F (k) − z

)
+ S(r, f).

Noting that T (r, F ) = (m+n)T (r, f) +S(r, f) and n ≥ k+ 2, we get [fn(z)P (f)](k)

has infinitely many fixed points .
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Case 2. P (f) = C, where C 6= 0. By using the same arguments as mentioned above,
we have

T (r, F ) ≤ Nk+1

(
r,

1
F

)
+N

(
r,

1
F (k) − z

)
+ S(r, f)

≤ Nk+1

(
r,

1
Cfn

)
+N

(
r,

1
F (k) − z

)
+ S(r, f)

≤ (k + 1)T (r, f) +N

(
r,

1
F (k) − z

)
+ S(r, f).

Note that T (r, F ) = nT (r, f) + S(r, f) and n ≥ k + 2, we obtain [fn(z)P (f)](k) has
infinitely many fixed points. Theorem 1.5 follows.
Proof of Theorem 1.6. We consider the following two cases.
(i) P (z) = amz

m + am−1z
m−1 + · · ·+ a1z + a0 is not a monomial. Let

(3.3) F =
(fn(z)P (f))(k)

z
, G =

(gn(z)P (g))(k)

z
.

Then F and G are transcendental meromorphic functions that share 1 CM. Let H
be given by (2.3). If H 6≡ 0, by Lemma 2.3, we know that (2.4) holds. From Lemma
2.2, we have

N2

(
r,

1
F

)
≤ N2

(
r,

1
(fn(z)P (f))(k)

)
+ S(r, f)

≤ T (r, (fn(z)P (f))(k))− (m+ n)T (r, f)

+Nk+2

(
r,

1
fn(z)P (f)

)
+ S(r, f)

= T (r, F )− (m+ n)T (r, f) +Nk+2

(
r,

1
fn(z)P (f)

)
+ S(r, f).(3.4)

Similarly, we have

(3.5) N2

(
r,

1
G

)
≤ T (r,G)− (m+ n)T (r, g) +Nk+2

(
r,

1
gn(z)P (g)

)
+ S(r, g).

From (3.4) and (3.5), we obtain

(3.6) N2

(
r,

1
F

)
≤ Nk+2

(
r,

1
fn(z)P (f)

)
+ S(r, f),

and

(3.7) N2

(
r,

1
G

)
≤ Nk+2

(
r,

1
gn(z)P (g)

)
+ S(r, g).

Again, from (3.4) and (3.5), we have

(m+ n)(T (r, f) + T (r, g)) ≤ T (r, F ) + T (r,G)−N2

(
r,

1
F

)
−N2

(
r,

1
G

)
+Nk+2

(
r,

1
fn(z)P (f)

)
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+Nk+2

(
r,

1
gn(z)P (g)

)
+ S(r, f) + S(r, g).

Combining with (3.6), (3.7) and Lemma 2.3, we get

(m+ n)(T (r, f) + T (r, g)) ≤ 2Nk+2

(
r,

1
fn(z)P (f)

)
+ 2Nk+2

(
r,

1
gn(z)P (g)

)
+ S(r, f) + S(r, g)

≤ (2k + 4)
(
N

(
r,

1
f

)
+N

(
r,

1
g

))
+ 2Nk+2

(
r,

1
P (f)

)
+ 2Nk+2

(
r,

1
P (g)

)
+ S(r, f) + S(r, g).(3.8)

Thus, we deduce that

(m+ n− 2k − 4− 2m)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which contradicts the assumption that n > 2k+4+m. Therefore H ≡ 0. Integrating
twice, we get from (2.3) that

(3.9)
1

F − 1
=

A

G− 1
+B,

where A(6= 0) and B are constants. From (3.9), we have

(3.10) F =
(B + 1)G+ (A−B − 1)

BG+ (A−B)
, G =

(B −A)F + (A−B − 1)
BF − (B + 1)

.

We consider the following three cases.

Case 1. Suppose that B 6= 0,−1. From (3.10) we have N
(
r, 1
F−B+1

B

)
= N(r,G).

From the second fundamental theorem, we have

T (r, F ) ≤ N
(
r,

1
F

)
+N

(
r,

1
F − B+1

B

)
+ S(r, F )

= N

(
r,

1
F

)
+N(r,G) + S(r, F ) ≤ N

(
r,

1
F

)
+ S(r, F ).(3.11)

By (3.11) and the same reasoning as in the proof of (3.4), we obtain

T (r, F ) ≤ N1

(
r,

1
F

)
+ S(r, f)

≤ T (r, F )− (m+ n)T (r, f) +Nk+1

(
r,

1
fn(z)P (f)

)
+ S(r, f).

Hence

(m+ n)T (r, f) ≤ (k + 1)N
(
r,

1
f

)
+Nk+1

(
r,

1
P (f)

)
+ S(r, f)

≤ (k +m+ 1)T (r, f) + S(r, f),

which contradicts n > 2k + 4 +m.
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Case 2. Suppose that B = 0. From (3.10) we have

(3.12) F =
G+ (A− 1)

A
, G = AF − (A− 1).

If A 6= 1, we get from (3.12) that N
(
r, 1
F−A−1

A

)
= N

(
r, 1
G

)
and N

(
r, 1
F

)
= N(r,

1
G+(A−1) ). By Lemma 2.8, we have n ≤ 2k+2+m. This contradicts the assumption
that n > 2k + 4 +m. Thus A = 1 and F = G, that is,

(fnP (f))(k) = (gnP (g))(k).

By integration, we have

(fn(z)P (f))(k−1) = (gn(z)P (g))(k−1) + ak−1.

where ak−1 is a constant. If ak−1 6= 0, we get from Lemma 2.8 that n ≤ 2k + m,
which is a contradiction. Hence ak−1 = 0. Repeating the same process for k − 1
times, we obtain fn(z)P (f) = gn(z)P (g), that is

fn(amfm + am−1f
m−1 + · · ·+ a1f + a0)

= gn(amgm + am−1g
m−1 + · · ·+ a1g + a0).(3.13)

Let h = f
g . If h is a constant, then substituting f = gh into (3.13), we deduce

amg
n+m(hn+m − 1) + am−1g

n+m−1(hn+m−1 − 1) + · · ·+ a0g
n(hn − 1) = 0,

which implies hd = 1, where d = (n + m, . . . , n + m − i, . . . , n), am−i 6= 0 for
some i = 0, 1, . . . ,m. Thus f(z) ≡ tg(z) for a constant t such that td = 1. If h is
not a constant, then we know by (3.13) that f and g satisfy the algebraic equa-
tion R(f, g) ≡ 0, where R(ω1, ω2) = ωn1 (amωm1 + am−1ω

m−1
1 + · · · + a1ω1 + a0) −

ωn2 (amωm2 + am−1ω
m−1
2 + · · ·+ a1ω2 + a0).

Case 3. Suppose that B = −1. From (3.10) we obtain

(3.14) F =
A

−G+ (A+ 1)
, G =

(A+ 1)F −A
F

.

If A 6= −1, we obtain from (3.14) that N
(
r, 1
F− A

A+1

)
= N

(
r, 1
G

)
, N(r, F ) = N(r,

1
G−A−1 ). By the same reasoning mentioned in Case 1 and Case 2, we get a contra-
diction. Hence A = −1. From (3.14), we have FG = 1, that is

(fn(z)P (f))(k)(gn(z)P (g))(k) = z2,

by Lemma 2.6, this is impossible .

(ii) P (z) = C or P (z) = amz
m, we distinguish two cases.

Case A. P (z) = amz
m. In this case, we have F = (amfn+m(z))(k) and G =

(amgn+m(z))(k). Let

F1 =
(amfn+m(z))(k)

z
, G1 =

(amgn+m(z))(k)

z
.



Entire Functions That Share Fixed-Points 367

Then F1 and G1 share 1 CM. By the similar arguments mentioned in the proof of
(i), we have F1 ≡ G1 or F1G1 ≡ 1.

If F1G1 = 1, we obtain from Lemma 2.7 that f(z) = b1e
bz2 , g(z) = b2e

−bz2 for
three constants b1, b2 and b that satisfy 4a2

m(b1b2)n+m((n+m)b)2 = −1.
If F1 ≡ G1, we get

(amfn+m)(k) = (amgn+m)(k).
By integration, we have

(amfn+m)(k−1) = (amgn+m)(k−1) + ak−1.

where ak−1 is a constant. If ak−1 6= 0, we get from Lemma 2.9 that n ≤ 2k + m,
which is a contradiction. Hence ak−1 = 0. Repeating the same process for k − 1
times, we obtain amfn+m = amg

n+m, we get that f ≡ tg, where t is a constant that
satisfies tn+m = 1.

Case B. P (z) = C. In this case, by the similar arguments mentioned in the Case
A, f and g must satisfy f(z) = b1e

bz2 , g(z) = b2e
−bz2 , where b1, b2 and b are three

constants satisfying 4C2(b1b2)n(nb)2 = −1 or f = tg for a constant t such that
tn = 1. This completes the proof of Theorem 1.6.
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