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Abstract. It has been proved that for distinct odd primes p1, p2, . . . , pn and

q, all Moufang loops of order p1p2 · · · pnq3 are associative if:

(1) q 6≡ 1 (mod p1) and for each i > 1, q2 6≡ 1 (mod pi); or
(2) p1 < p2 < · · · < pn < q, q 6≡ 1 (mod pi), pi 6≡ 1 (mod pj) for all i, j, and

the nucleus is not trivial.

In this paper, we extend these results by giving a complete resolution for Mo-
ufang loops of odd order p1p2 · · · pnq3.

2010 Mathematics Subject Classification: 20N05

Keywords and phrases: Moufang loop, order, nonassociative.

1. Introduction

A loop 〈L, ·〉 is a Moufang loop if it satisfies the Moufang identity (x · y) · (z · x) =
[x·(y·z)]·x. One of the most important theorems in the study of Moufang loops would
be Moufang’s theorem: If there exist three (fixed) elements x, y, z in a Moufang loop
that associate in some order, then these elements generate a group. As a corollary,
Moufang loops are diassociative, i.e. for any two (fixed) elements x and y in a
Moufang loop, they generate a group. Moufang loops need not be associative since
there exists a nonassociative Moufang loop of order 12; see [3]. Hence, our interest is
to study the question: “For what positive integer n does there exist a nonassociative
Moufang loop of order n?”

In order to construct nonassociative Moufang loops, we need to eliminate those
Moufang loops that will automatically become groups by virtue of their orders. This
is particularly true because it is always possible to use any nonassociative Moufang
loop of order m and any group of order n to construct a nonassociative Moufang
loop of order mn. Consequently, if it is known that all Moufang loops of order mn
are associative, then all Moufang loops of order m (and n) must also be associative.

For Moufang loops of even order, the problem is completely resolved by Chein
and the first author in [4]: All Moufang loops of order 2m are associative if and
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only if all groups of order m are abelian. As for Moufang loops of odd order, the
existence of nonassociative Moufang loops of order 34 and p5 for every prime p > 3,
has been proved by Bol [1] and Wright [18] respectively. The most recent class of
nonassociative Moufang loops is constructed by the first author in [16]. He gives a
product rule for nonassociative Moufang loops of order pq3 where p and q are odd
primes with q ≡ 1 (mod p).

The proof that all Moufang loops of a particular order are associative has pro-
gressed gradually over the last four decades. We give below a list for which all
Moufang loops of such orders have been proved to be groups:

(i) p, p2, p3 and pq where p and q are primes [3];
(ii) p4 where p is a prime with p > 3 [7];
(iii) pqr and p2q where p, q and r are odd primes with p < q < r [14];
(iv) pq2 where p and q are odd primes [8];
(v) p2

1p
2
2 · · · p2

n where p1, p2, . . . , pn are distinct odd primes [9];
(vi) p3q1q2 · · · qn [13] and p3q21q

2
2 · · · q2n [11] where p, q1, q2, . . . , qn are distinct odd

primes with p < qi;
(vii) p4q1q2 · · · qn [10] and p4q21q

2
2 · · · q2n [11] where p, q1, q2, . . . , qn are distinct odd

primes with 3 < p < qi;
(viii) pq3 where p and q are distinct odd primes with q 6≡ 1 (mod p) [16];
(ix) p1p2 · · · pnq3 where p1, p2, . . . , pn, q are distinct odd primes with q 6≡ 1

(mod p1) and q2 6≡ 1 (mod pi) for each i > 1 [4];
(x) p1p2 · · · pnq3 where p1, p2, . . . , pn, q are distinct odd primes with pi < q, q 6≡ 1

(mod pi), pi 6≡ 1 (mod pj) for all i, j, and the nucleus is not trivial [17].

Remark 1.1. The proof of result (iii) has a flaw in the case p2q where q < p; see
[15], but it is later resolved in [8] (result (iv)).

In this paper, we extend some of the results above (particularly those in (vi), (ix)
and (x)) and prove that for distinct odd primes p1, p2, . . . , pn and q, all Moufang
loops of order p1p2 · · · pnq3 are associative if and only if q 6≡ 1 (mod pi) for each i.

2. Definitions and notations

In order to make the contents of the paper as self contained as possible, we give
some basic definitions and notations that are relevant. For those not listed, we refer
the reader to [2] and [5].

Definition 2.1. A quasigroup is a binary system 〈L, ·〉 in which specification of any
two of the values x, y, z in the equation x ·y = z uniquely determines the third value.
If it further contains an identity element, then it is called a loop. (Often, when there
is no risk of confusion, the notation for a loop 〈L, ·〉 is simplified to L instead.)

Definition 2.2. A subset K of a loop L is called a subloop of L (K ≤ L) if K is a
loop under the operation of L. K is a proper subloop of L if K 6= L.

Definition 2.3. A subloop K of a loop L is called a normal subloop of L (K E L)
if xK = Kx, x(yK) = (xy)K and (Kx)y = K(xy) for all x, y ∈ L.
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Remark 2.1. Suppose L is a loop in which every element has a two-sided inverse.
We define

zT (x) = x−1 · zx,
zL(x, y) = (yx)−1(y · xz),
zR(x, y) = (zx · y)(xy)−1.

I(L) = 〈T (x), L(x, y), R(x, y) | x, y ∈ L〉 is called the inner mapping group of L. K
is a normal subloop of L if Kθ = {kθ | k ∈ K} = K for all θ ∈ I(L).

Definition 2.4. Let K be a normal subloop of a loop 〈L, ·〉.
(a) Let L/K be the set of all cosets of K in L and � a binary operation on L/K

such that xK � yK = (x · y)K. Then 〈L/K,�〉 is called a quotient loop of
L.

(b) L/K is a proper quotient loop of L if K is not trivial.
(c) K is a minimal normal subloop of L if K is not trivial and for every non-

trivial normal subloop H of L, H ⊆ K ⇒ H = K.
(d) K is a maximal normal subloop of L if K is a proper subloop of L and for

every proper normal subloop H of L, K ⊆ H ⇒ H = K.

Definition 2.5. Let L be a finite loop, K a subloop of L and π a set of primes.
(a) A positive integer n is a π-number if every prime divisor of n lies in π.
(b) K is a π-loop if the order of every element of K is a π-number.
(c) K is a Hall π-subloop of L if K is a π-loop and |K| is the largest π-number

that divides |L|.
(d) K is a Sylow p-subloop of L if K is a Hall π-subloop of L and π = {p}.

Definition 2.6. The associator of three elements x, y, z in a loop L is the unique
element (x, y, z) in L such that xy · z = (x · yz)(x, y, z). The associator subloop of
L, denoted by La, is the subloop generated by all the associators in L.

Definition 2.7. The commutator of two elements x, y in a loop L is the unique
element [x, y] in L such that xy = (yx)[x, y]. The commutator subloop of L, denoted
by Lc, is the subloop generated by all the commutators in L.

Definition 2.8. The nucleus of a loop L, denoted by N(L) or simply N , is the
subloop consisting of all n ∈ L such that (n, x, y) = (x, n, y) = (x, y, n) = 1 for all
x, y ∈ L.

Definition 2.9. A loop L is a Moufang loop if it satisfies any one of the following
four (equivalent) Moufang identities:

xy · zx = (x · yz)x First Middle Moufang identity

xy · zx = x(yz · x) Second Middle Moufang identity

x(y · xz) = (xy · x)z Left Moufang identity

(zx · y)x = z(x · yx) Right Moufang identity

Remark 2.2. It is proved in [2, p. 115, Lemma 3.1] that Moufang loops have the
inverse property.
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3. Lemmas

In this section we present some lemmas which will be needed in the proof of our
main result.

Lemma 3.1. Let L be a Moufang loop.
(a) Suppose x ∈ L and θ ∈ I(L). Then (xn)θ = (xθ)n for any integer n [2, p.

117, Lemma 3.2 and p. 120, Lemma 4.1].
(b) Suppose x, y, u, v ∈ L and θ ∈ I(L). Then (xy)θ · c = (xθ) · (yθ · c) where

c = [u−1, v−1] if θ = L(u, v), and c = u−3 if θ = T (u) [2, p. 112, Lemma
2.1; p. 113, Lemma 2.2 and p. 117, Lemma 3.2].

(c) xL(z, y) = x(x, y, z)−1 [2, p. 124, Lemma 5.4].

Lemma 3.2. Let L be a Moufang loop. For any x, y, z ∈ L and n ∈ N , (xn, y, z) =
(x, yn, z) = (x, y, zn) = (x, y, z) [8, p. 267, Lemma 1].

Lemma 3.3. Let L be a Moufang loop and K a normal subloop of L. If L/K is a
group, then La ⊆ K [10, p. 563, Lemma 1(a)].

Lemma 3.4. [Lagrange’s theorem] Let L be a finite Moufang loop and K a subloop
of L. Then |K| divides |L| [6, p. 42, Lagrange’s theorem].

Lemma 3.5. Let L be a Moufang loop of odd order. Suppose H E K E L and H
is a Hall subloop of K, then H E L [9, p. 879, Lemma 1].

Lemma 3.6. Let L be a Moufang loop of odd order.
(a) L contains a Hall π-subloop where π is any set of odd primes [5, p. 409,

Theorem 12].
(b) Suppose K E L, (K,K,L) = 1 and (|K|, |L/K|) = 1. Then K ⊆ N [5, p.

405, Theorem 10].

Lemma 3.7. Let L be a Moufang loop of odd order and all proper subloops of L are
groups.

(a) If there exists a minimal normal Sylow subloop in L, then L is a group [8,
p. 268, Lemma 2].

(b) If N contains a Hall subloop of L, then L is a group [10, p. 564, Lemma 2].

Lemma 3.8. Let L be a Moufang loop of odd order and all proper quotient loops of
L are groups. Then (k1k2, `1, `2) = (k1, `1, `2)(k2, `1, `2) for each ki ∈ La and `i ∈ L
[11, p. 483, Lemma 8].

Lemma 3.9. Let L be a Moufang loop of odd order, K a minimal normal subloop
of L and H a Hall subloop of L. Suppose all proper subloops and proper quotient
loops of L are groups, La ⊆ K, (|K|, |H|) = 1 and H E KH. Then L is a group
[10, p. 564, Lemma 3].

Lemma 3.10. Let L be a nonassociative Moufang loop of odd order and all proper
quotient loops of L are groups. Then

(a) La is a minimal normal subloop of L and is an elementary abelian group;
(b) La and Lc lie in every maximal normal subloop of L.

[11, p. 478, Lemma 1 and 5, p. 402, Theorem 7].
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Lemma 3.11. Let L be a nonassociative Moufang loop of odd order and M a max-
imal normal subloop of L. Suppose all proper subloops and proper quotient loops of
L are groups.

(a) For any w ∈ M and ` ∈ L, there exists some k0 ∈ La − {1} such that
(k0, w, `) = 1.

(b) If (k,w, `) = 1 for all k ∈ La, w ∈M and ` ∈ L, then La ⊆ N .
[11, p. 478, Lemma 2 and p. 479 Lemma 3]

Lemma 3.12. Let L be a Moufang loop of order pαm where p is a prime and
(p,m) = (p− 1, pαm) = 1. Suppose L has an element of order pα. Then there exist
a subloop P of order pα and a normal subloop M of order m in L such that L = PM
[12, p. 39, Theorem 1].

Lemma 3.13. Let L be a Moufang loop of order pα1
1 pα2

2 · · · pαn
n where p1, p2, . . . , pn

are odd primes, p1 < p2 < · · · < pn and 1 ≤ αi ≤ 2 for all i. Then there exists a
subloop of order pαn

n normal in L [9, p. 879, Lemma 2 and p. 882, Theorem].

Lemma 3.14. Let L be a Moufang loop of order pα1
1 pα2

2 · · · pαn
n where p1, p2, . . . , pn

are odd primes, p1 < p2 < · · · < pn and 1 ≤ αn ≤ 2. Suppose all proper subloops and
proper quotient loops of L are groups; and there exists a normal Sylow pn-subloop
in L. Then L is a group [9, p. 879, Lemma 3].

Lemma 3.15. Let L be a Moufang loop of order pαqβ1
1 · · · qβn

n where p, q1, . . . , qn
are odd primes with p < q1 < · · · < qn, α ≤ 3 and βi ≤ 2. Then L is a group [11, p.
482, Theorem 1].

Lemma 3.16. Let L be a Moufang loop of order p1p2 · · · pnq3 where p1, p2, . . . , pn
and q are distinct odd primes with q 6≡ 1 (mod p1) and q2 6≡ 1 (mod pi) for each
i ∈ {2, 3, . . . , n}. Then L is a group [4, p. 240, Theorem 2.1].

Lemma 3.17. Let L be a Moufang loop of odd order and K a normal Hall subloop
of L. Suppose K = 〈x〉La for some x ∈ K − La and La ⊆ N . Then K ⊆ N .

Proof. Take u, v ∈ K and ` ∈ L. Then u = xαk1, v = xβk2 for some α, β ∈ Z+ and
ki ∈ La.

(u, v, `) = (xαk1, x
βk2, `)

= (xα, xβ , `) by Lemma 3.2 since ki ∈ N
= 1 by diassociativity.

Hence (K,K,L) = 1. Since K is a Hall subloop of L, (|K|, |L/K|) = 1. Thus, we
are through by Lemma 3.6(b).

Lemma 3.18. Let L be a nonassociative Moufang loop of odd order and M a max-
imal normal subloop of L. Suppose all proper subloops and proper quotient loops of
L are groups. Then for any w ∈M and ` ∈ L, there exists some k0 ∈ La−{1} such
that (u−1k0u,w, `) = 1 for all u ∈M .

Proof. Take any w ∈ M and ` ∈ L. By Lemma 3.11(a), there exists some k0 ∈
La − {1} such that (k0, w, `) = 1.

Write c = [`−1, w−1]. Since M E L, c = `w`−1w−1 = wT (`−1) · w−1 ∈M .
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Take any u ∈ M . Since La ⊆ M by Lemma 3.10(b) and M is a group, we can
freely omit the parentheses when writing the product of elements in M in the proof
below.

Now (u−1k0u)L(`, w) · c = u−1L(`, w) · k0L(`, w) ·uL(`, w) · c by applying Lemma
3.1(b) twice. After cancellation of c, we get

u−1k0u(u−1k0u,w, `)−1

=u−1(u−1, w, `)−1k0(k0, w, `)−1[u−1L(`, w)]−1 by Lemmas 3.1(a) and (c)

=u−1(u−1, w, `)−1k0[u−1(u−1, w, `)−1]−1 by Lemma 3.1(c)

=u−1(u−1, w, `)−1k0(u−1, w, `)u

=u−1k0u by Lemma 3.10(a).

By cancellation, we get (u−1k0u,w, `) = 1.

Lemma 3.19. Let L be a nonassociative Moufang loop of odd order and M a max-
imal normal subloop of L. Suppose all proper subloops and proper quotient loops of
L are groups; and (k,w, `) 6= 1 for some (fixed) elements k ∈ La, w ∈M and ` ∈ L.
Then La contains a proper nontrivial subloop which is normal in M .

Proof. Although (k,w, `) 6= 1 for the fixed elements k ∈ La, w ∈ M , ` ∈ L, but for
these particular w and `, there exists some k0 ∈ La−{1} such that (u−1k0u,w, `) = 1
for all u ∈M , by Lemma 3.18. Let H = {u−1k0u | u ∈M} and S = 〈H〉. By Lemma
3.10(a), La E L. So u−1k0u ∈ La for all u ∈ M . Thus H ⊆ La. Hence S ≤ La.
Also, since La is a group by Lemma 3.10(a), the elements in H associate with one
another.

Take s ∈ S. Since L is a finite loop, s = h1h2 · · ·hn where hi ∈ H.

(s, w, `) = (h1, w, `)(h2, w, `) · · · (hn, w, `) by Lemma 3.8
= 1 by Lemma 3.18.

Thus (s, w, `) = 1 for all s ∈ S. Since (k,w, `) 6= 1 and k ∈ La, it follows that
k ∈ La − S. So S is a proper subloop of La. S is not trivial as k0 ∈ S and k0 6= 1.

Take v ∈M .

v−1(u−1k0u)v = (v−1u−1)k0(uv) as k0 ∈M by Lemma 3.10(b)

= (uv)−1k0(uv) ∈ S as uv ∈M.

Hence v−1sv ∈ S for all s ∈ S and v ∈M . Since M is a group, by the definition of
normal subgroups, S E M .

4. Main theorem

Theorem 4.1. Let L be a Moufang loop of order p1 · · · pmq3r1 · · · rn where p1, . . . ,
pm, q, r1, . . . , rn are odd primes with p1 < · · · < pm < q < r1 < · · · < rn and q 6≡ 1
(mod pi) for all i ∈ {1, 2, . . . ,m}. Then L is a group.

Proof. If m = 0, we are through by Lemma 3.15, and if m = 1, we are through by
taking r1, r2, . . . , rn as p2, p3, . . . , pn in Lemma 3.16. So we need to consider now
the case m ≥ 2. Let m and n be the smallest positive integers such that

(∗) L is not a group.
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Let H be a proper subloop of L. Lagrange’s theorem (Lemma 3.4) gives |H| =
pi1 · · · pisqβrj1 · · · rjt , where either s < m, β < 3 or t < n. If β < 3, then H is a
group by Lemma 3.15. If s < m or t < n, then H is a group by the minimality of m
and n. Thus, every proper subloop of L is a group. The same applies to any proper
quotient loop of L.

Now by Lemma 3.10(a), La is a minimal normal subloop of L and is an elementary
abelian group. Since L is not a group, La is not a Sylow subloop of L by Lemma
3.7(a). So |La| = q or q2.

Suppose n > 0. Now |L/La| = p1 · · · pmq2r1 · · · rn or p1 · · · pmqr1 · · · rn. Lemma
3.13 guarantees the existence of a normal subloop K/La of order rn in L/La. Hence,
|K| = qrn or q2rn and K E L. Again by Lemma 3.13, there exists a normal subloop
R of order rn in K. Now R E K E L and R is a Hall subloop of K. So by Lemma
3.5, R E L. But R is also a Sylow rn-subloop of L. Thus L is a group by Lemma
3.14. This contradicts our first assumption, (∗).

Hence n = 0, and our problem has been reduced to the case |L| = p1p2 · · · pmq3.
Recall that |La| = q or q2. We consider each case separately below:

Case 1. |La| = q.

By Lemma 3.6(a), there exists P1, a Sylow p1-subloop of L. Now La E L implies
LaP1 ≤ L where |LaP1| = |La||P1|

|La∩P1| = p1q. Since p1 and q are distinct primes,
(q, p1) = 1. As q 6≡ 1 (mod p1) and q 6≡ 1 (mod q), it follows that (q − 1, qp1) = 1.
It is clear that La ⊆ LaP1. Since La is a cyclic group of order q, LaP1 contains
an element of order q. Now let p = q, m = p1 and α = 1 as stated in Lemma
3.12, then there exists a normal subloop of order p1 in LaP1. As P1 is a Sylow
subloop of LaP1, P1 is the unique normal subloop of LaP1. It is also clear that
(|La|, |P1|) = (q, p1) = 1. Hence L is a group by Lemma 3.9. This contradicts (∗).

Case 2. |La| = q2.

Consider the quotient loop L/La. |L/La| = p1p2 · · · pmq. Since p1, p2, . . . , pm
and q are distinct primes, (q, p1p2 · · · pm) = 1. Also (q − 1, qp1p2 · · · pm) = 1 as
q 6≡ 1 (mod pi) for all i. By Lemma 3.6(a), there exists a Sylow q-subloop in L/La.
Since this subloop is cyclic, L/La contains an element of order q. Now compare
with Lemma 3.12, we let p = q, m = p1p2 · · · pm and α = 1. Then L/La contains a
normal subloop M/La of order p1p2 · · · pm. Hence |M | = p1p2 · · · pmq2 and M is a
maximal normal subloop of L.

Suppose (k,w, `) = 1 for all k ∈ La, w ∈M and ` ∈ L. Then Lemma 3.11(b) gives
La ⊆ N . By Lemma 3.6(a), L contains a Sylow p1-subloop in L. Hence, L has an
element of order p1. It is also clear that (p1, p2 · · · pmq3) = (p1−1, p1p2 · · · pmq3) = 1.
So by Lemma 3.12, there exists a normal subloop H1 of order p2 · · · pmq3 in L. By
repeating the same process, we get a normal series Q E Hm−1 E · · · E H1 E L
where |Hi| = pi+1 · · · pmq3 and |Q| = q3. Since Q E Hm−1 E Hm−2 and Q is a Hall
subloop of Hm−1, it follows from Lemma 3.5 that Q E Hm−2. By using Lemma 3.5
several times, we finally get a normal subloop Q of order q3 in L.

Now by Lemma 3.3, L/Q is a group implies La ⊆ Q. Since |La| = q2, there exists
x ∈ Q− La where Q = 〈x〉La. It is also clear that (|Q|, |L/Q|) = 1. Hence Lemma
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3.17 gives Q ⊆ N . But Q is also a Hall subloop of L. Thus by Lemma 3.7(b), L is
a group. This contradicts (∗).

Hence (k,w, `) 6= 1 for some fixed elements k ∈ La, w ∈ M and ` ∈ L. Then
by Lemma 3.19, La contains a proper nontrivial subloop S which is normal in M .
Clearly |S| = q. Thus |M/S| = p1p2 · · · pmq. By using Lemma 3.12 and Lemma
3.5 repeatedly, we get a quotient loop Km/S of order pmq normal in M/S. Hence,
|Km| = pmq

2 andKm E M . Since q 6≡ 1 (mod pm), by Lemma 3.12, ∃ P̂ /S E Km/S

such that |P̂ /S| = pm. Thus, |P̂ | = pmq where P̂ E Km. By the same argument as
before, ∃ P E P̂ such that |P | = pm. Since P E P̂ E Km and P is a Hall subloop
of P̂ , P E Km by Lemma 3.5.

Note that Km is also a normal Hall subloop of M , and hence Km E L by Lemma
3.5. Thus L/Km is a group and La ⊆ Km by Lemma 3.3. Therefore Km = LaP and
we have P E LaP . Now P is also a Hall subloop of L and (|La|, |P |) = (q2, pm) = 1.
Then L is a group by Lemma 3.9. This again contradicts our first assumption, (∗).

Therefore, nevertheless, L is a group.

Corollary 4.1. Let p1, p2, . . . , pn and q be distinct odd primes. All Moufang loops
of order p1p2 · · · pnq3 are associative if and only if q 6≡ 1 (mod pi) for each i.

Proof. For pi > q, it is clear that q 6≡ 1 (mod pi); and if pi < q, q 6≡ 1 (mod pi) is
a sufficient condition as assured by the main theorem. Suppose q ≡ 1 (mod pi) for
some i ∈ {1, 2, . . . , n}. Then by [16], there exists a nonassociative Moufang loop of
order piq3. Hence by using the direct product of this nonassociative Moufang loop
with any group of order (p1p2 · · · pn)/pi, we get a nonassociative Moufang loop of
order p1p2 · · · pnq3. Thus the condition q 6≡ 1 (mod pi) for each i, is a necessary one
as well.

5. Open problems

Let p and q be odd primes. Are all Moufang loops of order p2q3 and pq4 associative
if p < q and q 6≡ 1 (mod p)? The smallest unsolved case is for p = 3 and q = 5.
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