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Abstract. System of integral equations have been solved in many papers. In
particular, systems of integral equations with degenerate kernels have been

solved with Adomian’s decomposition method by some authors. In the present

paper, we try to solve system of integral equations by using collocation method
with Legendre polynomials which is more efficient and needs less computations

than Adomian’s decomposition method.

2010 Mathematics Subject Classification: 45F99, 45B05, 65L60, 49M27, 42C10

Keywords and phrases: System of Fredholm integral equations, collocation
method, Adomian’s decomposition method, Legendre polynomials.

1. Introduction

Consider a system of Fredholm integral equations [18]

(1.1) λu(x) = f(x) +
∫ b

a

k(x, t)u(t)dt,

where λ ∈ R, and

u(x) = [ui(x)], i = 1, ..., n,

f(x) = [fi(x)], i = 1, ..., n,

k(x, t) = [ki,j(x, t)], i, j = 1, ..., n.

This type of equations have been solved in many papers with different methods
such as Taylor’s expansion [11, 13], operational matrices method [4, 15], homotopy
perturbation method [1, 9], Sinc collocation method [16, 17] and Adomian’s decom-
position method [5, 8, 12]. Some of these methods have restrictions such as ki,j(x, t)
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being degenerate and some of them are focused on system of integral equations of
the second kind, with more computations leading to solutions with low accuracy.
The aim of this paper is to solve system of integral equations by using collocation
method with Legendre polynomials [2] as the basis for this projection method, and
compare this method with Adomian decomposition method which has been used
for solving this type of equations in [7]. Convergence of Legendre polynomials for
solving Fredholm integral equation of the second kind has been discussed in [14],
and we shall apply this discussion on convergence for system of integral equations.

2. Discretization of equations

In this section we apply collocation method to convert equation (1.1) to an algebraic
system of linear equations AX = b. For this result, by using Legendre polynomials,
we approximate ui(x)’s, such that

(2.1) ui(x) ∼=
m∑
k=1

cikLk−1(x),

where Lk(x) is kth Legendre polynomial and cik’s are unknown coefficients which
are determined by solving an algebraic system of linear equations AX = b. By
substituting relation (2.1) in (1.1) we have

λ

m∑
k=1

c1kLk−1(x) = f1(x) +
n∑
i=1

∫ b

a

k1i(x, t)
m∑
k=1

cikLk−1(t)dt,

λ

m∑
k=1

c2kLk−1(x) = f2(x) +
n∑
i=1

∫ b

a

k2i(x, t)
m∑
k=1

cikLk−1(t)dt,

...

λ

m∑
k=1

cnkLk−1(x) = fn(x) +
n∑
i=1

∫ b

a

kni(x, t)
m∑
k=1

cikLk−1(t)dt.

Now, we choose some collocation points such as

xi = a+
i(b− a)
m

, i = 1, 2, . . . ,m,

which are equidistant, and define a system of residual equations by

R1(x) = λ

m∑
k=1

c1kLk−1(x)− f1(x)−
n∑
i=1

∫ b

a

k1i(x, t)
m∑
k=1

cikLk−1(t)dt,

R2(x) = λ

m∑
k=1

c2kLk−1(x)− f2(x)−
n∑
i=1

∫ b

a

k2i(x, t)
m∑
k=1

cikLk−1(t)dt,

...

Rn(x) = λ

m∑
k=1

cnkLk−1(x)− fn(x)−
n∑
i=1

∫ b

a

kni(x, t)
m∑
k=1

cikLk−1(t)dt.

Then, by imposing the conditions

Ri(xj) = 0, i = 1, 2, . . . , n, j = 1, 2, . . . ,m,
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(where xj ’s are collocation points) to the system of residual equations, we deduce
an algebraic system of linear equations AX = b [3, 10].

For example, for n = 2 we have

(2.2)

{
λu1(x) = f1(x) +

∫ b
a
k11(x, t)u1(t)dt+

∫ b
a
k12(x, t)u2(t)dt,

λu2(x) = f2(x) +
∫ b
a
k21(x, t)u1(t)dt+

∫ b
a
k22(x, t)u2(t)dt,

which after discretization, an algebraic system of linear equations AX = b is derived
as follows

A = (aij), i, j = 1, 2, . . . , 2m,

bT = [f1(x1), f1(x2), . . . , f1(xm), f2(x1), f2(x2), . . . , f2(xm)],

XT = [c11, c12, . . . , c1m, c21, c22, . . . , c2m],
where

aij =



λLj−1(xi)−
∫ b
a
k11(xi, t)Lj−1(t)dt,

{
i = 1, 2, . . . ,m
j = 1, 2, . . . ,m

−
∫ b
a
k12(xi, t)Lj−m−1(t)dt,

{
i = 1, 2, . . . ,m
j = m+ 1, . . . , 2m

−
∫ b
a
k21(xi−m, t)Lj−1(t)dt,

{
i = m+ 1, . . . , 2m
j = 1, 2, . . . ,m

λLj−m−1(xi−m)−
∫ b
a
k22(xi−m, t)Lj−m−1(t)dt,

{
i = m+ 1, . . . , 2m
j = m+ 1, . . . , 2m.

3. Convergence of method

In this section by using the following Proposition we try to prove a convergence
theorem which shows the error bound of the numerical method that we applied in
the previous section.

Proposition 3.1. Let f(t) ∈ Hk(−1, 1) Sobolev space, Pm(f(t)) =
∑m
i=0 aiLi(t) be

the best approximation polynomial of f(t) in L2-norm. Then

‖f(t)− Pm(f(t))‖L2[−1,1] ≤ C0m
−k‖f(t)‖Hk(−1,1),

where C0 is a positive constant, which depends on the selected norm and is indepen-
dent of f(t) and m.

See [6], for the proof of Proposition 3.1.
For the above proposition we have defined the following norms:

‖f(t)‖L2[−1,1] =
(∫ 1

−1

f2(t)dt
)1/2

,

‖f(t)‖Hk(−1,1) =

(
k∑
i=0

∫ 1

−1

|f (i)(t)|2dt

)1/2

.
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Theorem 3.1. Assume κ : Hk(−1, 1)→ L2[−1, 1] is an operator defined by

κ(u(x)) =
∫ 1

−1

k(x, t)u(t)dt,

where k(x, t) ∈ L2 in square [−1, 1]× [−1, 1] which was introduced in equation (1.1),
and um(x) is the numerical solution of the equation (1.1). Then

sup
x∈[−1,1]

|u(x)− um(x)| ≤ C1m
−k‖u(t)‖Hk(−1,1),

where C1 is a positive constant.

Proof. Assume that the exact solution of equation (1.1) is u(x), i.e.

u(x) = f(x) +
∫ 1

−1

k(x, t)u(t)dt.

If we define the numerical solution of this equation by um(x), then

um(x) = f(x) +
∫ 1

−1

k(x, t)Pm(u(t))dt.

Hence

sup
x∈[−1,1]

|u(x)− um(x)| ≤
∣∣∣∣∫ 1

−1

k(x, t)u(t)dt−
∫ 1

−1

k(x, t)Pm(u(t))dt
∣∣∣∣

≤
(∫ 1

−1

k2(x, t)dt
)1/2

‖u− Pm(u)‖.

Since k(x, t) ∈ L2,

max
x∈[−1,1]

(∫ 1

−1

k2(x, t)dt
)1/2

≤M.

By using Proposition 3.1, we have

‖u− Pm(u)‖ ≤ C0m
−k‖u(t)‖Hk(−1,1),

and finally,
sup

x∈[−1,1]

|u(x)− um(x)| ≤MC0m
−k‖u(t)‖Hk(−1,1).

Letting C1 = MC0 completes proof of the theorem.

4. Numerical experiments

In this section, we compare Adomian’s decomposition method which has been dis-
cussed in [7] with the Legendre collocation method and present some examples that
show the drawbacks of the Adomian’s decomposition method.

In [7], Adomian decomposition method was defined, and for solving system of
integral equations (1.1), introduced the following successive process

un+1 = Ga(n) = GBa(n−1),

where B, G and a were defined in [7]. Then the solution of (1.1) is given by
u =

∑L
i=0 ui. In this process, if we increase the number of iterations, high powers

of matrix B are needed to compute. In addition, round-off errors in computing
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powers of B and a(0) are other weak points of this process that destroy the accuracy
of solution. In Adomian’s decomposition method we need to generate matrix B
which depends on the number of terms of degenerate kernels, for example if each
kij ; i, j = 1, 2 has only one term then the rank of matrix B will be (4 × 4).
By increasing the terms of kernels to two, the rank of matrix will be (8 × 8). So,
the entries of matrix B will increase exponentially which lead to a huge amount of
computation.

Example 4.1. In [7], the system of Fredholm integral equations{
u1(x) = 2

3e
x − 1

4 +
∫ 1

0
( 1
3e
xtu1(t) + t2u2(t))dt,

u2(x) = 3
2x− x

2 +
∫ 1

0
(x2e−tu1(t)− xu2(t))dt,

has been solved by Adomian’s decomposition method, where the exact solutions are
u1(x) = ex and u2(x) = x. After 30 steps of this method which needs a lot of
computations, the following solutions are obtained{

u1(x) = 1.0000002 ex,
u2(x) = 1.0000002 x− 0.0000002 x2.

We have solved this system by using Legendre collocation method which was defined
in previous section for m = 10. The numerical results are shown in Table 1. In
this table EAdomian and ELegendre are the mean errors of Adomian’s decomposition
method and Legendre collocation method for different values of x, respectively.

Table 1. Numerical results for Example 4.1

u1(x) u2(x)
x EAdomian ELegendre EAdomian ELegendre

0.0 2× 10−7 1.66392× 10−10 0 2.0212× 10−14

0.25 2.56805× 10−7 1.23479× 10−12 3.75× 10−8 3.53051× 10−14

0.5 3.29744× 10−7 1.02318× 10−12 5× 10−8 7.01772× 10−13

0.75 4.234× 10−7 1.0103× 10−12 3.75× 10−8 1.99962× 10−12

1 5.43656× 10−7 1.21414× 10−12 1.11022× 10−16 3.92941× 10−12

Example 4.2. In this example which has been stated in [7], we have the following
system {

u1(x) = 1
18x+ 17

36 +
∫ 1

0
x+t
3 (u1(t) + u2(t))dt,

u2(x) = x2 − 19
12x+ 1 +

∫ 1

0
xt(u1(t) + u2(t))dt,

where the exact solutions are u1(x) = 1 + x and u2(x) = 1 + x2. The results
from Adomian’s decomposition method for 30 steps given in [7] are compared with
Legendre collocation method for m = 10 in Table 2.



384 K. Maleknejad, K. Nouri and L. Torkzadeh

Table 2. Numerical results for Example 4.2

u1(x) u2(x)
x EAdomian ELegendre EAdomian ELegendre

0.0 4.7× 10−5 3.04201× 10−14 0 4.66294× 10−14

0.25 6× 10−6 1.33227× 10−15 4× 10−6 6.66134× 10−16

0.5 8× 10−6 1.55431× 10−15 7× 10−6 4.44089× 10−16

0.75 9× 10−6 1.55431× 10−15 1.1× 10−5 1.33227× 10−15

1 1.1× 10−5 2.22045× 10−15 1.5× 10−5 1.33227× 10−15

Example 4.3. In this example, we present a system of integral equations with
degenerate kernels, but unfortunately the Adomian’s decomposition method [7] is
not able to solve this system. In regard to the Adomian’s decomposition method for
the system{

u1(x) = − 47
30 + 2x+ 17

12x
2 + x3 +

∫ 1

0
(2t2 − x2)(u1(t) + u2(t))dt,

u2(x) = − 1
3x−

121
60 x

2 +
∫ 1

0
3x2t(u1(t) + u2(t))dt,

where the exact solutions are u1(x) = x3 + 2x and u2(x) = x2 − x
3 we have the

following process for solving it.

u(x) = [u1(x), u2(x)],

f(x) = [f1(x), f2(x)] =
[
−47

30
+ 2x+

17
12
x2 + x3,−1

3
x− 121

60
x2

]
,

g11(x) = 1, g12(x) = x2, g13(x) = 1, g14(x) = x2, g21(x) = x2, g22(x) = x2,

h11(t) = 2t2, h12(t) = −1, h13(t) = 2t2, h14(t) = −1, h21(t) = 3t, h22(t) = 3t,

a(0) =
∫ 1

0

[h11f1, h12f1, h13f2, h14f2, h21f1, h22f2]dt

=
[

77
90
,
−7
45
,
−73
75

,
151
180

,
21
16
,
−443
240

]
and the matrices G,B are as follows

G =
[
g11(x) g12(x) g13(x) g14(x) 0 0

0 0 0 0 g21(x) g22(x)

]

B =



∫ 1

0
h11g11dt

∫ 1

0
h11g12dt

∫ 1

0
h11g13dt

∫ 1

0
h11g14dt 0 0∫ 1

0
h12g11dt

∫ 1

0
h12g12dt

∫ 1

0
h12g13dt

∫ 1

0
h12g14dt 0 0

0 0 0 0
∫ 1

0
h13g21dt

∫ 1

0
h13g22dt

0 0 0 0
∫ 1

0
h14g21dt

∫ 1

0
h14g22dt∫ 1

0
h21g11dt

∫ 1

0
h21g12dt

∫ 1

0
h21g13dt

∫ 1

0
h21g14dt 0 0

0 0 0 0
∫ 1

0
h22g21dt

∫ 1

0
h22g22dt


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so that

B =



2
3

2
5

2
3

2
5 0 0

−1 −1
3 −1 −1

3 0 0
0 0 0 0 2

5
2
5

0 0 0 0 −1
3

−1
3

3
2

3
4

3
2

3
4 0 0

0 0 0 0 3
4

3
4


Using the above information and the fact a(n) = Ba(n−1) for 30 steps of [7], we
obtain

u10 = −47
30

+ 2x+
17
12
x2 + x3, u20 = −1

3
x− 121

60
x2,

u11 = − 53
450

+
41
60
x2, u21 = − 8

15
x2,

u12 = − 1
54

+
61
900

x2, u22 = − 77
1200

x2,

...
...

u1,30 = −0.0120628 + 0.0153814x2, u2,30 = −0.0256153x2.

The approximated solution for some values of x after 30 steps of [7] and Legendre
collocation method by m = 10 are given in Table 3 which shows the advantage of
the Legendre collocation method.

Table 3. Numerical results for Example 4.3 by 30 steps

u1(x) u2(x)
x EAdomian ELegendre EAdomian ELegendre

0.0 2.01549 1.45472× 10−13 0.0 2.24643× 10−14

0.25 1.85487 7.70495× 10−14 0.267494 1.10849× 10−14

0.5 1.37299 5.66214× 10−14 1.06998 4.41869× 10−14

0.75 0.569873 2.28706× 10−14 2.40745 9.94205× 10−14

1 0.554498 2.44249× 10−14 4.2799 1.7697× 10−13

Increasing the number of iterations provide no improvement in the accuracy of
the solutions. Numerical results for the above system by 60 steps for Adomian’s
decomposition method are presented in Table 4.

Table 4. Numerical results for Example 4.3 by 60 steps

x values 0 0.25 0.5 0.75 1
EAdomian(u1) 2.4132 2.22088 1.64392 0.682323 0.663914
EAdomian(u2) 0.0 0.320277 1.28111 2.8825 5.12444
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Example 4.4. In this example, we try to solve a system of equations which has
nonseparable kernels. It is mentioned In [7] that if the kernels in system of integral
equations are nonseparable, then Taylor’s expansion method can degenerate them
and the Adomian’s decomposition method [7] is able to solve it. This claim is
not correct because of two reasons. Firstly, Taylor’s expansion has not enough
authority to approximate a function with two variables and the second reason is that
if we increase the terms of Taylor’s expansion, the rank of matrix B will increase
exponentially which leads to more computations with lots of round off errors.

Now, in equation (2.2) let

k11(x, t) = sin(xt+ t)
k12(x, t) = ext

k21(x, t) = x2t− t3

k22(x, t) = e
xt3
2

f1(x) = 2−ex(2−2x+x2)
x3 + cos(4πx) + (1+x)(cos(1+x)−1)

(1+x)2−16π2

f2(x) = 3
16π2 − 2(e

x
2 −1)
3x + x2

and the exact solutions are u1(x) = cos(4πx) and u2(x) = x2. Numerical results for
Legendre collocation method with m = 15 and m = 20 are shown in Tables 5 and
6.

Table 5. Numerical results for Example 4.4 for m = 15

x values 0 0.25 0.5 0.75 1

ELegendre(u1) 4.356× 10−5 5.342× 10−5 6.139× 10−5 7.019× 10−5 7.830× 10−5

ELegendre(u2) 9.505× 10−6 1.223× 10−5 1.816× 10−5 2.742× 10−5 4.002× 10−5

Table 6. Numerical results for Example 4.4 for m = 20

x values 0 0.25 0.5 0.75 1

ELegendre(u1) 5.417× 10−5 2.445× 10−7 2.827× 10−7 3.178× 10−7 3.612× 10−7

ELegendre(u2) 7.026× 10−8 6.684× 10−8 9.293× 10−8 1.334× 10−7 1.883× 10−7

Now, if we degenerate the kernels of above system and then solve the new system
by Legendre collocation method for m = 20, the following numerical results are
obtained in Table 7 that show the weakness of Taylor’s expansion for degenerating
of kernels in spite of the good accuracy that we obtained in Table 6.

In the following we present an example to show the efficiency of this numerical
method for solving first kind system of integral equations.
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Table 7. Numerical results for Example 4.4 by Taylor’s expansion of order 5

x values 0 0.25 0.5 0.75 1

Eu1 2.256× 10−2 2.822× 10−2 3.613× 10−2 4.996× 10−2 7.438× 10−2

Eu2 1.331× 10−2 1.046× 10−2 2.702× 10−3 1.016× 10−2 2.833× 10−2

Example 4.5. In this example, we try to solve a system of equations{
f1(x) =

∫ 1

−1
sin(x2 + t)u1(t)dt−

∫ 1

−1
3tex

2t2u2(t)dt,
f2(x) = −

∫ 1

−1
3 cos(xt)u1(t)dt+

∫ 1

−1
txe3xt

2
u2(t)dt,

where f1(x) = − 3ex2−1(−e+ex4
)

2(1+x2) − sin(x2+3x)+sin(x2−3)
6 + (sin(x−x2)+sin(x2+1))

2 ,

f2(x) = e3x3+x2
−e3x+1

2(e+3ex) + −6 cos 2x cos x2+3x sin 2 sin x+6 cos x(cos 2−x sin x sin x2)
x2−4 ,

and the exact solutions are u1(x) = sin 2x and u2(x) = ex
2−1. Numerical results for

Legendre collocation method with m = 10 and m = 15 are shown in Table 8.

Table 8. Numerical results for Example 4.5

Eu1 Eu2

x m = 10 m = 15 m = 10 m = 15
-1 1.7036× 10−7 4.5999× 10−10 1.0224× 10−5 5.4499× 10−8

-0.75 9.6772× 10−9 1.4551× 10−11 1.7953× 10−7 6.3424× 10−10

-0.5 5.2555× 10−9 1.4789× 10−11 6.9364× 10−8 1.7594× 10−10

-0.25 3.5251× 10−9 1.0557× 10−11 9.4624× 10−10 1.1806× 10−10

0 3.3230× 10−10 4.1108× 10−13 2.2215× 10−7 1.0512× 10−10

0.25 2.4917× 10−8 7.3872× 10−11 1.3333× 10−8 8.2249× 10−11

0.5 1.7392× 10−7 4.3160× 10−10 1.0306× 10−8 3.3478× 10−11

0.75 8.4662× 10−7 2.4831× 10−9 9.7882× 10−8 1.4628× 10−10

1 3.8222× 10−5 1.1492× 10−7 5.8332× 10−6 4.3467× 10−8

Conclusion

In this paper, a projection method known as collocation method with Legendre
polynomials was chosen to discretize the system of integral equations. This method
has some advantages. It is easy to apply for first and second kind system of inte-
gral equations. It also requires less computations than other methods discussed in
[7, 9, 11, 15, 16, 17]. For example when this method is applied to many systems of
integral equations, by solving an algebraic system of linear equations with rank less
than 10× 10, we can get good accuracy. In some methods the kernels of system are
required to satisfy some conditions such as being separable but the method of this
paper does not have such conditions.
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