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Abstract. In this paper we study finite product of pairwise Lindelöf bitopolog-
ical spaces. We show that the product properties for pairwise Lindelöf spaces

are not preserved. Further, we provide some necessary conditions for these
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1. Introduction

The Cartesian product of a collection of sets is one of the most important and
widely used ideas in mathematics. The theory of product spaces constitutes a very
interesting and complex part of set-theoretic topology. The Cartesian product of
arbitrarily many topological spaces was defined by Tychonoff in 1930. Then almost
33 years later in 1963 the idea of bitopological spaces was initiated by J. C. Kelly,
see [10] and thereafter a large number of papers have been produced in order to
generalize the topological concepts to bitopological setting. In 1972, Datta [3] defined
the Cartesian product of arbitrarily many bitopological spaces. It is also well-known
that, the Tychonoff Product Theorem plays an important role for general product
of compact topological spaces.

Recently, the authors studied pairwise Lindelöfness in [14], introduced and studied
the notion of pairwise weakly Lindelöfness in bitopological spaces, see [13], weakly
regular Lindelöf [12] and almost Lindelöf bitopological spaces, see [11] where the au-
thors extended some results that were due to Cammaroto and Santoro [2], Kılıçman
and Fawakhreh [5, 6, 7]. In [15], the authors also studied the mappings and pairwise
continuity on pairwise Lindelöf bitopological spaces.
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The purpose of the present paper is to study the product properties on pair-
wise Lindelöf bitopological spaces. In this paper we consider four kinds of pairwise
Lindelöf spaces namely known as Lindelöf, B-Lindelöf, s-Lindelöf and p-Lindelöf
spaces, for details we refer to [9]. So we shall study the product properties for every
kinds of pairwise Lindelöf spaces which are mentioned. Although the compactness
is preserved for finite products, the Lindelöfness may not be productive unless one
or more factors are assumed to satisfy additional conditions.

The similar results yield for every kind of pairwise Lindelöf spaces that we in-
vestigate in this paper. We give some counter-examples to show that the product
properties are negative. We also provide some necessary conditions for these spaces
to be preserved under a finite product.

2. Preliminaries

Throughout this paper, all spaces (X, τ) and (X, τ1, τ2) (or simply X) are always
topological spaces and bitopological spaces, respectively unless explicitly stated. In
this paper, we shall use p- and s- to denote pairwise and semi-respectively. For
instance, p-Lindelöf and s-Lindelöf stands for pairwise Lindelöf and semi-Lindelöf
respectively (see [9]). Also B-Lindelöf stands for another type of pairwise. If P is a
topological property, then (τi, τj)-P denotes an analogue of this property for τi has
property P with respect to τj , and p-P denotes the conjunction (τ1, τ2)-P ∧ (τ2, τ1)-
P, i.e., p-P denotes an absolute bitopological analogue of P. As we shall see below,
sometimes (τ1, τ2)-P ⇐⇒ (τ2, τ1)-P (and thus ⇔ p-P) so that it suffices to consider
one of these three bitopological analogue. Also sometimes τ1-P ⇐⇒ τ2-P and thus
P ⇐⇒ τ1-P ∧ τ2-P, i.e., (X, τi) has property P for each i = 1, 2.

We also note that (X, τi) has a property P ⇐⇒ (X, τ1, τ2) has a property τi-P.
Sometimes the prefixes (τi, τj)- or τi- will be replaced by (i, j)- or i- respectively, if
there is no chance for confusion. By i-open cover of X, we mean that the cover of X
by i-open sets in X; similar for the (i, j)-regular open cover of X, etc. In this paper
always i, j ∈ {1, 2} and i 6= j. For details notation we refer to [4].

Definition 2.1. Let (X, τ1, τ2) be a bitopological space. A subset F of X is said to
be

(1) i-open if F is open with respect to τi in X, F is said open in X if it is both
1-open and 2-open in X, or equivalently, F = U for U ∈ (τ1 ∩ τ2) in X;

(2) i-closed if F is closed with respect τi in X, F is said closed in X if it is both
1-closed and 2-closed in X, or equivalently, F = V and U ∈ (τ1 ∩ τ2) for
F ∈ V and U ⊆ τ1 ∩ τ2, respectively.

Definition 2.2. [3] Let {(Xα, τα, σα) : α ∈ ∆} be a family of bitopological spaces.
On the product set X =

∏
α∈∆Xα, we define a bitopological structure (τ, σ) by taking

τ as the product topology generated by the projections which (τ, τα)-continuous and
σ as the product topology generated by the projections which (σ, σα)-continuous for
every α ∈ ∆. The product set X with the product bitopology (τ, σ), i.e., (X, τ, σ) is
called product bitopological space. The product bitopology (τ, σ) also can be denoted
by
(∏

α∈∆ τα,
∏
α∈∆ σα

)
.
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3. Product of Lindelöf bitopological spaces

Definition 3.1. [9, 14] A bitopological space (X, τ1, τ2) is said to be i-Lindelöf
(resp. i-compact) if the topological space (X, τi) is Lindelöf (resp. compact). X is
said Lindelöf (resp. compact) if it is i-Lindelöf (resp. i-compact) for each i = 1, 2.
Equivalently, (X, τ1, τ2) is Lindelöf (resp. compact) if every i -open cover of X has
a countable (resp. finite ) subcover for each i = 1, 2.

It is well-known that the product of any two Lindelöf topological spaces need
not be Lindelöf. In general the product of any two i-Lindelöf spaces need not be
i-Lindelöf or the product of any two Lindelöf bitopological spaces need not be Lin-
delöf as the following example below shows.

Example 3.1. Let B be a collection of closed-open intervals in the real line R :

B = {[a, b) : a, b ∈ R, a < b} .
Hence B is a base for the lower limit topology (or Sorgenfrey topology) τ1 on R.
Choose usual topology as topology τ2 on R. Thus (R, τ1, τ2) is a Lindelöf bitopo-
logical space (see [17]). So it is clear that (R× R, τ1 × τ1, τ2 × τ2) is not (τ1 × τ1)-
Lindelöf for the (τ1 × τ1)-closed subspace L = {(x, y) : y = −x} is not (τ1 × τ1)-
Lindelöf for it is a discrete subspace (see [17]). Thus (R× R, τ1 × τ1, τ2 × τ2) is not
a Lindelöf bitopological space.

Theorem 3.1. Let (X, τ1, τ2) be a τi-Lindelöf space and (Y, σ1, σ2) a σi-compact
space. Then (X × Y, ρ1, ρ2) is ρi-Lindelöf where ρi is a product topology.

Proof. The proof is similar with the well-known result, the Tychonoff Product The-
orem, so we omit the details.

In general, the converse of Theorem 3.1 is not true and we provide the following
counter-example.

Example 3.2. Let τcoc and τu denotes the cocountable topology and usual topol-
ogy on R respectively. Then the bitopological space (R× R, τcoc × τcoc, τu × τu) is
Lindelöf. However (R, τcoc, τu) is Lindelöf space but not compact (see [17]).

The above result still holds if we consider an i-Lindelöf space and a collection of
finite i-compact spaces as stated in the following corollary.

Corollary 3.1. Let (Xm, τ
m
1 , τm2 ) be a τmi -Lindelöf space and{(

Xk, τ
k
1 , τ

k
2

)
: k = 1, . . . n, k 6= m,m ≤ n

}
a collection of τki -compact spaces. Then (

∏n
k=1Xk, ρ1, ρ2) is ρi-Lindelöf where ρi is

a product topology.

Proof. It follows immediately on using the fact that the topological product is com-
mutative, associative (see [16], p. 132) and the well-known result, the Tychonoff
Product Theorem.

The result also holds if a collection of finite i-compact spaces is replaced by
arbitrary collection of i-compact spaces since the Tychonoff Product Theorem is
true for any collection of i-compact spaces.
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Corollary 3.2. Let
(
Xβ , τ

β
1 , τ

β
2

)
be a τβi -Lindelöf space and {(Xα, τ

α
1 , τ

α
2 ) : α ∈ ∆ ,

α 6= β} a collection of ταi -compact spaces. Then
(∏

α∈∆Xα, ρ1, ρ2

)
is ρi-Lindelöf

where ρi is a product topology.

Definition 3.2. A bitopological space X is said to be i-P -space if countable inter-
section of i-open sets in X is i-open. X is said P -space if it is i-P -space for each
i = 1, 2.

Although the product of τi-Lindelöf and σi-Lindelöf spaces need not be (τi × σi)-
Lindelöf, if we consider an additional condition such as τi-P -space to one of the
space we will obtain that the product is (τi × σi)-Lindelöf.

Proposition 3.1. Let (X, τ1, τ2) be a τi-Lindelöf τi-P -space and (Y, σ1, σ2) a σi-
Lindelöf space. Then (X × Y, ρ1, ρ2) is ρi-Lindelöf where ρi is a product topology.

Proof. Let U = {Uα : α ∈ ∆} be a ρi-open cover of X ×Y . Then each member of U
is a union of ρi-basis elements of the form V ×W with V is τi-open set in X and W is
σi-open set in Y . We may restrict our attention to the cover {Vα ×Wα : α ∈ ∆} of
X ×Y which consists of ρi-basis elements where each Vα×Wα is contained in some
member of U , since any subcover of this basic ρi-open cover will lead immediately
to a subcover chosen from the original cover U . For each x ∈ X, let Yx = {x} × Y
which is i-homeomorphic to Y and hence Yx is Lindelöf with respect to the inducted
topology from ρi. So Yx is ρi-Lindelöf relative to X×Y and since {Vα ×Wα : α ∈ ∆}
also covers Yx, there must exists a countable subcover {Vx,αn ×Wx,αn : n ∈ N} of
Yx by sets which have a nonempty intersection with Yx. Letting Hx =

⋂
n∈N

Vx,αn ,

we see that Hx is a τi-open set of X containing x since X is a τi-P -space. The
above countable subcover {Vx,αn ×Wx,αn : n ∈ N} actually covers Hx × Y . Now
{Hx : x ∈ X} is a τi-open cover of X. Since X is τi-Lindelöf, there exists a countable
subcover {Hxk : k ∈ N}. But then {{Vxk,αn ×Wxk,αn : n ∈ N} : k ∈ N} covers X ×
Y . Since {{Vxk,αn ×Wxk,αn : n ∈ N} : k ∈ N} is a countable subcover, we have that
X × Y is ρi-Lindelöf.

Corollary 3.3. Let (X, τ1, τ2) be a Lindelöf P -space and (Y, σ1, σ2) a Lindelöf space.
Then (X × Y, ρ1, ρ2) is Lindelöf where ρi is a product topology.

We note that the above result is also true if we take a collection of finite i-Lindelöf
i-P -spaces and an i-Lindelöf space. By using the fact that the topological product
is commutative and associative, the result will then follow by induction. We need
the following lemma.

Lemma 3.1. Let (X, τ1, τ2) be a τi-P -space and (Y, σ1, σ2) a σi-P -space. Then
(X × Y, ρ1, ρ2) is ρi-P -space where ρi is a product topology.

Proof. Let {Un : n ∈ N} be a countable collection of ρi-open sets in X × Y . Then
each Un is a union of ρi-basis elements of the form V × W where V and W are
τi-open set and σi-open set of X and Y respectively. We may restrict our attention
to the countable collection of ρi-basis element {Vn ×Wn : n ∈ N} of X × Y because
any ρi-open set is a union of ρi-basis elements. Now⋂

n∈N
(Vn ×Wn) =

(⋂
n∈N

Vn

)
×

(⋂
n∈N

Wn

)
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is a ρi-basis element since X is τi-P -space and Y is σi-P -space. Therefore X × Y is
ρi-P -space.

Corollary 3.4. Let
{(
Xk, τ

k
1 , τ

k
2

)
: k = 1, . . . , n

}
be a collection of τki -P -spaces.

Then (
∏n
k=1Xk, ρ1, ρ2) is ρi-P -space where ρi is a product topology.

Proof. It follows by induction on k.

Proposition 3.2. Let {(Xα, τ
α
1 , τ

α
2 ) : α ∈ ∆} be a collection of ταi -P -spaces. Then(∏
α∈∆

Xα, ρ1, ρ2

)
is ρi-P -space where ρi is a product topology.

Proof. Let {Un : n ∈ N} be a countable collection of ρi-open sets in
∏
α∈∆Xα. Then

as in the proof of Lemma 3.1, we may restrict our attention to the countable col-
lection of ρi-basis element

{∏
{Xα : α 6= β1, . . . , βm} × V nβ1

× · · · × V nβm : n ∈ N
}

of∏
α∈∆Xα where V nβk is a τβki -open set of Xβk , k = 1, . . . ,m. It can be done because

any ρi-open set is a union of ρi-basis elements. Now⋂
n∈N

(∏
{Xα : α 6= β1, . . . , βm} × V nβ1

× · · · × V nβm
)

=
⋂
n∈N

(∏
{Xα : α 6= β1, . . . , βm}

)
×

(⋂
n∈N

V nβ1

)
× · · · ×

(⋂
n∈N

V nβm

)

=
∏{⋂

n∈N
Xα : α 6= β1, . . . , βm

}
×

(⋂
n∈N

V nβ1

)
× · · · ×

(⋂
n∈N

V nβm

)

=
∏
{Xα : α 6= β1, . . . , βm} ×

(⋂
n∈N

V nβ1

)
× · · · ×

(⋂
n∈N

V nβm

)
is a ρi-basis element sinceXβk is τβki -P -spaces. Therefore

∏
α∈∆Xα is ρi-P -space.

The Proposition 3.2 leads to the following corollaries.

Corollary 3.5. Let
{(
Xk, τ

k
1 , τ

k
2

)
: k = 1, . . . n, k 6= m,m ≤ n

}
be a collection of τki -

Lindelöf τki -P -spaces and (Xm, τ
m
1 , τm2 ) a τmi -Lindelöf space. Then (

∏n
k=1Xk, ρ1, ρ2)

is ρi-Lindelöf where ρi is a product topology.

Proof. It follows by induction of k, and noting the fact that the topological product
is commutative, associative and using the Corollary 3.4.

Corollary 3.6. Let
{(
Xk, τ

k
1 , τ

k
2

)
: k = 1, . . . n, k 6= m,m ≤ n

}
be a collection of

Lindelöf P -spaces and (Xm, τ
m
1 , τm2 ) a Lindelöf space. Then (

∏n
k=1Xk, ρ1, ρ2) is

Lindelöf where ρi is a product topology.

Recall that a function f : (X, τ1, τ2) → (Y, σ1, σ2) is called i-closed if f (U) is
σi-closed set in Y for every τi-closed set U in X, f is said closed if it is i-closed
for each i = 1, 2. From elementary general topology it is well-known that, if X is a
topological space and suppose a neighbourhood base has been fixed at each x ∈ X,
then F ⊆ X is closed if and only if each point x /∈ F has a basic neighbourhood
disjoint from F (see [19]). Now we can prove the following proposition.
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Proposition 3.3. Let (X, τ1, τ2) be a τi-Lindelöf space and (Y, σ1, σ2) a σi-P -space.
Then the projection πY : (X × Y, ρ1, ρ2) → (Y, σ1, σ2) is i-closed where ρi is a
product topology.

Proof. Let U be a ρi-closed set in X×Y and let y0 /∈ πY (U). Clearly X×{y0}∩U =
∅, so the point (x, y0) /∈ U has a ρi-basic neighbourhood Vx×Wx,y0 disjoint from U
where Vx is τi-open set in X containing x and Wx,y0 is σi-open set in Y containing
y0. Now {Vx ×Wx,y0 : x ∈ X} forms a ρi-open cover of X ×{y0} by ρi-open sets in
X × Y . Since X × {y0} is i-homeomorphic to X, then X × {y0} is ρi-Lindelöf with
respect to the inducted bitopology from (ρ1, ρ2). So X ×{y0} is ρi-Lindelöf relative
to X ×Y and hence there exists a countable subfamily {Vxn ×Wxn,y0 : n ∈ N} such

that X × {y0} ⊆
⋃
n∈N

(Vxn ×Wxn,y0) =
( ⋃
n∈N

Vxn

)
×
( ⋃
n∈N

Wxn,y0

)
. Set W =

⋂
n∈N

Wxn,y0 and since Y is a σi-P -space, W is a σi-open neighbourhood of y0. We need
to prove that W ∩πY (U) = ∅. Now suppose that W ∩πY (U) 6= ∅, then there exists
a point y1 ∈ W and y1 ∈ πY (U). Hence y1 ∈ Wxn,y0 for each n ∈ N and therefore
(xn, y1) ∈ Vxn ×Wxn,y0 . On the other hand, X × {y1} ∩ U 6= ∅ and this implies
that (xn, y1) ∈ U which is a contradiction. Thus πY (U) is σi-closed set in Y . This
implies that πY is i-closed.

We can extend this result to arbitrary product space thus we have the following
proposition.

Proposition 3.4. Let {(Xα, τ
α
1 , τ

α
2 ) : α ∈ ∆, α 6= β} be a collection of ταi -Lindelöf

space and
(
Xβ , τ

β
1 , τ

β
2

)
a τβi -P -space. Then the projection πβ :

(∏
α∈∆Xα, ρ1, ρ2

)
→(

Xβ , τ
β
1 , τ

β
2

)
is i-closed where ρi is a product topology.

Proof. Let U be a ρi-closed set in
∏
α∈∆Xα and let y0 /∈ πβ (U). Clearly

∏
α∈∆,α 6=β Xα

×{y0}∩U = ∅, so the point (xα : α ∈ ∆) where xβ = y0 does not belong to U has a
ρi-basic neighbourhood

∏
α∈∆,α6=β Vxα×Wxα,y0 disjoint from U where Vxα is ταi -open

set in Xα containing xα, α 6= β and Wxα,y0 is τβi -open set in Xβ containing y0. Now{∏
α∈∆,α 6=β Vxα ×Wxα,y0 : xα ∈ Xα

}
form a ρi-open cover of

∏
α∈∆,α 6=β Xα×{y0}

by ρi-open sets in
∏
α∈∆Xα. Since

∏
α∈∆,α 6=β Xα × {y0} is i-homeomorphic to∏

α∈∆,α 6=β Xα, then
∏
α∈∆,α6=β Xα×{y0} is ρi-Lindelöf with respect to the inducted

bitopology from (ρ1, ρ2). So
∏
α∈∆,α6=β Xα×{y0} is ρi-Lindelöf relative to

∏
α∈∆Xα

and hence there exists a countable subfamily
{∏

α∈∆,α 6=β Vxnα ×Wxnα,y0
: n ∈ N

}
such that∏

α∈∆,α6=β
Xα × {y0} ⊆

⋃
n∈N

(∏
α∈∆,α6=β

Vxnα ×Wxnα,y0

)
=

(⋃
n∈N

(∏
α∈∆,α6=β

Vxnα

))
×

(⋃
n∈N

Wxnα,y0

)
.

Set W =
⋂
n∈N

Wxnα,y0
and since Xβ is a τβi -P -space, W is a τβi -open neighbourhood

of y0. We need to prove that W ∩ πβ (U) = ∅. Now suppose that W ∩ πβ (U) 6= ∅,
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then there exists a point y1 ∈W and y1 ∈ πβ (U). Hence y1 ∈Wxnα,y0
for each n ∈ N

and therefore (xα : α ∈ ∆) where xβ = y1 belong to
∏
α∈∆,α6=β Vxnα ×Wxnα,y0

. On
the other hand,

∏
α∈∆,α6=β Xα × {y1} ∩ U 6= ∅ and this implies that (xα : α ∈ ∆)

where xβ = y1 belong to U which is a contradiction. Thus πY (U) is τβi -closed set
in Xβ . This implies that πβ is i-closed.

4. Product of B-Lindelöf spaces

Definition 4.1. A bitopological space (X, τ1, τ2) is called (i, j)-compact [1] (resp.
(i, j)-Lindelöf [9, 14]) if for every i-open cover of X there is a finite (resp. countable)
j-open subcover. Similarly, X is called B-compact [1] (resp. B-Lindelöf [9, 14])
if it is both (1, 2)-compact (resp. (1, 2)-Lindelöf) and (2, 1)-compact (resp. (2, 1)-
Lindelöf).

Theorem 4.1. Let (X, τ1, τ2) be a (τj , τi)-compact space and (Y, σ1, σ2) a (σi, σj)-
compact space. Then (X × Y, ρ1, ρ2) is (ρi, ρj)-compact where ρi is a product topol-
ogy.

Proof. The proof of this theorem is similar to the Theorem 3.1, so we omit the
details.

It is clear that if (X, τ1, τ2) is B-Lindelöf, then (X, τi) must be a Lindelöf space
for each i = 1, 2, i.e., (X, τ1, τ2) is a Lindelöf space. In general, the product of
any two (i, j)-Lindelöf spaces need not be (i, j)-Lindelöf or the product of any two
B-Lindelöf spaces need not be B-Lindelöf as the following example show.

Example 4.1. Let τs denotes the Sorgenfrey topology on R. Then the bitopological
space (R, τs, τs) is B-Lindelöf. However (R× R, τs × τs, τs × τs) is not B-Lindelöf,
for the topological space (R× R, τs × τs) is not Lindelöf (see [17]).

The following example gives further explanation for the B-Lindelöf spaces and to
show that some of them satisfying the product invariant property.

Example 4.2. Let B1 = {R, {x} : x ∈ R \ {0}} and B2 = {R, {x} : x ∈ R \ {1}}.
Let τ1 and τ2 are the topologies on R which are generated by the bases B1 and
B2 respectively. Then (R, τ1, τ2) is B-Lindelöf, for any τi-open cover of R must
contain R as a member [9]. We obtain that (R× R, τ1 × τ1, τ2 × τ2) is B-Lindelöf
since for any (τi × τi)-open cover of R×R must contain R×R as a member. So the
bitopological space (R, τ1, τ2) is satisfying the product invariant property.

Theorem 4.2. Let (X, τ1, τ2) be a (τj , τi)-Lindelöf space and (Y, σ1, σ2) a (σi, σj)-
compact space. Then (X × Y, ρ1, ρ2) is (ρi, ρj)-Lindelöf where ρi is a product topol-
ogy.

Proof. The proof is straightforward on following the Theorems 3.1 and 4.1, so we
omit the details.

Definition 4.2. A bitopological space X is said to be (i, j)-P -space if countable
intersection of i-open sets in X is j-open. X is said B-P -space if it is (1, 2)-P -space
and (2, 1)-P -space.
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Proposition 4.1. Let (X, τ1, τ2) be a (τi, τj)-Lindelöf (τj , τi)-P -space and (Y, σ1, σ2)
a (σi, σj)-Lindelöf space. Then (X × Y, ρ1, ρ2) is (ρi, ρj)-Lindelöf where ρi is a prod-
uct topology.

Proof. Let U = {Uα : α ∈ ∆} be a ρi-open cover of X × Y . Then as in proof of
Proposition 3.1, we may restrict our attention to the cover {Vα ×Wα : α ∈ ∆} of X×
Y by the ρi-basis elements where each Vα×Wα is contained in some member of U . For
each x ∈ X, let Yx = {x}×Y which is i-homeomorphic to Y and hence Yx is (ρi, ρj)-
Lindelöf with respect to the inducted bitopology from (ρ1, ρ2). So Yx is (ρi, ρj)-
Lindelöf relative to X × Y and since {Vα ×Wα : α ∈ ∆} also covers Yx, there must
exists a countable ρj-open subcover {Vx,αn ×Wx,αn : n ∈ N} of Yx by sets which
have a nonempty intersection with Yx. Letting Hx =

⋂
n∈N

Vx,αn , we see that Hx is a

τi-open set of X containing x since X is a (τj , τi)-P -space. The above countable ρj-
open subcover {Vx,αn ×Wx,αn : n ∈ N} actually covers Hx × Y . Now {Hx : x ∈ X}
is a τi-open cover of X. Since X is (τi, τj)-Lindelöf, there exists a countable τj-
open subcover {Hxk : k ∈ N}. But then {{Vxk,αn ×Wxk,αn : n ∈ N} : k ∈ N} covers
X × Y . Since {{Vxk,αn ×Wxk,αn : k ∈ N} : n ∈ N} is a countable ρj-open subcover,
we have that X × Y is (ρi, ρj)-Lindelöf.

Corollary 4.1. Let (X, τ1, τ2) be a B-Lindelöf B-P -space and (Y, σ1, σ2) a B-
Lindelöf space. Then (X × Y, ρ1, ρ2) is B-Lindelöf where ρi is a product topology.

Now if we take a collection of finite (i, j)-Lindelöf (j, i)-P -spaces and an (i, j)-
Lindelöf space then the above result is still true. One can easily see this on noting
that the topological product is commutative and associative, the result will then
follow by induction. We state the following lemma.

Lemma 4.1. Let (X, τ1, τ2) be a (τi, τj)-P -space and (Y, σ1, σ2) a (σi, σj)-P -space.
Then (X × Y, ρ1, ρ2) is (ρi, ρj)-P -space where ρi is a product topology.

Proof. Let {Un : n ∈ N} be a countable collection of ρi-open sets in X×Y . Then as
in the proof of Lemma 3.1, we may restrict our attention to the countable collection
of ρi-basis element {Vn ×Wn : n ∈ N} of X × Y because any ρi-open set is a union

of ρi-basis elements. Now
⋂
n∈N

(Vn ×Wn) =
( ⋂
n∈N

Vn

)
×
( ⋂
n∈N

Wn

)
is a ρj-basis

element since X is (τi, τj)-P -space and Y is (σi, σj)-P -space. Therefore X × Y is
(ρi, ρj)-P -space.

Corollary 4.2. Let
{(
Xk, τ

k
1 , τ

k
2

)
: k = 1, . . . , n

}
be a collection of

(
τki , τ

k
j

)
-P -spaces.

Then (
∏n
k=1Xk, ρ1, ρ2) is (ρi, ρj)-P -space where ρi is a product topology.

Proof. It follows by induction of k.

Proposition 4.2. Let {(Xα, τ
α
1 , τ

α
2 ) : α ∈ ∆} be a collection of

(
ταi , τ

α
j

)
-P -spaces.

Then
(∏

α∈∆Xα, ρ1, ρ2

)
is (ρi, ρj)-P -space where ρi is a product topology.

Proof. Let {Un : n ∈ N} be a countable collection of ρi-open sets in
∏
α∈∆Xα. Then

as in the proof of Lemma 3.1, we may restrict our attention to the countable col-
lection of ρi-basis element

{∏
{Xα : α 6= β1, . . . , βm} × V nβ1

× · · · × V nβm : n ∈ N
}

of



Product Properties for Pairwise Lindelöf Spaces 239∏
α∈∆Xα where V nβk is a τβki -open set of Xβk , k = 1, . . . ,m. Now⋂

n∈N

(∏
{Xα : α 6= β1, . . . , βm} × V nβ1

× · · · × V nβm
)

=
∏
{Xα : α 6= β1, . . . , βm} ×

(⋂
n∈N

V nβ1

)
× · · · ×

(⋂
n∈N

V nβm

)

is a ρj-basis element since Xβk is
(
τβki , τβkj

)
-P -spaces. Therefore

∏
α∈∆Xα is

(ρi, ρj)-P -space.

Corollary 4.3. Let
{(
Xk, τ

k
1 , τ

k
2

)
: k = 1, . . . n, k 6= m,m ≤ n

}
be a collection of(

τki , τ
k
j

)
-Lindelöf

(
τkj , τ

k
i

)
-P -spaces and (Xm, τ

m
1 , τm2 ) a

(
τmi , τ

m
j

)
-Lindelöf space.

Then (∏n

k=1
Xk, ρ1, ρ2

)
is (ρi, ρj)-Lindelöf where ρi is a product topology.

Proof. It follows by induction of k and the Corollary 4.2.

Corollary 4.4. Let
{(
Xk, τ

k
1 , τ

k
2

)
: k = 1, . . . n, k 6= m,m ≤ n

}
be a collection of B-

Lindelöf B-P -spaces and (Xm, τ
m
1 , τm2 ) a B-Lindelöf space. Then (

∏n
k=1Xk, ρ1, ρ2)

is B-Lindelöf where ρi is a product topology.

Proposition 4.3. Let (X, τ1, τ2) be a (τj , τi)-Lindelöf τj-P -space and (Y, σ1, σ2) a
(σi, σj)-Lindelöf space. Then (X × Y, ρ1, ρ2) is (ρi, ρj)-Lindelöf where ρi is a product
topology.

Proof. Similar with the proof of the Proposition 4.1.

Corollary 4.5. Let (X, τ1, τ2) be a B-Lindelöf P -space and (Y, σ1, σ2) a B-Lindelöf
space. Then (X × Y, ρ1, ρ2) is B-Lindelöf where ρi is a product topology.

Corollary 4.6. Let
{(
Xk, τ

k
1 , τ

k
2

)
: k = 1, . . . n, k 6= m,m ≤ n

}
be a collection of(

τkj , τ
k
i

)
-Lindelöf τkj -P -spaces and (Xm, τ

m
1 , τm2 ) a

(
τmi , τ

m
j

)
-Lindelöf space. Then

(
∏n
k=1Xk, ρ1, ρ2) is (ρi, ρj)-Lindelöf where ρi is a product topology.

Proof. It follows by induction of k and the Corollary 3.4.

Corollary 4.7. Let
{(
Xk, τ

k
1 , τ

k
2

)
: k = 1, . . . n, k 6= m,m ≤ n

}
be a collection of B-

Lindelöf P -spaces and (Xm, τ
m
1 , τm2 ) a B-Lindelöf space. Then (

∏n
k=1Xk, ρ1, ρ2) is

B-Lindelöf where ρi is a product topology.

Definition 4.3. A function f : (X, τ1, τ2)→ (Y, σ1, σ2) is called (i, j)-closed if f (U)
is σj-closed set in Y for every τi-closed set U in X, f is said pairwise closed if it is
both (1, 2)-closed and (2, 1)-closed.

Proposition 4.4. Let (X, τ1, τ2) be a (τi, τj)-Lindelöf space and (Y, σ1, σ2) a σj-P -
space. Then the projection πY : (X × Y, ρ1, ρ2)→ (Y, σ1, σ2) is (i, j)-closed where ρi
is a product topology.

Proof. The proof is similar with the proof of the Proposition 3.3 and thus we omit
the details.
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We proceed this result to the arbitrary product spaces and we have the following
proposition.

Proposition 4.5. Let {(Xα, τ
α
1 , τ

α
2 ) : α ∈ ∆, α 6= β} be a collection of

(
ταi , τ

α
j

)
-

Lindelöf space and
(
Xβ , τ

β
1 , τ

β
2

)
a τβj -P -space. Then the projection πβ :

(∏
α∈∆Xα ,

ρ1, ρ2)→
(
Xβ , τ

β
1 , τ

β
2

)
is (i, j)-closed where ρi is a product topology.

Proof. Let U be a ρi-closed set in
∏
α∈∆Xα and let y0 /∈ πβ (U). Following the proof

of Proposition 3.4,
∏
α∈∆,α 6=β Xα×{y0} is (ρi, ρj)-Lindelöf relative to

∏
α∈∆Xα and

hence there exists a countable ρj-open subfamily
{∏

α∈∆,α 6=β Vxnα ×Wxnα,y0
: n ∈ N

}
such that∏

α∈∆,α 6=β
Xα × {y0} ⊆

⋃
n∈N

(∏
α∈∆,α6=β

Vxnα ×Wxnα,y0

)
=

(⋃
n∈N

(∏
α∈∆,α6=β

Vxnα

))
×

(⋃
n∈N

Wxnα,y0

)
.

Set W =
⋂
n∈N

Wxnα,y0
and since Xβ is a τβj -P -space, W is a τβj -open neighbourhood

of y0 such that W ∩ πβ (U) = ∅. Thus πβ (U) is τβj -closed set in Xβ . This implies
that πβ is (i, j)-closed.

5. Product of s-Lindelöf spaces

Definition 5.1. A cover U of a bitopological space (X, τ1, τ2) is called τ1τ2-open if
U ⊆ τ1 ∪ τ2 [18]. If, in addition, U contains at least one nonempty member of τ1
and at least one nonempty member of τ2, it is called p-open [8].

Definition 5.2. A bitopological space (X, τ1, τ2) is called s-compact [3] (resp. s-
Lindelöf [9]) if every τ1τ2-open cover of X has a finite (resp. countable) subcover.

Theorem 5.1. Let (X, τ1, τ2) and (Y, σ1, σ2) are s-compact spaces. Then (X × Y, ρ1, ρ2)
is s-compact where ρi is a product topology.

Proof. The proof is similar with the previous Theorems 3.1 and 4.1.
The product is still invariant if we take a finite collection of s-compact spaces as

stated in the following corollary. The result will then follow by induction.

Corollary 5.1. Let
{(
Xk, τ

k
1 , τ

k
2

)
: k = 1, . . . n

}
be a collection of s-compact spaces.

Then (
∏n
k=1Xk, ρ1, ρ2) is s-compact where ρi is a product topology.

The product of any two s-Lindelöf spaces also need not be s-Lindelöf as the
following counter-example shows.

Example 5.1. Let τu and τs denotes the usual topology and Sorgenfrey topology
on R respectively. Then the bitopological space (R, τu, τs) is s-Lindelöf. However

(R× R, τu × τu, τs × τs)
is not s-Lindelöf, for it follows immediately from the observation that any (τs × τs)-
open cover of (R× R, τu × τu, τs × τs) is (τu × τu) (τs × τs)-open and the topological
space (R× R, τs × τs) is not Lindelöf (see [17]).
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Theorem 5.2. Let (X, τ1, τ2) be an s-Lindelöf space and (Y, σ1, σ2) an s-compact
space. Then (X × Y, ρ1, ρ2) is s-Lindelöf where ρi is a product topology.

Proof. The proof is straightforward thus we omit the details.
The above result is still hold if we take an s-Lindelöf space and a collection of

finite s-compact spaces as stated in the following corollary.

Corollary 5.2. Let (Xm, τ
m
1 , τm2 ) be an s-Lindelöf space and{(

Xk, τ
k
1 , τ

k
2

)
: k = 1, . . . n, k 6= m,m ≤ n

}
a collection of s-compact spaces. Then (

∏n
k=1Xk, ρ1, ρ2) is s-Lindelöf where ρi is a

product topology.

Proof. It follows immediately by the fact that the product of topological space is
commutative, associative in the Corollary 5.1.

Definition 5.3. Let U = {Uα : α ∈ ∆} be a τ1τ2-open cover of a bitopological
space (X, τ1, τ2). Then X is said to be s-P -space if for each x ∈ X there exists
a countable subfamily {Ux,αn : x ∈ X} where x ∈ Ux,αn for all n ∈ N such that{ ⋂
n∈N

Ux,αn : x ∈ X
}
⊆ τ1 ∪ τ2.

Proposition 5.1. Let (X, τ1, τ2) be an s-Lindelöf space s-P -space and (Y, σ1, σ2) an
s-Lindelöf space. Then (X × Y, ρ1, ρ2) is s-Lindelöf where ρi is a product topology.

Proof. Let U = {Uα : α ∈ ∆} be a ρ1ρ2-open cover of X × Y . Then U ⊆ ρ1 ∪ ρ2.
We may restrict our attention to a cover V ×W of X × Y with V = {Vα : α ∈ ∆}
and W = {Wα : α ∈ ∆} are τ1τ2-open cover and σ1σ2-open cover of X and Y re-
spectively where V ×W is contained in U , since any subcover of this cover will lead
immediately to a subcover chosen from the original cover U . Hence V ⊆ τ1 ∪ τ2 and
W ⊆ σ1 ∪ σ2. Now for each x ∈ X, let Yx = {x} × Y which is homeomorphic to Y
and hence Yx is s-Lindelöf with respect to the inducted bitopology from (ρ1, ρ2). So
Yx is s-Lindelöf relative to X×Y and since {Vα : α ∈ ∆}×{Wα : α ∈ ∆} also covers
Yx, there must exist a countable ρ1ρ2-open subcover {{Vx,αk} × {Wx,αk} : k ∈ N}
of Yx by sets which have a nonempty intersection with Yx. Letting Hx =

⋂
k∈N

Vx,αk ,

we see that Hx contains x and hence {Hx : x ∈ X} ⊆ τ1 ∪ τ2 since X is s-P -
space. The above countable ρ1ρ2-open subcover {{Vx,αk} × {Wx,αk} : k ∈ N} ac-
tually covers Hx × Y . Now the family {Hx : x ∈ X} is a τ1τ2-open cover of X.
Since X is s-Lindelöf, there exists a countable subcover {Hxn : n ∈ N}. But then
{{{Vxn,αk} × {Wxn,αk} : k ∈ N} : n ∈ N} coversX×Y . Since {{{Vxn,αk} × {Wxn,αk}
: k ∈ N} : n ∈ N} is a countable ρ1ρ2-open subcover, we have that X × Y is s-
Lindelöf.

Lemma 5.1. Let (X, τ1, τ2) and (Y, σ1, σ2) are s-P -spaces. Then (X × Y, ρ1, ρ2) is
s-P -space where ρi is a product topology.

Proof. Let U = {Uα : α ∈ ∆} ,V = {Vα : α ∈ ∆} and W = {Wα : α ∈ ∆} are ρ1ρ2-
open cover of X × Y , τ1τ2-open cover of X and σ1σ2-open cover of Y respec-
tively. For each (x, y) ∈ X × Y , let

{
U(x,y),αn : n ∈ N

}
be a countable subfam-

ily of U containing (x, y). We may restrict our attention to a countable subfamily
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{Vx,αn ×Wy,αn : n ∈ N} of U containing (x, y) where {Vx,αn : n ∈ N} is a countable

subfamily of V containing x,
{ ⋂
n∈N

Vx,αn : x ∈ X
}
⊆ τ1 ∪ τ2; and {Wy,αn : n ∈ N}

is a countable subfamily of W containing y,
{ ⋂
n∈N

Wy,αn : y ∈ Y
}
⊆ σ1 ∪ σ2, since

any countable subfamily of this form will lead immediately to a countable subfamily
chosen from the original cover U . Since{⋂

n∈N
(Vx,αn ×Wy,αn) : (x, y) ∈ X × Y

}

=

{(⋂
n∈N

Vx,αn

)
×

(⋂
n∈N

Wy,αn

)
: x ∈ X, y ∈ Y

}

=

{⋂
n∈N

Vx,αn : x ∈ X

}
×

{⋂
n∈N

Wy,αn : y ∈ Y

}
,

and {⋂
n∈N

Vx,αn : x ∈ X

}
⊆ τ1 ∪ τ2

and {⋂
n∈N

Wy,αn : y ∈ Y

}
⊆ σ1 ∪ σ2,

then {⋂
n∈N

(Vx,αn ×Wy,αn) : (x, y) ∈ X × Y

}
⊆ ρ1 ∪ ρ2.

Therefore X × Y is s-P -space.

Corollary 5.3. Let
{(
Xk, τ

k
1 , τ

k
2

)
: k = 1, . . . , n

}
be a collection of s-P -spaces. Then

(
∏n
k=1Xk, ρ1, ρ2) is s-P -space where ρi is a product topology.

Proof. It follows by induction of k.
The result of Proposition 5.1 can also be extended to a collection of finite s-

Lindelöf s-P -space and an s-Lindelöf space as follows.

Corollary 5.4. Let
{(
Xk, τ

k
1 , τ

k
2

)
: k = 1, . . . n, k 6= m,m ≤ n

}
be a collection of s-

Lindelöf s-P -spaces and (Xm, τ
m
1 , τm2 ) an s-Lindelöf space. Then (

∏n
k=1Xk, ρ1, ρ2)

is s-Lindelöf where ρi is a product topology.

Proof. It follows by induction of k and Corollary 5.3.

6. Product of p-Lindelöf spaces

Definition 6.1. A bitopological space (X, τ1, τ2) is called p-compact [8] (resp. p-
Lindelöf [9]) if every p-open cover of X has a finite (resp. countable) subcover.

Theorem 6.1. Let (X, τ1, τ2) and (Y, σ1, σ2) are p-compact spaces. Then (X × Y, ρ1, ρ2)
is p-compact where ρi is a product topology.
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Proof. The proof is similar with the Proposition 5.1.
The product is still invariant if we take a finite collection of p-compact spaces

thus we state the following corollary.

Corollary 6.1. Let
{(
Xk, τ

k
1 , τ

k
2

)
: k = 1, . . . n

}
be a collection of p-compact spaces.

Then (
∏n
k=1Xk, ρ1, ρ2) is p-compact where ρi is a product topology.

Fora and Hdeib [9] stated that every s-Lindelöf space is Lindelöf and p-Lindelöf.
In the same paper, see Example 2.34, Fora and Hdeib showed that the product of
any two p-Lindelöf spaces need not be p-Lindelöf. But the product of a p-Lindelöf
space and p-compact space is always p-Lindelöf.

Theorem 6.2. Let (X, τ1, τ2) be a p-Lindelöf space and (Y, σ1, σ2) a p-compact
space. Then (X × Y, ρ1, ρ2) is p-Lindelöf where ρi is a product topology.

Proof. The proof follows on using the Theorem 6.1.
The above result still holds if we take a p-Lindelöf space and a collection of finite

p-compact spaces as in the following corollary.

Corollary 6.2. Let (Xm, τ
m
1 , τm2 ) be a p-Lindelöf space and{(

Xk, τ
k
1 , τ

k
2

)
: k = 1, . . . n, k 6= m,m ≤ n

}
a collection of p-compact spaces. Then (

∏n
k=1Xk, ρ1, ρ2) is p-Lindelöf where ρi is a

product topology.

Proof. It follows immediately by the fact that the topological product is commuta-
tive, associative and the Corollary 6.1.

Definition 6.2. Let U = {Uα : α ∈ ∆} be a p-open cover of a bitopological space
(X, τ1, τ2). Then X is said to be p-P -space if for each x ∈ X and any countable
subfamily {Ux,αn : x ∈ X} of U where x ∈ Ux,αn for all n ∈ N satisfying the condition{ ⋂
n∈N

Ux,αn : x ∈ X
}
⊆ τ1 ∪ τ2, the following hold:{⋂

n∈N
Ux,αn : x ∈ X

}
∩ τ1 6= ∅ and

{⋂
n∈N

Ux,αn : x ∈ X

}
∩ τ2 6= ∅.

Proposition 6.1. Let (X, τ1, τ2) be a p-Lindelöf space p-P -space and (Y, σ1, σ2) a
p-Lindelöf space. Then (X × Y, ρ1, ρ2) is p-Lindelöf where ρi is a product topology.

Proof. Let U = {Uα : α ∈ ∆} be a p-open cover of X ×Y . Then U ⊆ ρ1 ∪ ρ2, U ∩ ρ1

contains a nonempty set and U ∩ ρ2 contains a nonempty set. We may restrict our
attention to a cover V×W of X×Y with V = {Vα : α ∈ ∆} andW = {Wα : α ∈ ∆}
are p-open covers of X and Y respectively where V ×W is contained in U . Hence
V ⊆ τ1 ∪ τ2, V ∩ τ1 contains a nonempty set and V ∩ τ2 contains a nonempty set,
and W ⊆ σ1 ∪σ2, W∩σ1 contains a nonempty set and W∩σ2 contains a nonempty
set. Now for each x ∈ X, let Yx = {x} × Y which is homeomorphic to Y and
hence Yx is p-Lindelöf with respect to the inducted bitopology from (ρ1, ρ2). So Yx
is p-Lindelöf relative to X × Y and since {Vα : α ∈ ∆} × {Wα : α ∈ ∆} also covers
Yx, there must exists a countable p-open subcover {{Vx,αn} × {Wx,αn} : n ∈ N} of
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Yx by sets which have a nonempty intersection with Yx. Letting Hx =
⋂
n∈N

Vx,αn ,

we see that Hx contains x and hence {Hx : x ∈ X} ⊆ τ1 ∪ τ2, {Hx : x ∈ X} ∩ τ1
contains a nonempty set and {Hx : x ∈ X} ∩ τ2 contains a nonempty set since X
is p-P -space. The above countable p-open subcover {{Vx,αn} × {Wx,αn} : n ∈ N}
actually covers Hx × Y . Now the family {Hx : x ∈ X} is a p-open cover of X.
Since X is p-Lindel öf, there exists a countable subcover {Hxm : m ∈ N}. But then
{{{Vxm,αn} × {Wxm,αn} : n ∈ N} : m ∈ N} covers X × Y . Since

{{{Vxm,αn} × {Wxm,αn} : n ∈ N} : m ∈ N}

is a countable p-open subcover, we have that X × Y is p-Lindelöf.

Lemma 6.1. Let (X, τ1, τ2) and (Y, σ1, σ2) be p-P -spaces. Then (X × Y, ρ1, ρ2) is
p-P -space where ρi is a product topology.

Proof. Let U = {Uα : α ∈ ∆} ,V = {Vα : α ∈ ∆} and W = {Wα : α ∈ ∆} be p-open
cover of X×Y , X and Y respectively. For each (x, y) ∈ X×Y , let

{
U(x,y),αn : n ∈ N

}
be a countable subfamily of U containing (x, y). We may restrict our attention to a
countable subfamily {Vx,αn ×Wy,αn : n ∈ N} of U containing (x, y) where {Vx,αn : n

∈ N} is a countable subfamily of V containing x, thus
{ ⋂
n∈N

Vx,αn : x ∈ X
}
⊆ τ1∪τ2,

and
{ ⋂
n∈N

Vx,αn : x ∈ X
}
∩τ1 contains a nonempty set, similarly,

{ ⋂
n∈N

Vx,αn : x ∈ X
}

∩τ2 contains a nonempty set; and {Wy,αn : n ∈ N} is a countable subfamily of W

containing y, thus
{ ⋂
n∈N

Wy,αn : y ∈ Y
}
⊆ σ1 ∪ σ2,

{ ⋂
n∈N

Wy,αn : y ∈ Y
}
∩ σ1 con-

tains a nonempty set, and
{ ⋂
n∈N

Wy,αn : y ∈ Y
}
∩σ2 contains a nonempty set. Since{⋂

n∈N
(Vx,αn ×Wy,αn) : (x, y) ∈ X × Y

}

=

{⋂
n∈N

Vx,αn : x ∈ X

}
×

{⋂
n∈N

Wy,αn : y ∈ Y

}

and
{ ⋂
n∈N

Vx,αn : x ∈ X
}
⊆ τ1∪τ2 and

{ ⋂
n∈N

Wy,αn : y ∈ Y
}
⊆ σ1∪σ2 satisfying the

conditions stated above, then we have
{ ⋂
n∈N

(Vx,αn ×Wy,αn) : (x, y) ∈ X × Y
}
⊆

ρ1 ∪ ρ2,
{ ⋂
n∈N

(Vx,αn ×Wy,αn) : (x, y) ∈ X × Y
}
∩ ρ1 contains also a nonempty set

and thus
{ ⋂
n∈N

(Vx,αn ×Wy,αn) : (x, y) ∈ X × Y
}

contains a nonempty set. There-

fore X × Y is p-P -space.

Corollary 6.3. Let
{(
Xk, τ

k
1 , τ

k
2

)
: k = 1, . . . , n

}
be a collection of p-P -spaces. Then

(
∏n
k=1Xk, ρ1, ρ2) is p-P -space where ρi is a product topology.
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Proof. The proof follows easily by using the induction on k.
The result in the Proposition 6.1 can be extended to a collection of a finite p-

Lindelöf p-P -space and a p-Lindelöf space as we state in the following corollary.

Corollary 6.4. Let
{(
Xk, τ

k
1 , τ

k
2

)
: k = 1, . . . n, k 6= m,m ≤ n

}
be a collection of p-

Lindelöf p-P -spaces and (Xm, τ
m
1 , τm2 ) a p-Lindelöf space. Then (

∏n
k=1Xk, ρ1, ρ2)

is p-Lindelöf where ρi is a product topology.

Proof. It follows by induction on k and using the Corollary 6.3.
The converse of corresponding theorems, propositions and corollaries above are

also true as we state in the following theorem.

Theorem 6.3. Suppose that {(Xα, τ
α
1 , τ

α
2 ) : α ∈ ∆} be a collection of nonempty

bitopological spaces. If
(∏

α∈∆Xα, ρ1, ρ2

)
is ρi-Lindelöf (resp. Lindelöf, s-Lindelöf,

p-Lindelöf, (ρi, ρj)-Lindelöf, B-Lindelöf, ρi-compact, compact, s-compact, p-compact,
(ρi, ρj)-compact or B-compact), then each Xα is ταi -Lindelöf (resp. Lindelöf, s-
Lindelöf, p-Lindelöf,

(
ταi , τ

α
j

)
-Lindelöf, B-Lindelöf, ταi -compact, compact, s-compact,

p-compact,
(
ταi , τ

α
j

)
-compact or B-compact) where ρi is a product topology.

Proof. Since each projection map πα :
∏
α∈∆Xα → Xα is continuous open surjec-

tion, the theorem is clearly proved.
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