
BULLETIN of the
Malaysian Mathematical

Sciences Society
http://math.usm.my/bulletin

Bull. Malays. Math. Sci. Soc. (2) 34(3) (2011), 423–434

Tenacity and Rupture Degree of Permutation
Graphs of Complete Bipartite Graphs

1Fengwei Li, 2Qingfang Ye and 3Xueliang Li
1,2Department of Mathematics, Shaoxing University, Shaoxing

Zhejiang 312000, P. R. China
3Center for Combinatorics and LPMC, Nankai University

Tianjin 300071, P. R. China
1fengwei.li@eyou.com, 2fqy-y@163.com, 3x.li@eyou.com

Abstract. Computer or communication networks are so designed that they do
not easily get disrupted under external attack and, moreover, these are easily re-
constructed when they do get disrupted. These desirable properties of networks
can be measured by various parameters such as connectivity, toughness, tenac-
ity and rupture degree. Among these parameters, tenacity and rupture degree
are comparatively better parameters to measure the vulnerability of networks.
In this paper, the authors give the exact values for the tenacity and rupture
degree of permutation graphs of complete bipartite graphs.
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1. Introduction

Throughout this paper, a graph G = (V, E) always means a simple connected graph
with vertex set V and edge set E. We use Bondy and Murty [1] for terminology
and notations not defined here. A set S ⊆ V (G) is a cut set of G, if either G− S is
disconnected or G− S has only one vertex.

Measures of the vulnerability of graphs are currently of growing interest among
graph theorists and network designers. Among vulnerability parameters, much have
been done recently on the toughness, binding number of different classes of graphs
since these parameters are more sensitive to the structure of the graph than is the
connectivity of the graph. In [4], Guichard et al. given the integrity, toughness, and
binding number for permutation graphs of complete and complete bipartite graphs.

In the following two definitions, m(G − S), and ω(G − S), respectively, denotes
the order of the largest component and number of components in G− S.
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The tenacity of a graph G, T (G), which is defined by Cozzens in [3], is defined as

T (G) = min
{ |S|+ m(G− S)

ω(G− S)
: S ⊆ V (G) is a vertex cut set of G

}
.

The rupture degree of a noncomplete graph G, r(G), introduced by Li, Zhang and
Li in [7], is defined as

r(G) = max{ω(G− S)− |S| −m(G− S) : S ⊆ V (G) is a vertex cut set of G}.
In particular, the tenacity and rupture degree of a complete graph Kn is defined

to be n and 1− n respectively.
Clearly, of all the above parameters, tenacity and rupture degree are compar-

atively appropriate for measuring the vulnerability of networks. Similarly to the
relation between the toughness and scattering number, the rupture degree and
tenacity also differ in showing the vulnerability of networks. This can be shown
as follows. Consider the graphs G1 and G2 in Figure 1, It is not difficult to
check that T (G1) = T (G2) = 1/2, but r(G1) = 3 and r(G2) = 4. Clearly
r(G1) 6= r(G2). On the other hand, we consider graphs G3 = K1+(Kn−b−1∪Eb) and
G4 = K2 + (Kn−b−3 ∪Eb+1), it is obvious that r(G3) = r(G4), but T (G3) 6= T (G4)
unless n = 2b + 1, where b is a positive integer. Hence rupture degree is a better
parameter for distinguishing the vulnerability of these two graphs G1 and G2, but
the tenacity is a better parameter for distinguishing the vulnerability of these two
graphs G3 and G4.

Figure 1. Graphs G1 and G2.

It is easy to see that the higher the tenacity (the less the rupture degree) of a
network the more stable it is considered to be.

In [2], the authors introduced permutation graphs and proceeded to characterize
those which are planar.

For a graph G with n vertices labelled 1, 2, · · · , n, n ≥ 4, and a permutation
α ∈ Sn, the symetric group on the n symbols {1, 2, · · · , n}, the α-permutation graph
of G, Pα(G) consists of two disjoint copies of G, Gx and Gy, along with the n edges
obtained by join xi in Gx with yα(i) in Gy, i = 1, 2, · · · , n.
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It is well known that permutation graphs have high connectivity properties, as is
shown in [9] and [10]. As special graphs, some vulnerability parameters of permu-
tation graphs of complete bipartite graphs have been determined in [4]. In [6], we
give the following decision problem.

Problem. Not r-rupture

Instance: An incomplete connected graph G, and an integer r.

Question: Does there exist an X ⊂ V (G) with ω(G−X) ≥ 2 such that ω(G−X) >
|X|+ m(G−X) + r ?

And by this decision problem, we proved that computing the rupture degree of
a graph is NP-hard in general and so is the problem of determining the tenacity of
a graph [8], so it is an interesting problem to determine these two parameters for
some special graphs.

In this paper, formulas for computing the rupture degree and tenacity for permu-
tation graphs of complete bipartite graphs are determined.

2. Tenacity and rupture degree of the permutation graphs of complete
bipartite graphs

In this section, we fix our attention on permutation graph of complete bipartite
graph, Pα(Km,n). Assume that m ≤ n and that M and N are the sets of the
partitions of size m and n respectively. Furthermore, assume that the vertices of M
are labelled 1, 2, · · · ,m and that vertices of N are labelled m + 1,m + 2, · · · , m + n.
For the permutation graph Pα(Km,n), let Mx and My denote the partitions of the
first copy of Km,n, Nx and Ny denote the partitions of the second copy of Km,n,
and let q denote the number of vertices in Mx that are joined by permutation edges
to vertices in My. It is well known that the connectivity, toughness, integrity and
the binding number of Pα(Km,n) can be expressed in terms of the parameters m, n,
and/or q as follows.

Theorem 2.1. [4] For α in Sm+n, and m ≤ n

t(Pα(Km,n)) =

{
2m

m+n−q if q < n2+m2

n+3m
n+m
n+q if q ≥ n2+m2

n+3m .

Theorem 2.2. [4] For α in Sm+n, and m ≤ n

I(Pα(Km,n)) =

{
2m + 1 if m = n and q ∈ {0,m}
2m + 2 otherwise.

Theorem 2.3. [2] For α in Sm+n, and m ≤ n

b(Pα(Km,n)) =





n+q
q if q < nm

2m+n−1
2m+2n−1
m+2n−1 if nm

2n+m−1 ≤ q < m2+3mn−2m
4n+2m−2

3m+n−2q
n+m if m2+3mn−2m

4n+2m−2 ≤ q.

Theorem 2.4. [9] For α in Sm+n, and m ≤ n, κ(Pα(Km,n) = m + 1.
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In the following, we determine the rupture degree and tenacity of the permutation
graph of complete bipartite graphs in terms of the parameters m, n and/or q.

In the proofs of the remaining theorems we will use the following definitions and
observations. Let M ′

x be the set of vertices in Mx that are joined by permutation
edges to vertices in My and let M ′

y be these vertices in My. So |M ′
y| = |M ′

x| = q. Let
M ′′

x = Mx −M ′
x and M ′′

y = My −M ′
y and thus |M ′′

y | = |M ′′
x | = m− q. Now the ver-

tices in M ′′
x are adjacent to vertices in Ny by permutation edges, we call this vertex

set N ′′
y . Similarly define N ′′

x to be the set of vertices in Nx adjacent to the vertices
in M ′′

y by permutation edges. Thus |N ′′
x | = |N ′′

y | = m− q. Finally let N ′
x = Nx−N ′′

x

and N ′
y = Ny − N ′′

y , so |N ′
x| = |N ′

y| = n − m + q. Note that since 0 ≤ q ≤ m,
some of these sets may be empty. Let K = {M ′

x,M ′′
x , M ′

y,M ′′
y , N ′

x, N ′′
x , N ′

y, N ′′
y }.

The relationship among these sets in K is shown in Figure 2.
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Figure 2. Relationship among the sets in K.

Remark 2.1. It is easy to see that, when m = n = 1, whether q = 1 or q = 0, the
two graphs are isomorphic. So under this condition, we assume that q = 0.

To prove our main result we first give a lemma.

Lemma 2.1. For α in Sm+n and m ≤ n, there exists a vertex cut set S of graph
Pα(Km,n) with

T (Pα(Km,n)) =
|S|+ m(Pα(Km,n)− S)

ω(Pα(Km,n)− S)
,

such that for all Z in K, if Z ∩ S is not empty, then Z ⊂ S.

Proof. By the symmetry of the permutation graph of complete bipartite graph, we
do the case when Z = M ′

x. Let S′ be the minimum vertex cut set of Pα(Km,n) with

T (Pα(Km,n)) =
|S′|+ m(Pα(Km,n)− S′)

ω(Pα(Km,n)− S′)
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and let Ax = S′ ∩M ′
x and Bx = M ′

x − Ax. We let Ay be the neighborhood of Ax

in M ′
y, and By be the neighborhood of Bx in M ′

y. Suppose that Ax and Bx are
both nonempty, i.e., m ≥ 2. We first note that T = Mx ∪My is a vertex cut set of
Pα(Km,n). So by the definition of tenacity, we have

T (Pα(Km,n)) ≤ 2m + 2
m + n− q

.

The proof proceeds in four cases.

Case 1. If Nx and Ny are both contained in S′, let T = S′ −Ax, then |T | = |S′| −
|Ax|, ω(Pα(Km,n) − T ) ≥ ω(Pα(Km,n) − S′), m(Pα(Km,n) − T ) ≤ m(Pα(Km,n) −
S′) + 1. So,

|T |+ m(Pα(Km,n)− T )
ω(Pα(Km,n)− T )

≤ |S′|+ m(Pα(Km,n)− S′)− (|Ax| − 1)
ω(Pα(Km,n)− S′)

≤ |S′|+ m(Pα(Km,n)− S′)
ω(Pα(Km,n)− S′)

.

Thus,
|T |+ m(Pα(Km,n)− T )

ω(Pα(Km,n)− T )
=
|S′|+ m(Pα(Km,n)− S′)

ω(Pα(Km,n)− S′)
,

which contradicts the minimality of S′.

Case 2. If Nx is contained in S′ but Ny is not contained in S′, then let xi be an
element of Ax and so yα(i) is in Ay. Let T = S′−{xi}, then |T | = |S′|−1. If yα(i) is
not contained in S′, then ω(Pα(Km,n)−T ) = ω(Pα(Km,n)−S′), m(Pα(Km,n)−T ) ≤
m(Pα(Km,n)− S′) + 1. So,

|T |+ m(Pα(Km,n)− T )
ω(Pα(Km,n)− T )

≤ |S′|+ m(Pα(Km,n)− S′)
ω(Pα(Km,n)− S′)

.

Thus,
|T |+ m(Pα(Km,n)− T )

ω(Pα(Km,n)− T )
=
|S′|+ m(Pα(Km,n)− S′)

ω(Pα(Km,n)− S′)
,

but T has one less vertex than that of S′, a contradiction. If yα(i) is contained in S′,
then ω(Pα(Km,n)−T ) = ω(Pα(Km,n)−S′)+1, m(Pα(Km,n)−T ) = m(Pα(Km,n)−
S′). So,

|T |+ m(Pα(Km,n)− T )
ω(Pα(Km,n)− T )

=
|S′| − 1 + m(Pα(Km,n)− S′)

ω(Pα(Km,n)− S′) + 1
<
|S′|+ m(Pα(Km,n)− S′)

ω(Pα(Km,n)− S′)
,

again a contradiction.

Case 3. If Nx is not contained in S′ but Ny is contained in S′, then let xi be in
Ax and so yα(i) is in Ay. If yα(i) is in S′, let T = S′ − {xi}, then |T | = |S′| − 1,
ω(Pα(Km,n)−T ) = ω(Pα(Km,n)−S′), m(Pα(Km,n)−T ) = m(Pα(Km,n)−S′)+ 1.
So,

|T |+ m(Pα(Km,n)− T )
ω(Pα(Km,n)− T )

=
|S′|+ m(Pα(Km,n)− S′)

ω(Pα(Km,n)− S′)
,
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but T has one less vertex than that of S′, a contradiction. Hence Ay ∩ S′ is empty.
Now let xi be in Bx, then yα(i) is contained in By. If yα(i) is in S′, then let T =
S′ − {yα(i)} ∪ {xi}. Thus, |T | = |S′|, ω(Pα(Km,n) − T ) ≥ ω(Pα(Km,n) − S′) + 1,
m(Pα(Km,n)− T ) ≤ m(Pα(Km,n)− S′)− 1. So,

|T |+ m(Pα(Km,n)− T )
ω(Pα(Km,n)− T )

<
|S′|+ m(Pα(Km,n)− S′)

ω(Pα(Km,n)− S′)
,

a contradiction. So By ∩S is empty. Thus M ′
y ∩S′ is empty. Let T = S′ ∪Bx, then

|T | = |S′|+ |Bx|, ω(Pα(Km,n)−T ) ≥ ω(Pα(Km,n)−S′)+ |Bx|, m(Pα(Km,n)−T ) ≤
m(Pα(Km,n)− S′)− |Bx|. So

|T |+ m(Pα(Km,n)− T )
ω(Pα(Km,n)− T )

≤ |S′|+ m(Pα(Km,n)− S′)
ω(Pα(Km,n)− S′) + |Bx| <

|S′|+ m(Pα(Km,n)− S′)
ω(Pα(Km,n)− S′)

,

this contradicts the definition of tenacity.

Case 4. If Nx and Ny are not contained in S′, then consider My. If My is contained
in S′, let T = S′∪Bx, then |T | = |S′|+ |Bx|, ω(Pα(Km,n)−T ) ≥ ω(Pα(Km,n)−S′),
m(Pα(Km,n)− T ) ≤ m(Pα(Km,n)− S′)− |Bx|. So,

|T |+ m(Pα(Km,n)− T )
ω(Pα(Km,n)− T )

≤ |S′|+ m(Pα(Km,n)− S′)
ω(Pα(Km,n)− S′)

.

Thus T is a vertex cut set with
|T |+ m(Pα(Km,n)− T )

ω(Pα(Km,n)− T )
=
|S′|+ m(Pα(Km,n)− S′)

ω(Pα(Km,n)− S′)
,

and M ′
x ⊆ T. If My is not contained in S′, then it is easy to see that all of the

vertices in Nx − S′ are in the same component since Bx is nonempty, and all of the
vertices in Ny − S′ are in the same component since My ∩ S′ is nonempty. Thus
Pα(Km,n)−S′ has exactly two components, one in each copy of Km,n. If neither xi

nor yα(i) is not in S′ then S′ is not a cut set. Thus at least one of xi and yα(i) is in S′

for all i = 1, 2, · · · , n + m. Thus we know that |S′| ≥ n + m, ω(Pα(Km,n)−S′) = 2.
Let C be the component of Pα(Km,n)− S′ containing Bx, then

T (Pα(Km,n)) =
|S′|+ m(Pα(Km,n)− S′)

ω(Pα(Km,n)− S′)

≥ |S′|+ |V (C)|
ω(Pα(Km,n)− S′)

≥ |S′|+ |Bx|+ |Nx − S′|
ω(Pα(Km,n)− S′)

≥ n + m + 2
2

≥ n + m + 2
m + n− q

≥ 2m + 2
m + n− q

.

On the other hand, by the previous remark we know that

T (Pα(Km,n)) ≤ 2m + 2
m + n− q

.

Hence, in this case

T (Pα(Km,n)) =
2m + 2

m + n− q
.
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Let T = Mx ∪My. Then T is a vertex cut set with

T (Pα(Km,n)) =
|T |+ m(Pα(Km,n)− T )

ω(Pα(Km,n)− T )

and M ′
x is contained in T.

From above we know that the lemma is true if Z = M ′
x. The above proof works

for the other cases of Z ∈ K. The details are omitted.
By the above lemma we can obtain the tenacity of the permutation graph of

complete bipartite graph.

Theorem 2.5. For α in Sm+n and m ≤ n.
(1) If 1 = m = n, T (Pα(Km,n)) = 3/2.
(2) If 1 = m < n, when q = 0, T (Pα(Km,n)) = 4/(n + 1) when q = 1,

T (Pα(Km,n)) =

{
n+2
n+1 if 2 ≤ n ≤ 3
4
n if n > 3.

(3) If 2 ≤ m ≤ n,
when q = 0,

T (Pα(Km,n)) =

{
2m+1
m+n if m = n
2m+2
m+n if m < n,

when q = m,

T (Pα(Km,n)) =

{
2m+2

n if m < m2+n2+m−n
3m+n+3

n+m+1
n+m if m ≥ m2+n2+m−n

3m+n+3 ,

when 1 ≤ q ≤ m− 1,

T (Pα(Km,n)) =

{
2m+2

m+n−q if q < m2+2n+n2

3m+n+4
n+m+2

n+q if q ≥ m2+2n+n2

3m+n+4 .

Proof. By Lemma 2.1 we know that the vertex set satisfying the condition must be
the union of the elements of K. It is easy to find 55 vertex cut sets of this type. But
most of these sets are trivial, all but 4 of these sets may be discarded as giving too
larger values for (|S|+ m(Pα(Km,n)− S))/(ω(Pα(Km,n)− S)). The remaining sets
are S1 = Mx ∪M ′′

y , S2 = Mx ∪My, S3 = Mx ∪Ny, S4 = Mx ∪N ′
y, and the values

for (|S|+ m(Pα(Km,n)− S))/(ω(Pα(Km,n)− S)) given by these sets are

v1 =
m + 2n + q

m− q + 1
,

v2 =
2m + 2

n + m− q
,

v3 =
m + n + 2

q + n
if q 6= m or v3 =

m + n + 1
q + n

if q = m,

v4 =
3m + n− q

n−m + q + 1
.



430 F. Li, Q. Ye and X. Li

We distinguish three cases.

Case 1. When m = n = 1, it is easy to see that

(a) if q = 0, T (Pα(Km,n)) = min{v1, · · · , v4} = v2 = 3/2,
(b) if q = 1, T (Pα(Km,n)) = min{v1, · · · , v4} = v4 = 3/2.

So under this condition T (Pα(Km,n)) = 3/2.

Case 2. When 1 = m < n.

Subcase 2.1 If q = 0, then T (Pα(Km,n)) = min{v1, · · · , v4} = v2 = 4/(n + 1).

Subcase 2.2 If q = 1, then

(a) when 2 ≤ n ≤ 3, T (Pα(Km,n)) = min{v1, · · · , v4} = v4 = (n + 2)/(n + 1),
(b) when n > 3, T (Pα(Km,n)) = min{v1, · · · , v4} = v2 = 4/n.

Case 3. When 2 ≤ m ≤ n,

Subcase 3.1 if q = 0,

(a) when m = n, T (Pα(Km,n)) = min{v1, · · · , v4} = v2 = (m + n + 1)/(m + n),
(b) when m < n, T (Pα(Km,n)) = min{v1, · · · , v4} = v2 = (m + n + 2)/(m + n).

Subcase 3.2 If 1 ≤ q ≤ m, for fixed m and n, when q increases, the following
occur. The value v1 increases, so the minimum value of v1 is (m + 2n + 1)/m. v4

decreases, so the minimum value of v4 is (2m + n)/(n + 1). When q 6= m increases,
The value v3 decreases, so the maximum value of v3 is (m + n + 2)/(n + 1). It is
easy to check that the minimum value of v1 is larger than the maximum value of
v2, and the minimum value of v4 is larger than the maximum value of v3. And it
is also easily checked that when q = m, the minimum value of v4 is larger than the
value of v3 = (m + n + 1)/(q + n). So S1 and S4 should be discarded. Now the
value of v3 decreases as q increases, and the intersection point for v2 and v3 occurs
where q = (m2 + 2n + n2)(3m + n + 4), when v3 = (m + n + 2)/(q + n) and where
q = (m2 + n2 + m− n)/(3m + n + 3), when v3 = (m + n + 1)/(q + n). Thus the
theorem holds.

The following theorem gives us the rupture degree of permutation graph of com-
plete bipartite graphs. Note that T = Mx ∪My is a vertex cut set of Pα(Km,n), so
by the definition of the rupture degree we have

r(Pα(Km,n)) ≥ ω(Pα(Km,n)− T )− |T | −m(Pα(Km,n)− T ) ≥ n−m− q − 2.

In order to prove this theorem we first introduce a lemma.

Lemma 2.2. For α in Sm+n and m ≤ n, there exists a vertex cut set S of Pα(Km,n)
with

r(Pα(Km,n)) = ω(Pα(Km,n)− S)− |S| −m(Pα(Km,n)− S)

such that for all Z in K, if Z ∩ S is not empty, then Z ⊂ S.
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Proof. By the symmetry of the permutation graph of complete bipartite graph, We
do the case when Z = M ′

x. Let S′ be the minimum vertex cut set of Pα(Km,n) with

r(Pα(Km,n)) = ω(Pα(Km,n)− S′)− |S′| −m(Pα(Km,n)− S′),

and let Ax = S′ ∩ M ′
x and Bx = M ′

x − Ax. Suppose that Ax and Bx are both
nonempty, i.e., m ≥ 2. We distinguish four cases.

Case 1. If Nx and Ny are both contained in S′, let T = S′ −Ax, then |T | = |S′ | −
|Ax|, ω(Pα(Km,n) − T ) ≥ ω(Pα(Km,n) − S′), m(Pα(Km,n) − T ) ≤ m(Pα(Km,n) −
S′) + 1. So,

ω(Pα(Km,n)− T )− |T | −m(Pα(Km,n)− T )

≥ ω(Pα(Km,n)− S′)− |S′| −m(Pα(Km,n)− S′) + |Ax| − 1

≥ ω(Pα(Km,n)− S′)− |S′| −m(Pα(Km,n)− S′),

a contradiction to the minimality of S′.

Case 2. If Nx is contained in S′ but Ny is not contained in S′, let T = S′ − Ax,
then |T | = |S′| − |Ax|, ω(Pα(Km,n)− T ) ≥ ω(Pα(Km,n)− S′), m(Pα(Km,n)− T ) ≤
m(Pα(Km,n)− S′) + |Ax|. So,

ω(Pα(Km,n)−T )−|T |−m(Pα(Km,n)−T ) ≥ ω(Pα(Km,n)−S′−|S′ |−m(Pα(Km,n)−S′),

which contradicts the minimality of S′.

Case 3. If Nx is not contained in S′ but Ny is contained in S′, then M ′
y ∩ S′ is

empty, the proof is similar to that of Case 3 in Lemma 2.1. Let T = S′ ∪Bx. Thus
|T | = |S′|+ |Bx|, ω(Pα(Km,n)−T ) ≥ ω(Pα(Km,n)−S′)+ |Bx|, m(Pα(Km,n)−T ) ≤
m(Pα(Km,n)− S′)− |Bx|. So,

ω(Pα(Km,n)− T )− |T | −m(Pα(Km,n)− T )

≥ ω(Pα(Km,n)− S′)− |S′ | −m(Pα(Km,n)− S′) + |Bx|
> ω(Pα(Km,n)− S′)− |S′| −m(Pα(Km,n)− S′),

which contradicts the definition of rupture degree.

Case 4. If neither Nx nor Ny is contained in S
′
, then consider My. If My is contained

in S′, let T = S′∪Bx, then |T | = |S′|+ |Bx|, ω(Pα(Km,n)−T ) ≥ ω(Pα(Km,n)−S′),
m(Pα(Km,n)− T ) ≤ m(Pα(Km,n)− S′)− |Bx|. So,

ω(Pα(Km,n)− T )− |T | −m(Pα(Km,n)− T )

≥ ω(Pα(Km,n)− S′)− |S′| −m(Pα(Km,n)− S′).

Thus T is a vertex cut set with ω(Pα(Km,n) − T ) − |T | − m(Pα(Km,n) − T ) =
ω(Pα(Km,n)−S′)−|S′|−m(Pα(Km,n)−S′), and M ′

x ⊆ T. If My is not contained in
S′, then it is easy to see that all of the vertices in Nx−S′ are in the same component
since Bx is nonempty, and all of the vertices in Ny − S′ are in the same component
since My ∩S′ is nonempty. Thus Pα(Km,n)−S′ has exactly two components, one in
each copy of Km,n. If neither xi nor yα(i) is not in S′, then S′ is not a cut set. Thus
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at least one of xi and yα(i) is in S′ for all i = 1, 2, · · · , n + m. Thus we know that
|S′| ≥ n + m, ω(Pα(Km,n) − S′) = 2. Let C be the component of Pα(Km,n) − S′

containing Bx, then

r(Pα(Km,n)) = ω(Pα(Km,n)− S′)− |S′| −m(Pα(Km,n)− S′)

≤ ω(Pα(Km,n)− S′)− |S′| − |V (C)|
≤ ω(Pα(Km,n)− S′)− |S′| − |Bx| − |Nx − S′|
≤ 2− n−m− 2 ≤ n−m− q − 2.

On the other hand, by the previous remark we know that r(Pα(Km,n)) ≥ n−m−
q − 2. Hence, in this case r(Pα(Km,n)) = n −m − q − 2. Let T = Mx ∪My. Then
T is a cut set with r(Pα(Km,n)) = ω(Pα(Km,n)− T )− |T | −m(Pα(Km,n)− T ) and
M ′

x ⊂ T.
From above we know that the lemma is true if Z = M ′

x. The above proof works
for the other cases of Z ∈ K. The details are omitted.

Theorem 2.6. For α in Sm+n and m ≤ n.
(1) If m = n = 1, r(Pα(Km,n)) = −1.
(2) If 1 = m < n, when q = 0, r(Pα(Km,n)) = n− 3. When q = 1,

r(Pα(Km,n)) =

{
−1 if 2 ≤ n ≤ 3
n− 4 if n > 3.

(3) If 2 ≤ m ≤ n,
when q = 0,

r(Pα(Km,n)) =

{
n−m− 2 if n−m ≥ 2
−1 if n−m < 2,

when q = m,

r(Pα(Km,n)) =

{
n− 2m− 2 if q ≤ n−1

2

−1 if q > n−1
2 ,

when 1 ≤ q ≤ m− 1,

r(Pα(Km,n)) =

{
n−m− q − 2 if q ≤ n

2

q −m− 2 if q > n
2 .

Proof. By Lemma 2.2 we know that the vertex set satisfying the condition must be
the union of the elements of K. It is easy to find 55 vertex cut sets of this type.
But most of these sets are trivial, all but 5 of these sets may be discarded as giv-
ing too less values for ω(Pα(Km,n) − S) − |S| −m(Pα(Km,n) − S). The remaining
sets are S1 = Mx ∪ My, S2 = Mx ∪ Ny, S3 = Mx ∪ My ∪ N ′

x, S4 = Mx ∪ N ′
y,

S5 = Mx ∪M ′′
y ∪N ′

y and the values for ω(Pα(Km,n)− S)− |S| −m(Pα(Km,n)− S)
given by these sets are v1 = n −m − q − 2, v2 = q −m − 2 if q 6= m or v2 = −1 if
q = m, v3 = −2q−1, v4 = −4m+2q+1, v5 = −2m+1. So we distinguish three cases.
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Case 1. When m = n = 1, it is easy to see that r(Pα(Km,n)) = max{v1, v2, · · · , v5} =
v5 = −1.

Case 2. When 1 = m < n,

Subcase 2.1 If q = 0, it is easy to see that r(Pα(Km,n)) = max{v1, v2, · · · , v5} =
v1 = n− 3.

Subcase 2.2 If q = 1, it is easy to see that
(a) when n = 2, then r(Pα(Km,n)) = max{v1, v2, · · · , v5} = v5 = −1,
(b) when n > 2, then r(Pα(Km,n)) = max{v1, v2, · · · , v5} = v1 = n− 4.

Case 3. When 2 ≤ m ≤ n,

Subcase 3.1 If q = 0, it is easy to see that
(a) when n − m ≥ 2, then r(Pα(Km,n)) = max{v1, v2, · · · , v5} = v1 = n − m

−2,
(b) when n−m < 2, then r(Pα(Km,n)) = max{v1, v2, · · · , v5} = v3 = −1.

Subcase 3.2 If q = m, then, when q ≤ (n− 1)/2, max{v1, v2, · · · , v5} = v1 =
n− 2m− 2; when q ≥ (n− 1)/2, max{v1, v2, · · · , v5} = v2 = −1.

Subcase 3.3 If 1 ≤ q ≤ m−1, under this condition, for fixed m and n, when q ≤ n/2,
then max{v1, v2, · · · , v5} = v1 = n−m−q−2; when q ≥ n/2, max{v1, v2, · · · , v5} =
v2 = q −m− 2. The proof is thus completed.

3. Conclusion

The rupture degree and tenacity of a graph, to some extent, represents a trade-off
between the amount of work done to damage the network and how badly the net-
work is damaged. Hence, the rupture degree and tenacity can be used to measure
the vulnerability of networks. So clearly, it is of prime importance to determine this
parameter for a graph. In this paper, we have obtained the exact values for the
rupture degree and tenacity of permutation graphs of complete bipartite graphs. To
make further progress in this direction, one could try to characterize the graphs with
given rupture degree or tenacity.
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