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Abstract. Let G be a group such that the subgroup T 2(G) = {x ∈ G | (gx)2 =
(xg)2, for all g ∈ G} is a proper subgroup. We define a graph Γ with the vertex
set G \ T 2(G) in which two vertices x, y are joined by an edge if (xy)2 6= (yx)2.
In this note we study this graph and find a characterization of some dihedral
groups in terms of this graph.

2010 Mathematics Subject Classification: 20D60, 05C25

Keywords and phrases: Graph associated to groups, finite groups.

1. Introduction

Paul Erdös introduced the following graph: Let G be a group and consider a graph
Γ whose vertex set is G and join two distinct elements if they do not commute. In
response to a question of Erdös, on the cardinality of complete subgraphs of Γ, B.
H. Neumann [7] proved that a group G is center-by-finite if and only if Γ has no
infinite complete subgraph. In [2] this graph is called the non-commuting graph and,
to avoid isolated vertices, the vertex set of this graph is taken as the elements of the
group outside its center. There are many different ways of associating a graph to a
group, for instance see [3, 4, 8]. The study of groups, using the properties of graphs,
has been the object of such papers.

Let us introduce some necessary notation and definitions. Let w(x, y) be a word
and W be the variety of groups defined by the law w(x, y) = 1. Suppose that G is
a group which is not in W. Let T (G) = {x ∈ G | w(x, g) = w(g, x) = 1, for all g ∈
G}. We define a graph Γ as follows. The vertex set V = V (Γ) of Γ is the set
G \ T (G) and two elements x, y ∈ V are joined by an edge if w(x, y) 6= 1. Note
that to avoid isolated vertices, the vertex set is taken as the elements of G outside
T (G). If w(x, y) = [x, y] = x−1y−1xy the graph Γ(G) is the non-commuting graph
investigated in [2]. Let n be a positive integer. One can investigate the graph of a
group using the word u(x, y) = [x, yn]. The variety of groups defined by the word
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[x, yn] coincides with the variety of groups defined by the word (xy)n(yx)−n. So one
can also investigate the graph of a group using the word w(x, y) = (xy)n(yx)−n. In
this paper we consider a special word w(x, y) = (xy)2(yx)−2. This word has been
considered in [1] for investigating the question posed by Erdös mentioned above.

Let g be an element of a group G. Recall that C(g), the centralizer of g in G, is the
subgroup of all elements of G commuting with g, i.e. C(g) = {x ∈ G | gx = xg}. Let
n be a positive integer. Define the n-centralizer of an element g of G as Cn(g) = {x ∈
G | gnx = xgn} = C(gn). Then Cn(g) is a subgroup of G and

⋂
g∈G Cn(g) = C(Gn),

where Gn = {gn | g ∈ G}. Now define Tn(g) = {x ∈ G | (gx)n = (xg)n} and
Tn(G) =

⋂
g∈G Tn(g). It is easy to see that Tn(g) may not be a subgroup of G. But

it can be seen easily that Tn(G) = C(Gn), and so Tn(G) is a normal subgroup of
G. To prove Tn(G) ⊆ C(Gn), let g ∈ Tn(G). Then for all x ∈ G, (gx)n = (xg)n.
Therefore (g(g−1x))n = ((g−1x)g)n and so xn = g−1xng. Hence gxn = xng and
g ∈ C(Gn). To see C(Gn) ⊆ Tn(G), let g ∈ C(Gn). Then for all x ∈ G, gxn = xng.
Therefore g(gx)n = (gx)ng and so (gx)n = g−1(gx)ng. Hence (gx)n = (xg)n and
g ∈ Tn(G).

Now suppose that G is a group such that Tn(G) is a proper subgroup. The vertex
set V = V (Γ) of the graph Γ := Γ(G) is the set G\Tn(G) and two elements x, y ∈ V
are joined by an edge if (xy)n 6= (yx)n.

Now let us recall some notions of graphs. We consider simple graphs which are
undirected, with no loops or multiple edges. For any graph Γ, we denote the sets of
vertices and edges of Γ by V (Γ) and E(Γ), respectively. The degree of a vertex v
in Γ is the number of edges incident to v. A graph Γ is regular if the degrees of all
vertices of Γ are the same. A graph is complete if every pair of vertices are joined
by an edge.

A path P is a sequence v0e1v1e2 · · · ekvk whose terms are alternately distinct
vertices and distinct edges, such that for any i, 1 ≤ i ≤ k, the ends of ei are vi−1

and vi. In this case P is called a path between v0 and vk. The number k is called
the length of P . If v0 and vk are adjacent in Γ by an edge ek+1, then P ∪ {ek+1}
is called a cycle. The length of a cycle is defined by the number of its edges. The
length of the shortest cycle in a graph Γ is called girth of Γ and denoted by girth(Γ).
A Hamilton cycle of Γ is a cycle that contains every vertex of Γ. If v and w are
vertices in Γ, then d(v, w) denotes the length of the shortest path between v and w.
The largest distance between all pairs of the vertices of Γ is called the diameter of
Γ, and is denoted by diam(Γ). A graph Γ is connected if there is a path between
each pair of the vertices of Γ. A planar graph is a graph that can be embedded in
the plane so that no two edges intersect geometrically except at a vertex which both
are incident.

2. Main results

Throughout this section we assume that G is a finite group, n = 2 and Γ := Γ(G).
So V := V (Γ) = {g ∈ G | (xg)2 6= (gx)2, for some x ∈ G}, with two elements
x, y ∈ V are joined by an edge if (xy)2 6= (yx)2. First we classify groups with
complete graphs.
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Theorem 2.1. The graph Γ is a complete graph if and only if H := C(G2) is abelian
of odd order with index 2, x2 = 1, hx = h−1, for all x ∈ G \H and all h ∈ H.

Proof. (⇐=) Let x be any element of G outside H. Then G = H ∪xH and V (Γ) =
G\H = xH. Let xh1 and xh2 be two distinct vertices of Γ, where h1, h2 ∈ H. Then
(xh1xh2)2 6= (xh2xh1)2. Otherwise (hx

1h2)2 = (hx
2h1)2 so (h−1

1 h2)2 = (h−1
2 h1)2

which implies that (h−1
1 h2)4 = 1, contradicting the hypothesis on the order of H.

Therefore xh1 and xh2 are adjacent and Γ is a complete graph.
(=⇒) Suppose that Γ is a complete graph. Suppose that x 6= x−1 for some

x ∈ G \H. Then since (x−1x)2 = (xx−1)2, x is not adjacent to x−1, contradicting
diam(Γ) = 1. Hence x2 = 1 for all x ∈ G \H. For all h ∈ H and for all x ∈ G \H,
we have xh ∈ G \H and so (hx)2 = 1. Therefore hx = h−1.

To see that H is abelian, let h1, h2 ∈ H. Then

h−1
1 h−1

2 = hx
1hx

2 = (h1h2)x = (h1h2)−1,

for all x ∈ G \H, and so h1h2 = h2h1. Hence H is abelian.
Now we prove that |G/H| = 2. Since G is not an elementary abelian 2-group,

there exists h ∈ H such that h2 6= 1. If |G/H| > 2, then there exist x1, x2 ∈ G \H
such that x1x2 = x−1

1 x2 6∈ H. Hence hx1x2 = h−1 and so

h−1 = hx1x2 = (hx1)x2 = (h−1)x2 = h,

which is a contradiction. Hence |G/H| = 2.
Finally we show that |H| is odd. Suppose there exists a non-identity h ∈ H

such that h2 = 1 and let x ∈ G \ H. Then (xxh)2 = (x2h)2 = h2 = 1 and
(xhx)2 = (x2hx)2 = (h−1)2 = 1. Hence x and xh are not connected, contradicting
to diam(Γ) = 1. Therefore |H| is odd.

Now we prove some results when |G : C(G2)| = 2.

Lemma 2.1. Suppose that H := C(G2) has index 2 and let x ∈ G \H and h ∈ H
such that h2 ∈ C(x). Then h2 ∈ Z(G). Therefore A := {h ∈ H | h2 6∈ Z(G)} is
non-empty, and for all h ∈ H, x and hx (as well as x and xh) are adjacent if and
only if h ∈ A. Also the graph Γ is |A|-regular.

Proof. Let g ∈ G. It is clear that if g ∈ H, then gh2 = h2g. So suppose that
g = xh1, for some h1 ∈ H. Thus

gh2 = (xh1)h2 = x(h1h
2) = x(h2h1) = h2(xh1) = h2g

and therefore h2 ∈ Z(G), which proves the first assertion.
Now note that (xhx)2 = (hxx)2 if and only if xhx2hx = hx2hx2 if and only if

x3h2x = x2h2x2 if and only if xh2 = h2x if and only if h2 ∈ C(x). Thus x and hx
are adjacent if and only if h ∈ A.

To see that A is nonempty, note that since x 6∈ H and H = C(G2) = T 2(G),
there exists g ∈ G such that (xg)2 6= (gx)2. Hence Γ has at least one edge. Suppose
that (x, hx), for some h ∈ H is an edge. Then by the above observation, h2 6∈ Z(G)
and so A 6= ∅.

Now we can determine the girth of Γ. We thank the referee for pointing out that
the conditions (i) and (ii), stated in Theorem 2.2, are equivalent to girth(Γ) = 3.
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Theorem 2.2. Suppose that H := C(G2) has index 2. Then the graph Γ has girth
3 or 4. Also the girth is 3 if and only if either

(i) there exists h ∈ H such that h4 6∈ Z(G) or
(ii) {h4 | h ∈ H} ⊆ Z(G) and there exist h, k ∈ A such that kh−1 ∈ A, where

A = {h ∈ H | h2 6∈ Z(G)}, and kx 6= h, for some x ∈ G \H.

Proof. Let x be any element of G outside H. First note that if h ∈ H, then xh
and hx are not adjacent if and only if h4 ∈ Z(G). In fact if xh and hx are not
adjacent, then (xhhx)2 = (hxxh)2. Since hx2 = x2h, we have (xh2x)2 = (h2x2)2

and so xh2xxh2x = h2x2h2x2. Hence xh4x3 = h4x4 and xh4 = h4x. Since for all
u ∈ H we have uh4 = h4u, it follows that h4 ∈ Z(G). This argument also shows
that if h4 ∈ Z(G), then xh and hx are not adjacent.

Suppose that the condition (i) holds, that is h4 6∈ Z(G), for some h ∈ H. By
Lemma 2.1, (x, xh) and (x, hx) are edges of Γ. Since h4 6∈ Z(G), by above observa-
tion, xh and hx are adjacent. Thus {x, xh, hx} form a triangle and so girth(Γ) = 3.

Now suppose that the condition (ii) holds, that is {h4 | h ∈ H} ⊆ Z(G) and there
exist h, k ∈ H such that {h2, k2, (kh−1)2} ∩ Z(G) = ∅. By Lemma 2.1, (x, hx) and
(x, kx) are edges of Γ. Also, by Lemma 2.1, (hx, kh−1(hx)) = (hx, kx) is an edge of
Γ. Thus there is a triangle with vertices x, hx and kx. Hence girth(Γ) = 3.

Now suppose that the girth of Γ is 3. If {x, xh, hx} is a triangle, then h4 6∈ Z(G)
and the condition (i) holds. So suppose that {h4 | h ∈ H} ⊆ Z(G). Given a triangle
with vertices h1x, h2x and h3x, set z = h1x and setting k2 = h2h

−1
1 and k3 = h3h

−1
1

the vertices of the triangle become z, k2z and k3z. So we may assume that any
triangle has vertices x, hx and kx, where x 6∈ H, h, k ∈ H, and by Lemma 2.1,
h, k ∈ A. Viewing the edge (hx, kx) as (hx, kh−1(hx)), we also have kh−1 ∈ A.
As, in this case, (hx, xh) is not an edge of Γ, we must have kx 6= xh so kx 6= h.
Therefore the condition (ii) holds.

By Lemma 2.1, there exists a non-identity element h of H such that h2 6∈ Z(G).
Suppose that the conditions (i) and (ii) do not hold. Then h4 ∈ Z(G). Since
h2 6∈ Z(G), by Lemma 2.1, (x, hx), (x, h−1x), (hx, h(hx)) = (hx, h2x) are edges of
Γ. Now if h3 = 1, then since h4 ∈ Z(G) we conclude that h ∈ Z(G), contradicting
h2 6∈ Z(G). Thus h3 6= 1 and, by Lemma 2.1, (h−1x, h−1(h3x)) = (h−1x, h2x) is an
edge of Γ. Hence {x, hx, h2x, h−1x} form a square. Therefore girth(Γ) = 4.

Theorem 2.3. Suppose that H := C(G2) has index 2. Then the graph Γ is Hamil-
tonian and therefore is connected.

Proof. Let B = {h ∈ H | h2 ∈ Z(G)}. Then B is a normal subgroup of H and
H is a disjoint union of A and B, where A = {h ∈ H | h2 6∈ Z(G)}. Since, by
Lemma 2.1, A 6= ∅ we see that B 6= H and so |H/B| ≥ 2. Therefore |B| ≤ |H|/2
and so |A| ≥ |H|/2. Since Γ is |A|-regular, by Dirac’s Theorem [5, p. 54], Γ is
Hamiltonian.

Now we classify groups G (such that |G : C(G2)| = 2) with planar graph. Denote
by D2n =

〈
x, y | xn = y2 = 1, xy = x−1

〉
the dihedral group of order 2n.

Theorem 2.4. Suppose that H := C(G2) has index 2. The graph Γ is planar if and
only if G ∼= D6 or G ∼= D12 or G =

〈
x, y | x3 = y4 = 1, xy = x2

〉
.
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Proof. Suppose that Γ is planar. Let B = {h ∈ H | h2 ∈ Z(G)} and A = {h ∈
H | h2 6∈ Z(G)}. Then by [5, Corollary 3.5.9], |A| ≤ 5. Therefore |H| = |A| +
|B| ≤ 5 + |B| and so 2 ≤ |H/B| ≤ 5

|B| + 1. Hence |B| ≤ 5 and |H| ≤ 10. Thus
|G| ≤ 20. Now one can prove directly that the non-abelian group of order 6 and
two groups of order 12 have planar graph. These groups are D6, D12, and G =〈
x, y | x3 = y4 = 1, xy = x2

〉
. Also we can see these facts using computer packages,

GAP [6] and Mathematica [9]. The graph of D12 and G are isomorphic and shown
in Figure 1.

12

3

4 5

6

Figure 1. The graph of D12.

For this purpose we use some commands of GAP to producing non-abelian groups
for order ≤ 20, and generate the vertices and edges of the graph of each group. We
use this information in Mathematica and determine the planarity of the graphs. Also
we can see the figure of the graphs in Mathematica. Note that the GRAPE package
of GAP can produce a graph and determine many properties of the graph, but can
not determine the planarity of a graph. The following GAP program computes the
vertex set and edge set of the graph of a given group. We use this program to find
edges of the graph associated to groups of order ≤ 20.

################### generating the set of vertices of graph of a group
ver:=G->Difference(G,Centralizer(G,Group(Set(List(G,x->x^2)))));
################### generating the set of edges of graph of a group
edge:=function(G)
local vertices,edges,r,temp,y,x,edgeslabel;
vertices:=ver(G); edgeslabel:=[]; edges:=[];
for x in vertices do

temp:=Difference(vertices,[x]);
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r:=Filtered(temp,y->(x*y)^2<>(y*x)^2);
for y in r do

if not([x,y] in edges) and not([y,x] in edges) then
Add(edgeslabel,[Position(vertices,x),Position(vertices,y)]);

fi;
od;

od;
return edgeslabel;
end;
################### generating the set of non-abelian groups of order <= 20
L:=Flat(List([6..20],x->AllSmallGroups(x,IsAbelian,false)));
L:=Filtered(L,x->Size(ver(x))>=1);

Now by the above program we find the edges of 15 non-abelian groups of order ≤ 20
with non-trivial graphs. Using this information and the following Mathematica
program we see that 3 of these are planar. We can find the presentations of these
groups by GAP and see that these are the claimed groups.

<< DiscreteMath‘Combinatorica‘
gengraph[edg_]:=

Module[{vert=Union[Flatten[edg]],t=Length[edg],e={},n,z},
n=Length[vert];
v=Table[{{N[Cos[2Pi*t/n],2],N[Sin[2Pi*t/n],2]},

VertexLabel->vert[[t]]},{t,1,n}];
For[i=1,i<=t,

z = edg[[i]];
AppendTo[e,{Flatten[{Position[vert,z[[1]]],

Position[vert,z[[2]]]}]}];
i++ ];

Return[Graph[e,v]] ]
res=Table[gengraph[g[[i]]],{i,1,Length[g]}]; Map[PlanarQ, res]

In what follows we characterize some dihedral groups in terms of their graphs.
Note that if G and K are two groups, then Γ(G) ∼= Γ(K) if and only if there exists
a bijective map ϕ : V (Γ(G)) → V (Γ(K)) such that for every two distinct elements
x, y ∈ V (Γ(G)), we have (xy)2 = (yx)2 if and only if (ϕ(x)ϕ(y))2 = (ϕ(y)ϕ(x))2.

Recall that the dihedral group of order 2n is

D2n =
〈
x, y | xn = y2 = 1, xy = x−1

〉
= {1, x, x2, . . . , xn−1, y, yx, yx2, . . . , yxn−1}.

The dihedral group has a normal cyclic subgroup 〈x〉 of index 2. Every element of
the set {y, yx, yx2, . . . , yxn−1} has order 2. Let H1 = C(D2

2n), then H1 = 〈x〉 and
so V (D2n) = G−H1 = {y, yx, yx2, . . . , yxn−1}.

We want to find the adjacency of vertices of Γ(D2n). Let u = yxi and v = yxj ,
where 0 ≤ i < j ≤ n− 1, be two vertices of Γ(D2n). Then u and v are not adjacent
if and only if n|4(j − i). It follows that if n is odd, u = yxi and v = yxj , for all
0 ≤ i < j ≤ n − 1, are adjacent. Therefore Γ(D2n) is complete if and only if n is
odd. Note that we can see this result using Theorem 2.1.
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Now let n be even. Suppose that u = yxi and v = yxj , where 0 ≤ i < j ≤ n− 1,
are not adjacent. Then since n|4(j − i), we have to consider two cases:

Case 1. n
2 is odd: Since n

2 |2(j − i) and n
2 is odd, we have n

2 |(j − i). Since
0 ≤ i < j ≤ n−1, we have j− i = n

2 . Therefore in Γ(D2n), for all 0 ≤ i < j ≤ n−1,
j− i 6= n

2 , yxi and yxj are adjacent, that is the only nonadjacent vertices are n
2 pairs

(y, yx
n
2 ), (yx, yx

n
2 +1), (yx2, yx

n
2 +2), · · · , (yx

n
2−1, yxn−1). Note that in this case the

vertices y, yx
n
2−1, yx

n
2 +1 form a triangle, so girth(Γ(D2n) = 3.

Case 2. n
2 is even: Since n

2 is even, we have n
4 |(j − i), where 0 ≤ i < j ≤

n − 1. So j − i ∈ {n
4 , n

2 , 3n
4 }. Therefore in Γ(D2n), for all 0 ≤ i < j ≤ n −

1, with j − i 6∈ {n
4 , n

2 , 3n
4 }, yxi and yxj are adjacent. Thus we have 3n

4 pairs
(y, yx

n
4 ), (yx, yx

n
4 +1), (yx2, yx

n
4 +2), · · · , (yx

3n
4 −1, yxn−1), and n

4 pairs (y, yx
3n
4 ),

(yx, yx
3n
4 +1), (yx2, yx

3n
4 +2), · · · , (yx

n
4−1, yxn−1), and n

2 pairs (y, yx
n
2 ), (yx, yx

n
2 +1),

(yx2, yx
n
2 +2), · · · , (yx

n
2−1, yxn−1), of nonadjacent vertices. It follows that there are

3n
2 nonadjacent pairs of vertices and so there are

(
n
2

)− 3n
2 = n2

2 − 2n edges.

Note that yx
n
2−1 and yx

n
2 +1 are adjacent if and only if n 6= 8. So if n = 8,

then the vertices y, yx3, yx4, yx7 form a square and Γ(D16) has no triangle. Thus
girth(Γ(D16)) = 4. Also if n > 8, then the vertices y, yx

n
2−1, yx

n
2 +1 form a triangle.

Thus girth(Γ(D2n)) = 3.

Theorem 2.5. Let n be a positive odd integer. Suppose that G is a finite non-abelian
group. If Γ(D2n) ∼= Γ(G), then H is abelian of index 2 and |G| = 2n. In particular
if H is cyclic, then G ∼= D2n.

Proof. Since Γ(D2n) is a complete graph, so is Γ(G). Thus by Theorem 2.1, H is
abelian of odd order and index 2 such that x2 = 1 and hx = h−1, for all x ∈ G \H.
Since 2|H| = |G| = |H|+ |V (Γ(G))| = |H|+ n, we have |H| = n and so |G| = 2n. If
H = 〈h〉, then G = 〈x, h〉, where x ∈ G \H. It follows that G ∼= D2n.
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