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Abstract. Let G be a finite group and F a formation of finite groups. We say

that a subgroup H of G is Fh-normal in G if there exists a normal subgroup
T of G such that HT is a normal Hall subgroup of G and (H ∩ T )HG/HG

is contained in the F-hypercenter ZF
∞(G/HG) of G/HG. In this paper, we

obtain some results about the Fh-normal subgroups and use them to study the
structure of finite groups. Some new characterizations of supersoluble groups,

soluble groups and p-nilpotent groups are obtained and some known results are

generalized.
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1. Introduction

All groups considered in the paper are finite, the notations and terminology in this
paper are standard, as in [4] and [11].

In [15], Wang defined c-normality of a subgroup of a finite group: A subgroup
H of a group G is said to be c-normal if there exists a normal subgroup K such
that G = HK and H ∩ K ≤ HG, where HG is the maximal normal subgroup of
G contained in H. In [18], Yang and Guo defined the concept of Fn-supplemented
subgroup: A subgroup H of a group G is said to be Fn-supplemented in G if there
exists a normal subgroupK ofG such thatG = HK and (H∩K)HG/HG is contained
in the F-hypercenter ZF

∞(G/HG) of G/HG. By using the above subgroups, people
has obtained some interesting results (see [5,8,9,15,18]). As a development, we now
introduce the following new concept.
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Definition 1.1. Let F be a class of groups and H a subgroup of a group G. H is
said to be Fh-normal in G if there exists a normal subgroup T of G such that HT is
a normal Hall subgroup of G and (H ∩ T )HG/HG ≤ ZF

∞(G/HG).

Recall that, for a class F of groups, a chief factor H/K of a group G is called
F-central (see [12] or [4, Definition 2.4.3]) if [H/K](G/CG(H/K)) ∈ F. The symbol
ZF
∞(G) denotes the F-hypercenter of a group G, that is, the product of all such

normal subgroups H of G whose G-chief factors are F-central. A subgroup H of G
is said to be F-hypercenter in G if H ≤ ZF

∞(G).
A class F of groups is called a formation if it is closed under homomorphic image

and every group G has a smallest normal subgroup (called F-residual and denoted
by GF) with quotient is in F. A formation F is said to be saturated if it contains
every group G with G/Φ(G) ∈ F. We use N, U, and S to denote the formations
of all nilpotent groups, supersoluble groups and soluble groups, respectively. [A]B
denotes the semiproduct of two groups A and B.

Obviously, all normal subgroups, c-normal subgroups and Fn-supplemented sub-
groups are all Fh-normal in G, for any non-empty saturated formation F. For ex-
ample, if a subgroup H is c-normal in G, then there exists a normal subgroup K
such that G = HK and (H ∩K)HG/HG = 1 ≤ ZF

∞(G/HG). However, the following
example shows that the converse is not true.

Example 1.1. Let S3 = [Z3]Z2 be the symmetric group of degree 3 and Z a group
of order p, where p 6= 2, 3. Let G = Z o S3 = [K]S3 be a regular wreath product,
where K is the base group of the regular wreath product G. Then Z3K is a normal
Hall subgroup of G and Z3∩K = 1. Hence Z3 is Fh-normal in G for any non-empty
saturated formation F. But it is easy to see that Z3 is not normal, c-normal, and is
not Un-supplemented in G (In fact, for example, G is the only normal subgroup of
G such that Z3G = G and (Z3)G=1. But, clearly, Z3 ∩G = Z3 � ZU

∞(G). Thus, Z3

is not Un-supplemented).

In this paper, we study the properties of Fh-normal subgroups and use them to
give some new characterizations of some classes of groups. Some previously known
results are generalized.

2. Preliminaries

A formation F is said to be S-closed (Sn-closed) if it contains every subgroup (every
normal subgroup, respectively) of all its group. The following known results are
useful in the later.

Lemma 2.1. [6, Lemma 2.1] Let G be a group and A ≤ G. Let F be a non-empty
saturated formation and Z = ZF

∞(G). Then
(1) If A is normal in G, then AZ/A ≤ ZF

∞(G/A).
(2) If F is S-closed, then Z ∩A ≤ ZF

∞(A).
(3) If F is Sn-closed and A is normal in G, then Z ∩A ≤ ZF

∞(A).
(4) If G ∈ F, then Z = G.

Lemma 2.2. [16] If A is a subnormal subgroup of a group G and A is a π-group,
then A ≤ Oπ(G).
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Lemma 2.3. [6, Lemma 2.3] Let F be a saturated formation containing U and G a
group with a normal subgroup E such that G/E ∈ F. If E is cyclic, then G ∈ F.

Recall that a group G is said to be q-closed if G has a normal Sylow q-subgroup.

Lemma 2.4. [13, Lemma 2.2] Let G be a group, p and q different prime divisors
of |G|, and P a non-cyclic Sylow p-subgroup of G. If every maximal subgroup of P
(except one) has a q-closed supplement in G, then G is q-closed.

Lemma 2.5. [17, Theorem II, 3.9] Let G be a group. If |G| = 2n, where n is an
odd number, then G is soluble.

Lemma 2.6. Let G be a group and H ≤ K ≤ G. Then
(1) H is Fh-normal in G if and only if G has a normal subgroup T such that HT

is a normal Hall subgroup of G, HG ≤ T and H/HG∩T/HG ≤ ZF
∞(G/HG).

(2) Suppose that H is normal in G. If K is Fh-normal in G, then K/H is
Fh-normal in G/H.

(3) Suppose that H is normal in G. Then for every Fh-normal subgroup E of
G satisfying (|H|,|E|)=1, HE/H is Fh-normal in G/H.

(4) If H is Fh-normal in G and F is S-closed, then H is Fh-normal in K.
(5) If H is Fh-normal in G, K is a normal subgroup of G and F is Sn-closed,

then H is Fh-normal in K.
(6) If G ∈ F, then every subgroup of G is Fh-normal in G.

Proof. (1) Assume that H is Fh-normal in G and let T be a normal subgroup of G
such that HT is a normal Hall subgroup of G and (H ∩ T )HG/HG ≤ ZF

∞(G/HG).
Let T0 = THG. Then HT0 = HTHG = HT , HG ≤ T0 and T0/HG ∩ H/HG =
(T0 ∩H)/HG = (H ∩ T )HG/HG ≤ ZF

∞(G/HG). The converse is clear.

(2) Assume that K is Fh-normal in G. Then by (1), G has a normal subgroup T such
that KT is a normal Hall subgroup of G, KG ≤ T and K/KG∩T/KG ≤ ZF

∞(G/KG).
Since H E G and H ≤ K, H ≤ KG. Hence H ≤ T and so T/H is a normal
subgroup of G/H. Clearly, KT/H is a normal Hall subgroup of G/H. Since
(T ∩ K)/KG ≤ ZF

∞(G/KG), ((T ∩ K)/H)/(KG/H) ≤ ZF
∞((G/H)/(KG/H)) =

ZF
∞((G/H)/(K/H)G/H). Hence (T/H)/(K/H)G/H∩(K/H)/(K/H)G/H = (T/H)/

(KG/H) ∩ (K/H)/(KG/H) = ((T ∩ K)/H)/(KG/H) ≤ ZF
∞((G/H)/(K/H)G/H).

This shows that K/H is Fh-normal in G/H.

(3) Assume that H is a normal subgroup of G and E is Fh-normal in G with
(|H|,|E|)=1. Then by (1), there exists a normal subgroup T of G such that EG ≤
T , ET is a normal Hall subgroup of G and E/EG ∩ T/EG ≤ ZF

∞(G/EG). If
H ≤ T , then HET = ET is a normal Hall subgroup of G. In order to prove
that HE/H is Fh-normal in G/H, by (2) we only need to show that HE is Fh-
normal in G. Since H ≤ T , T ∩ HE = H(T ∩ E) ≤ HZ, where Z/EG =
ZF
∞(G/EG). By the G-isomorphism HZ/HEG = HEGZ/HEG ' Z/Z ∩ HEG =

Z/EG(Z ∩ H), we have HZ/HEG ≤ ZF
∞(G/HEG). Hence (HE ∩ T )/HEG =

H(T ∩E)/HEG ≤ HZ/HEG ≤ ZF
∞(G/HEG). Let D = (HE)G. By Lemma 2.1(1),

ZF
∞(G/HEG)(D/HEG)/(D/HEG) ≤ ZF

∞((G/HEG)/(D/HEG)). Thus ((HE ∩
T )/HEG) (D/HEG)/(D/HEG) ≤ ZF

∞(G/HEG)(D/HEG)/(D/HEG) ≤ ZF
∞((G/
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HEG)/(D/HEG)). It follows that (HE ∩ T )D/D ≤ ZF
∞(G/D). Therefore HE is

Fh-normal in G. Assume that H � T . Obviously, TH/H is a normal subgroup of
G/H such that (HE/H)(TH/H) = ETH/H is a normal Hall subgroup of G/H.
Now we only need to show that (EH/H ∩ TH/H)(EH/H)G/H/(EH/H)G/H ≤
ZF
∞((G/H)/(EH/H)G/H). Let D = (HE)G. Since (E ∩ T )/EG ≤ ZF

∞(G/EG) =
Z/EG, E ∩ T ≤ Z and (E ∩ T )D/D ≤ ZD/D. By Lemma 2.1(1), ((E ∩ T )D/EG)/
(D/EG) ≤ (ZD/EG)/(D/EG) = ZF

∞(G/EG)(D/EG)/(D/EG) ≤ ZF
∞((G/EG)/

(D/EG). It follows that (E ∩ T )D/D ≤ ZF
∞(G/D). Since (|H|, |E|) = 1,(|HT :

T |, |HT ∩E|) = 1 and so HT ∩E ≤ T ∩E. Hence (HE/H ∩HT/H)(HE/H)G/H/
(HE/H)G/H = (H(E ∩ T )D/H)/(D/H) ≤ ((E ∩ T )D/H)/(D/H) ≤ ZF

∞((G/H)/
(D/H). Therefore HE/H is Fh-normal in G/H.

(4) Assume that H is Fh-normal in G. Then by (1), G has a normal subgroup T
such that HT is a normal Hall subgroup of G, HG ≤ T and H/HG ∩ T/HG ≤
ZF
∞(G/HG). Let T1 = K ∩ T . Then T1 is a normal subgroup of K and HT1 =

H(K ∩T ) = K ∩HT is a normal Hall subgroup of K. Obviously, T1/HG∩H/HG =
(H ∩ T ∩K)/HG ≤ Z/HG := ZF

∞(G/HG) ∩K/HG. Since F is S-closed, by Lemma
2.1(2), Z/HG ≤ ZF

∞(K/HG). By Lemma 2.1(1), (Z/HG)(HK/HG)/(HK/HG) ≤
ZF
∞((K/HG)/(HK/HG)) and so (T1 ∩H)HK/HK ≤ ZF

∞(K/HK). Hence H is Fh-
normal in K.

(5) See the proof of (4).

(6) Assume that G ∈ F and let H be an arbitrary subgroup of G. By Lemma 2.1(4)
Z = ZF

∞(G) = G and so by Lemma 2.1(1), ZF
∞(G/HG) = G/HG. Let T = G. Then

(H ∩ T )HG/HG = H/HG ≤ ZF
∞(G/HG).

Lemma 2.7. Suppose that G has a unique minimal normal subgroup N and Φ(G) =
1. If N is soluble, then N = Op(G) = F (G) = CG(N) for some prime p.

Proof. Since Φ(G) = 1, there exists a maximal subgroup M of G such that G = NM .
Since N is soluble, N is an abelian p-group for some prime p and N ∩M E G. It
follows that N ∩M = 1 and so G = [N ]M . Clearly, N ≤ Op(G) ≤ F (G) ≤ CG(N).
Let C = CG(N). If C 6= N , then C = C ∩ NM = N(C ∩M). It is easy to see
that C ∩M E G. Hence C ∩M = 1 and consequently C = N . This completes the
proof.

3. New characterization of supersoluble groups

Theorem 3.1. A group G is supersoluble if and only if there exists a normal sub-
group E of G such that G/E is supersoluble and every maximal subgroup of every
non-cyclic Sylow subgroup of E is Uh-normal in G.

Proof. The necessity is obvious. We only need to prove the sufficiency. Suppose
that the assertion is false and consider a counterexample for which |G||E| is mini-
mal. Then:

(1) If N is a non-trivial normal p-subgroup of G contained in E for some prime p,
then G/N is supersoluble.
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Obviously, (G/N)/(E/N) ' G/E is supersoluble. Let T/N be any non-cyclic
Sylow q-subgroup of E/N and T1/N a maximal subgroup of T/N , where q is a
prime divisor of |E/N |. If q = p, then T is a non-cyclic Sylow p-subgroup of E and
T1 is a maximal subgroup of T . By hypothesis, T1 is Uh-normal in G. Hence by
Lemma 2.6(2), T1/N is Uh-normal in G/N . Now suppose that q 6= p, then there
exists a Sylow q-subgroup Q of E such that T = QN . Let Q1 = Q ∩ T1. Then it
is easy to see that Q1 is a maximal subgroup of Q and T1 = Q1N . By hypothesis,
Q1 is Uh-normal in G. Hence by Lemma 2.6(3), T1/N is Uh-normal in G/N . This
shows that (G/N,E/N) satisfies the hypothesis. The minimal choice of G implies
that G/N is supersoluble.

(2) G is soluble.
Since the class U of all supersoluble groups is S-closed, by Lemma 2.6(4) we see

that the hypothesis is still true for (E,E). If E < G, then E is supersoluble by the
choice of G. It follows that G is soluble. Now assume that E = G and G is not
soluble. Let p be the smallest prime divisor of |G| and P be a Sylow p-subgroup of
G. Then p = 2 by Feit-Thompson’s theorem. If P is cyclic, then G is 2-nilpotent
by [11, (10.1.9)]. Hence G is soluble, a contradiction. We may therefore assume
that P is non-cyclic. Let P1 be a maximal subgroup of P . Then P1 is Fh-normal
in G by hypothesis. Therefore there exists a normal subgroup T of G such that
P1T is a normal Hall subgroup of G and (P1 ∩ T )(P1)G/(P1)G ≤ ZU

∞(G/(P1)G).
By (1), we have (P1)G = 1 and so P1 ∩ T ≤ ZU

∞(G). If ZU
∞(G) 6= 1, then there

exists a minimal normal subgroup H of G contained in ZU
∞(G). Obviously, H is

an elementary abelian r-subgroup, for some prime r. By (1), G/H is supersoluble.
This implies that G is soluble, a contradiction. Hence ZU

∞(G) = 1. It follows that
P1 ∩ T = 1 and so T < G. Obviously, (T, T ) satisfies the hypothesis and hence T is
supersoluble by the minimal choice of G and Lemma 2.6(4). Suppose that q is the
largest prime divisor of |T | and Tq is a Sylow q-subgroup of T . Then Tq char T EG.
It follows that Tq EG. By (1), G/Tq is supersoluble. Consequently G is soluble.

(3) G has a unique minimal normal subgroup N contained in E, G = [N ]M for
some maximal subgroup M of G, and N = Op(E) = F (E) = CE(N), for some
prime p ∈ π(G).

Let N be a minimal normal subgroup of G contained in E. By (2), N is an ele-
mentary abelian p-subgroup for some prime p. By (1), G/N is supersoluble. Since
the class U of all supersoluble groups is a saturated formation, N is a unique min-
imal normal subgroup of G contained in E and N * Φ(G). Hence there exists a
maximal subgroup M of G such that N � M . Clearly Φ(E) = 1, G = [N ]M and
N ⊆ Op(E) ≤ F (E). Let F = F (E). Then F = F ∩ NM = N(F ∩M). Since
Φ(E) = 1, F (E) is abelian by (2). Hence F ∩M E G and so F ∩M = 1. Conse-
quently, F = N . Since E is soluble, N ≤ CE(N) = CE(F (E)) ≤ F (E) = F . It
follow that N = Op(E) = F (E) = CE(N). Thus (3) holds.

(4) N is a Sylow p-subgroup of E and N is not cyclic.
If N is cyclic, then by (1) and Lemma 2.3, we have that G is supersoluble, a

contradiction. Hence N is not cyclic. Let q be the largest prime divisor of |E| and
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Q is a Sylow q-subgroup of E. Then QN/N is a Sylow q-subgroup of E/N . Since
G/N is supersoluble by (1), E/N is supersoluble and so QN/N E E/N . It follows
that QN EE. Let P be a Sylow p-subgroup of E. If p = q, then P = Q = QN EE.
Therefore by (3), N = Op(E) = P is the Sylow p-subgroup of E. Assume that
q > p. Then clearly QP = QNP is a subgroup of E. If QP < G, then by Lemma
2.6(4), (QP,QP ) satisfies the hypothesis. The minimal choice of (G,E) implies that
QP is supersoluble. Consequently Q E QP and so QN = Q × N . It follows that
Q ≤ CE(N) = N , a contradiction.

Now assume that G = QP = E. Then obviously Q 5 G. Clearly, N < P . Since
N is not cyclic, P is not cyclic. We claim that every maximal subgroup of P has
a q-closed supplement in G. Let P1 be an arbitrary maximal subgroup of P . If
(P1)G 6= 1, then by (3), N ≤ (P1)G ≤ P1 and G = NM = P1M , where M ' G/N is
supersoluble and so M is q-closed. If (P1)G = 1, then since N is the unique minimal
normal subgroup of G and N is not cyclic, ZU

∞(G) = 1. Now by hypothesis, there
exists a normal subgroup T of G such that P1T is a normal Hall subgroup of G and
P1 ∩ T ≤ ZU

∞(G) = 1. Assume P1T < G. Since P1T is a normal Hall subgroup of
G, we have P1T = P EG and so P = Op(G) = N , a contradiction. Hence G = P1T
and P1 ∩ T = 1. In this case, every Sylow p-subgroup of T is a cyclic group of order
p. Hence, obviously, (T, T ) satisfies the hypothesis of the theorem. The minimal
choice of (G,E) implies that T is supersoluble. Consequently T is q-closed. Thus
our claim holds. Therefore, by Lemma 2.4, Q E G. This contradiction shows that
N = P . Thus, (4) holds.

(5) The final contradiction.
Let P be a Sylow p-subgroup of G. Then by (3), N ⊆ P and clearly N * Φ(P ).

Therefore there exists a maximal subgroup P1 of P with N 
 P1. Consequently
P = NP1. Let N1 = N ∩ P1. Since |N : N ∩ P1| = |NP1 : P1| = |P : P1| = p,
N1 = N ∩ P1 is a maximal subgroup of N . By (3) and (4), N1 6= 1 and (N1)G = 1.
By the hypothesis, N1 is Uh-normal in G. Hence there exists a normal subgroup
T of G such that N1T is a normal Hall subgroup of G and N1 ∩ T ≤ ZU

∞(G). If
N1T = G, then N = N∩N1T = N1(N∩T ). This implies that N∩T 6= 1. Obviously
N ∩ T E G. Hence N ∩ T = N and so N ≤ T . Hence 1 6= N1 ≤ ZU

∞(G) ∩N ≤ N .
Since ZU

∞(G) ∩ N E G, ZU
∞(G) ∩ N = N and so N ≤ ZU

∞(G). It follows from (1)
that G is supersoluble, a contradiction. Hence we may assume that N1T < G. Since
N ∩ T EG, N ∩ T = 1 or N . If N ∩ T = 1, then N1 = N1(N ∩ T ) = N ∩N1T EG,
which is impossible. If N ∩ T = N , then N ≤ T and so N1 ≤ T . This implies
that N1 ≤ ZU

∞(G) ∩ N . By the same argument as above, we see that N ≤ ZU
∞(G)

and consequently G is supersoluble, a contradiction again. The final contradiction
completes the proof.

Corollary 3.1. Let F be an S-closed saturated formation containing U and G a
group. Then G ∈ F if and only if there exists a normal subgroup E of G such that
G/E ∈ F and every maximal subgroup of every non-cyclic Sylow subgroup of E is
Fh-normal in G.

Proof. The necessity is obvious, we only need to prove the sufficiency. Suppose that
the assertion is false and let G be a counterexample with |G||E| is minimal.
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By Lemma 2.6(4) and our Theorem 3.1, we see that E ∈ U. Let p be the largest
prime divisor of |E| and Ep a Sylow p-subgroup of E. Then Ep char E EG and so
Ep E G. Let N be a minimal normal subgroup of G contained in Ep. Obviously,
(G/N)/(E/N) ' G/E ∈ F. By Lemma 2.6(2), we see that the hypothesis is still
true for G/N (with respect to E/N). The choice of G implies that G/N ∈ F. Since
F is a saturated formation, N is the only minimal normal subgroup of G contained
in Ep and N � Φ(G). Hence there exists a maximal subgroup M of G such that
G = [N ]M . Then it is easy to see that N = Op(E) = Ep (see the proof (3) of
Theorem 3.1). If N is cyclic, then G ∈ F by Lemma 2.3, which contradicts the
choice of G. Thus we may assume that N is not cyclic. Let Mp be a Sylow p-
subgroup of M and put P = NMp. Then P is a Sylow p-subgroup of G. Let P1

be a maximal subgroup of P such that Mp ≤ P1. Then P = NP1. Analogy to the
proof (5) of Theorem 3.1, we can obtain that N ≤ ZF

∞(G). This is impossible.
The following results follows directly from our Theorem 3.1 and Corollary 3.1.

Corollary 3.2. [9] Let F be an S-closed saturated formation containing U. Suppose
that G is a group with a normal subgroup E such that G/E ∈ F. If every maximal
subgroup of every Sylow subgroup of E is c-normal in G, then G ∈ F.

Corollary 3.3. [7, VI. Theorem 10.3] A group G is supersoluble if every Sylow
subgroup of G is cyclic.

Corollary 3.4. [14] Let G be a group with a normal subgroup E such that G/E is
supersoluble. If every maximal subgroup of every Sylow subgroup of E is normal in
G, then G is supersoluble.

Corollary 3.5. [15] Let G be a group with a normal subgroup E such that G/E is
supersoluble. If every maximal subgroup of every Sylow subgroup of E is c-normal
in G, then G is supersoluble.

Theorem 3.2. Let F be an S-closed saturated formation containing all supersoluble
groups and G a group. Then G ∈ F if and only if G has a normal subgroup E such
that G/E ∈ F and every cyclic subgroup of E of prime order or 4 are Uh-normal in
G.

Proof. The necessity is obvious. We only need to prove the sufficiency. Suppose
that the assertion is false and let G be a counterexample with |G||E| is minimal.
Then, obviously, E = GF. By Lemma 2.6(4), it is easy to see the hypothesis still
holds for (H,H), where H is any subgroup of E. This shows that every subgroup
of E is supersoluble by the choice of G. It follows from [7, VI. Theorem 9.6] that
E is soluble. Let M be any maximal subgroup of G not containing E. Then
M/M ∩E 'ME/E ∈ F. Hence the hypothesis still true for (M,M ∩E) by Lemma
2.6(4). The minimal choice of G implies that M ∈ F. Then, by [4, Theorem 3.4.2],
E = GF is a p-subgroup for some prime p and the following conditions hold:

(1) E/Φ(E) is a G-chief factor and so it is an elementary abelian p-group.
(2) E is a group with exponent p or 4(if p = 2 and E is non-abelian).
(3) Φ(E) = E ∩ Φ(G) ≤ Z(E), where Z(E) is the center of E.

We claim that |E/Φ(E)| = p. Assume that this is not true. Let Φ = Φ(E), X/Φ
be a subgroup of E/Φ of prime order, x ∈ X\Φ and L = 〈x〉. Then by (2), |L| = p or
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|L| = 4. By hypothesis, L is Uh-normal inG. Hence there exists a normal subgroup T
of G such that LT is a normal Hall subgroup of G and (L∩T )LG/LG ≤ ZU

∞(G/LG).
Then, since L ≤ E is p-group, E ≤ LT .

We first assume that |L| = 4. Since X/Φ = LΦ/Φ ' L/L ∩ Φ is of prime
order, L ∩ Φ 6= 1. Let H be a maximal subgroup of L. Since L is a cyclic group,
H = L ∩ Φ ≤ Φ. Suppose that L is not normal in G, then LG = H or LG = 1.
Assume that LG = H. If L ≤ Φ(G), then L ≤ E∩Φ(G) = Φ by (3), a contradiction.
Therefore L � Φ(G) and so there exists a maximal subgroup M of G such that
G = LM . Since LG = H ≤ Φ ≤ Φ(G) ≤M , |G : M | = 2. Hence MEG and so G/M
is a cyclic group. It follows that L ≤ E = GF ≤ M . This contradiction shows that
LG = 1. Then L∩T ≤ ZU

∞(G). Since |L| = 4, L∩T = L or L∩T = H or L∩T = 1.
If L ∩ T = L, then L ≤ T and so L ≤ ZU

∞(G). By Lemma 2.1(1), 1 6= LΦ/Φ ≤
ZU
∞(G)Φ/Φ ≤ ZU

∞(G/Φ). It follows that 1 6= LΦ/Φ ≤ ZU
∞(G/Φ) ∩ E/Φ. But since

E/Φ is a chief factor, E/Φ ≤ ZU
∞(G/Φ) and consequently |E/Φ| = 2, a contradiction.

Hence L 6⊆ T , and L∩T = H or L∩T = 1. If LT = G, then G/T = LT/T ' L/L∩T
is cyclic and so G/T ∈ F. It follows that L ≤ E = GF ≤ T and consequently T = G,
a contradiction. Hence LT < G. Since LTEG, LT/TEG/T . Therefore LT/T is Uh-
normal in G/T and (G/T )/(LT/T ) ' G/LT ' (G/E)/(LT/E) ∈ F. If L ∩ T = H,
then LT/T ' L/L ∩ T = L/H is a group of order 2. In this case, obviously,
(G/T,LT/T ) satisfies the hypothesis. By the choice of G, G/T ∈ F. It follows that
L ≤ E = GF ≤ T , a contradiction. If L∩T = 1, then LT/T ' L/L∩T = L is a cyclic
group of order 4. Hence HT/T char LT/T EG/T and so HT/T EG/T . It follows
that HT/T is Uh-normal in G/T . Hence (G/T,LT/T ) satisfies the hypothesis. The
minimal choice of G implies that G/T ∈ F and thereby L ≤ E = GF ≤ T, a
contradiction again. Those contradictions show that L is normal in G when |L| = 4.
Since E/Φ is a chief factor, E/Φ = LΦ/Φ = X/Φ is a cyclic group of order 2. This
contradiction shows that |E/Φ| = 2 when |L| = 4.

Now assume that |L| is a prime. If L is not normal in G, then LG = 1 and so
L ∩ T ≤ ZU

∞(G). Obviously L ∩ T = L or L ∩ T = 1. If L ∩ T = L, then L ≤ T . It
follows that L ≤ ZU

∞(G). By Lemma 2.1(1), 1 6= LΦ/Φ ≤ ZU
∞(G/Φ) ∩ E/Φ. Since

E/Φ is a chief factor, E/Φ ≤ ZU
∞(G/Φ) and consequently |E/Φ| = p, a contradiction.

Assume that L ∩ T = 1. If LT = G, then G/T ' L is cyclic and so G/T ∈ F. This
implies that L ≤ E = GF ≤ T , a contradiction again. Assume LT < G. Clearly,
(G/T )/(LT/T ) ' G/LT ' (G/E)/(LT/E) ∈ F. Since LT/T E G/T , LT/T is Uh-
normal in G/T . Hence (G/T,LT/T ) satisfies hypothesis. The choice of G implies
that G/T ∈ F. This implies also that L ≤ E = GF ≤ T , a contradiction. Those
contradictions show that |E/Φ| = p when |L| = p.

Hence, in any case, our claim holds, that is, E/Φ = LΦ/Φ is a cyclic group of
prime order. Since G/E ' (G/Φ)/(E/Φ) ∈ F and E/Φ is cyclic, by Lemma 2.3, we
obtain G/Φ ∈ F. This implies that G ∈ F since F is a saturated formation. The
final contradiction completes the proof.

Corollary 3.6. A group G is supersoluble if and only if every cyclic subgroup of G
of prime order or order 4 are Uh-normal in G.

Corollary 3.7. [15] If all cyclic subgroups of a group G with prime order or order
4 are c-normal in G, then G is supersoluble.
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Corollary 3.8. [1] Let F be an S-closed saturated formation containing U and G
a group. If all minimal subgroups and all cyclic subgroups of order 4 of GF are
c-normal in G, then G ∈ F.

Corollary 3.9. [2] Let G be a group of odd order. If all cyclic subgroups of a group
G with prime order or order 4 are normal in G, then G is supersoluble.

Corollary 3.10. [10] Let F be a saturated formation containing all supersoluble
groups and G a group. Then G ∈ F if and only if there exists a normal subgroup
H of G such that G/H ∈ F and all subgroups of prime order or order 4 of H are
c-normal in G.

4. New characterization of soluble groups

Theorem 4.1. A group G is soluble if and only if every minimal subgroup of G is
Sh-normal in G.

Proof. In view of Lemma 2.6(6), we only need to prove that G is soluble if every
minimal subgroup of G is Sh-normal in G. Assume that this is false and let G be a
counterexample of minimal order.

Let p = p1, p2, . . . , pt = q be all primes dividing |G| such that p1 > p2 > . . . > pt.
Then in view of Burnside paqb-Theorem, we have that t > 2. By Lemma 2.6(4),
the hypothesis holds for every subgroup of G and so every maximal subgroup of
G is soluble by the choice of G. Let R be the largest soluble normal subgroup
of G. Then ZS

∞(G) ≤ R. We claim that R 6= 1. If R = 1, then G is a non-
abelian simple group. Let L be a minimal subgroup of G with |L| is the smallest
prime dividing |G|. Then, clearly, ZS

∞(G) = 1. By hypothesis, L is Sh-normal
in G. Hence there exists a normal subgroup K of G such that LK is a normal
Hall subgroup of G and (L ∩K)LG/LG ≤ ZS

∞(G/LG). Since G is a simple group,
LG = 1 and K = G. Hence L = L ∩ K ≤ ZS

∞(G) = 1, a contradiction. Thus
R 6= 1. Obviously, R is the unique proper normal subgroup of G such that G/R is
a non-abelian simple group. Let H/K be a chief factor of G such that H ≤ ZS

∞(G).
Then [H/K](G/CG(H/K)) is soluble (see [4, Lemma 2.4.2]). Clearly CG(H/K)EG.
If CG(H/K) < G, then CG(H/K) is soluble and consequently G is soluble. This
contradiction shows that CG(H/K) = G. This implies that ZS

∞(G) = Z∞(G) is the
hypercenter of G. If R � Φ(G), then G = RE for some maximal subgroup E of G
and so G/R ' E/E ∩ R is soluble. It follows that G is soluble, which contradicts
the choice of G. Thus R ≤ Φ(G) and hence every prime dividing |G| is also a
divisor of G/R. Suppose that some minimal subgroup L of G has a complement E
in G. Then by Lemma 2.6(4), we see that E is a soluble maximal subgroup of G.
Hence R ≤ E and (E/R)G/R = 1. By considering the permutation representation
of G/R on the right coset of E/R, we see that G/R is isomprphic to some subgroup
of the symmetric group S|L| of degree |L|. Hence |L| = p is the largest prime
dividing |G|. This induces that if H is a minimal subgroup of G with |H| 6= p,
then H has no a complement in G. But, by hypothesis, H is Sh-normal in G. So
there exists a normal subgroup K of G such that HK is a normal Hall subgroup
of G and (H ∩ K)HG/HG ≤ ZS

∞(G/HG). If HK = G, then it is easy to see that
H ≤ ZS

∞(G) ≤ R. Since t > 2, for some odd prime r 6= p dividing |G|, all subgroups
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H of order r are contained in ZS
∞(G) = Z∞(G). Clearly, G is not r-nilpotent and so

by [7, IV. Theorem 5.4] and [4, Theorem 3.4.11], G has a r-closed Schmidt subgroup
A = [Ar]D, where Ar is a Sylow r-subgroup of A of exponent r and Ar/Φ(Ar) is
a eccentric chief factor of A. Let X/Φ(Ar) be a subgroup of Ar/Φ(Ar) of prime
order, x ∈ X\Φ(Ar) and L = 〈x〉. Then |L| = r and so from above we know
that L ≤ Z∞(G). But then L ≤ Z∞(A) and hence X/Φ(Ar) ≤ Z∞(A/Φ(Ar)). It
follows that the factor Ar/Φ(Ar) is central, a contradiction. If HK 6= G, then by
Lemma 2.6(2), G/HK satisfies the hypothesis. The minimal choice of G implies that
G/HK is soluble, and consequently G is soluble. The finial contradiction completes
the proof.

The following results now follows directly from our Theorem 3.2.

Corollary 4.1. [7, Theorem IV.5.7] If all minimal subgroups of a group G are
normal in G, then G is soluble.

Corollary 4.2. If all minimal subgroups of a group G are c-normal in G, then G
is soluble.

Corollary 4.3. [18, Theorem 3.1] A group G is soluble if and only if every minimal
subgroup of G is Sn-supplemented in G.

Theorem 4.2. Let G be a group and N a nonidentity normal subgroup of G. Then
N is soluble if and only if every maximal subgroup of G not containing N is Sh-
normal in G.

Proof. Suppose that every maximal subgroup M of G with N � M is Sh-normal
in G. Let R be a minimal normal subgroup of G. Assume that M/R is a maximal
subgroup of G/R such that NR/R � M/R. Then N * M . By hypothesis, M is
Sh-normal in G. Then M/R is Sh-normal in G/R by Lemma 2.6(2). Thus, by
induction, NR/R is soluble. If R ∩ N = 1, then N ' NR/R is soluble. Hence we
may assume that every minimal normal subgroup of G is contained in N . It is easy
to see that (N/R,G/R) satisfies the hypothesis. Hence by induction again, N/R is
soluble. Since the class of all soluble groups is closed under subdirect product, R is
a unique minimal normal subgroup of G.

Suppose that R is not soluble. Let E = NG(P ), where P is a Sylow p-subgroup of
R and p ∈ π(R). Then by Frattini argument, we have G = RE. Obviously E 6= G.
Let M be a maximal subgroup of G such that E ≤ M . Then R � M and hence
N �M . Let Gp be a Sylow p-subgroup of G such that P = R ∩Gp. Then P EGp.
Therefore Gp ≤ E and consequently p dose not divide |G : M |.

Since M is Sh-normal in G, there exists a normal subgroup T of G such that MT
is a normal Hall subgroup of G and (M ∩ T )MG/MG ≤ ZS

∞(G/MG). Since R is the
unique minimal normal subgroup of G, MG = 1. If MT < G, then M = MT E G
and so R ≤ M , a contradiction. Hence MT = G. Assume that M ∩ T = 1. Then
|T | = |G : M |. But since R ≤ T and G = RM , R = T and p divides |R| = |G : M |,
a contradiction again. Thus M ∩ T 6= 1 and so ZS

∞(G) 6= 1. Therefore R ≤ ZS
∞(G)

and consequently R is soluble. This induce that N is soluble.
Conversely, assume that N is soluble. Let M be a maximal subgroup of G such

that N �M and let 1 = N0 ≤ N1 ≤ N2 ≤ ··· ≤ Nt−1 ≤ Nt = N , where Ni/Ni−1(i =
1, 2, ···t) is a chief factor of G. Since N is soluble, Ni/Ni−1 is abelian. We may choose
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an index i such that Ni �M and Ni−1 ≤M . Then Ni/Ni−1∩M/Ni−1EG/Ni−1 and
Ni ∩M = Ni−1 ≤ MG. Now MNi = G and (M ∩Ni)MG/MG = 1 ≤ ZS

∞(G/MG).
This means that M is Sh-normal in G. The proof is completed.

Corollary 4.4. Let G be a group. Then G is soluble if and only if every maximal
subgroup of G is Sh-normal in G.

Corollary 4.5. [15] Let G be a group. Then G is soluble if and only if every maximal
subgroup of G is c-normal in G.

Corollary 4.6. [18] Let G be a group. Then G is soluble if and only if every maximal
subgroup of G is Sn-supplemented in G.

Theorem 4.3. A group G is soluble if and only if one of following conditions holds:
(a) There exists a maximal subgroup P1 of some Sylow 2-subgroup P of G such

that P1 is Sh-normal in G.
(b) P is Sh-normal in G, for some Sylow 2-subgroup P of G.

Proof. In view of Lemma 2.6(6), we only need to prove the “if” part.

(a) Suppose that there exists a maximal subgroup P1 of some Sylow 2-subgroup P
of G such that P1 is Sh-normal in G. We prove that G is soluble. Assume that
the assertion is not true and let G be a counterexample of minimal order. Then
obviously P 6= 1 and P1 6= 1. In fact, if P = 1, then G is a group of odd order. By
Feit-Thompson theorem, G is soluble. If P1 = 1, then |G| = 2n, where n is an odd
number, and G is also soluble by Lemma 2.5.

Since P1 is Sh-normal in G, there exists a normal subgroup K of G such that
P1K is a normal Hall subgroup of G and (P1 ∩ K)(P1)G/(P1)G ≤ ZS

∞(G/PG). If
(P1)G 6= 1, then it is clear that the hypotheses still holds for the quotient group
G/(P1)G by Lemma 2.6(2) and so G/(P1)G is soluble by the choice of G. It follows
that G is soluble, a contradiction. Thus we may assume that (P1)G = 1. In this
case, P1∩K ≤ ZS

∞(G). Assume that P1K = G. If P1∩K = 1, then |K| = 2n where
n is an odd number and G/K ' P1. By Lemma 2.5, K is soluble and consequently
G is also soluble, a contradiction. Thus P1 ∩K 6= 1 and so ZS

∞(G) 6= 1. Therefore,
there exists a minimal normal subgroup R of G contained in ZS

∞(G). It follows that
R is an elementary abelian p-subgroup, for some prime p. By Lemma 2.6(2), we
can easily see that G/R satisfies the hypotheses. Hence G/R is soluble and so G
is soluble, a contradiction again. Now assume that P1K < G. Then G/P1K is a
group of order 2m, where m is an odd number. Hence by Lemma 2.5, G/P1K is
soluble. It is easy to see that P1K satisfies the hypotheses by Lemma 2.6(4). The
minimal choice of G implies that P1K is soluble. It follows that G is soluble. The
contradiction completes the proof.

(b) The proof is the same as (a) and we hence omit the proof.

Corollary 4.7. Let G be a group. If some maximal subgroup of some Sylow 2-
subgroup of G is c-normal in G, then G is soluble.

Corollary 4.8. Let G be a group. If some Sylow 2-subgroup of G is c-normal in G,
then G is soluble.



586 W. Guo, X. Feng and J. Huang

Corollary 4.9. [18] A group G is soluble if and only if one of following conditions
holds:

(a) There exists a maximal subgroup P1 of some Sylow 2-subgroup P of G such
that P1 is Sn-supplemented in G.

(b) P is Sn-supplemented in G, for some Sylow 2-subgroup of G.

Corollary 4.10. [18] Let G be a group and P a Sylow p-subgroup of G, where p is
a minimal prime divisor of |G|. If there exists a Sylow p-subgroup P of G (or P has
a maximal subgroup P1 of P ) such that P (or P1, respectively) is Sn-supplemented
in G, then G is soluble.

5. New characterization of p-nilpotent groups

Theorem 5.1. Let p be a prime number dividing the order of a group G with (|G|, p−
1) = 1 and P a Sylow p-subgroup of G. Then G is p-nilpotent if and only if every
maximal subgroup of P is Uh-normal in G.

Proof. The necessity is obvious by Lemma 2.6(6). We only need to prove the suffi-
ciency. Assume that the assertion is false and let G be a counterexample of minimal
order. Then:

(1) Op′(G) = 1.
If Op′(G) 6= 1, then we may choose a minimal normal subgroup N of G such

that N ≤ Op′(G). Clearly, (|G/N |, p − 1) = 1 and PN/N is a Sylow p-subgroup
of G/N . Assume that L/N is a maximal subgroup of PN/N . Then, obviously,
L/N = P1N/N , where P1 is some maximal subgroup of P . By hypothesis and
Lemma 2.6(3), P1N/N is Uh-normal in G/N . This shows that G/N(with respect
to PN/N) satisfies the hypothesis. By the choice of G, G/N is p-nilpotent and
consequently G is p-nilpotent, a contradiction. Hence Op′(G) = 1.

(2) G is soluble.
Suppose that G is not soluble. Then p = 2 by the well-known Feit-Thompson

Theorem. Assume that O2(G) 6= 1. Let P1/O2(G) be a maximal subgroup of
P/O2(G). By hypothesis and Lemma 2.6(2), P1/O2(G) is Uh-normal in G/O2(G).
The minimal choice of G implies that G/O2(G) is 2-nilpotent and so G is solu-
ble, a contradiction. Now let O2(G) = 1 and P1 a maximal subgroup of P . Then
(P1)G = 1. By hypothesis, P1 is Uh-normal in G. Hence there exists K E G such
that P1K is a normal Hall subgroup of G and P1 ∩K ≤ ZU

∞(G). Obviously, K 6= 1.
If ZU

∞(G) 6= 1, then there exists a minimal normal subgroup H of G contained in
ZU
∞(G) with prime order. But by (1) and O2(G) = 1, we have that H=1, a contra-

diction. If ZU
∞(G) = 1, then P1 ∩K = 1 and 22 - |K|. Hence, by [11, (10.1.9)], K

has a normal Hall 2′-subgroup T . Since T char K EG, T EG. Hence by (1), T = 1.
This means that K ≤ O2(G) = 1, a contradiction again. Hence (2) holds.

(3) If K is a subgroup of G with a Sylow p-subgroup Kp of order p, then K is
p-nilpotent.

Since NK(Kp)/CK(Kp) is isomorphic with some subgroup of Aut(Kp) and
|Aut(Kp)| = p− 1, by (|G|, p− 1) = 1, we see that NK(Kp) = CK(Kp). Hence K is
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p-nilpotent by Burnside theorem.

(4) Op(G) is the unique minimal normal subgroup of G and Φ(G) = 1.
Let N be a minimal normal subgroup of G. By (1) and (2), N is an elementary

abelian p-group and N ≤ Op(G). By Lemma 2.6(2), G/N satisfies the hypotheses.
The minimal choice of G implies G/N is p-nilpotent. Since the class of all p-nilpotent
groups is a saturated formation, N is a unique minimal normal subgroup of G and
Φ(G) = 1. By Lemma 2.7, we see that Op(G) = N . Hence (4) holds.

(5) The final contradiction.
By (4), there exists a maximal subgroup M of G such that G = [Op(G)]M . Let

P = Op(G)Mp is a Sylow p-subgroup of G, where Mp is some Sylow p-subgroup of
M and P1 be a maximal subgroup of P such that Mp ≤ P1. By hypotheses, there
exists a normal subgroup K of G such that P1K is a normal Hall subgroup of G and
(P1 ∩K)(P1)G/(P1)G ≤ ZU

∞(G/(P1)G). Since Op(G) * P1 and Op(G) is the unique
minimal normal subgroup of G, (P1)G = 1. Therefore P1 ∩K ≤ ZU

∞(G).
If P1K < G, then by Lemma 2.6(4), P1K satisfies the hypotheses. The minimal

choice of G implies that P1K is p-nilpotent. Obviously, the normal p-complement
H of P1K is a normal subgroup of G. It follows from (1) that H = 1 and so
P1K = P EG. Therefore P = Op(G) is the unique minimal normal subgroup of G
and K = P . This means that P1 = P1 ∩K ≤ ZU

∞(G). If P1 6= 1, then ZU
∞(G) 6= 1.

Hence P ≤ ZU
∞(G) and thereby |P | = p. If P1 = 1, then we also have |P | = p.

Thus Aut(P ) is a cyclic group of order p − 1. Then since (|G|, p − 1) = 1, we have
NG(P ) = CG(P ). By using the well known Burnside Theorem, we obtain that G is
p-nilpotent, a contradiction.

Now assume that P1K = G. If P1 ∩ K = 1, then every Sylow p-subgroup of
K is a group of order p. Therefore K is p-nilpotent by (3). Let Kp′ be a normal
p-complement of K. Then Kp′ E G. But by (1), Kp′ = 1. Hence |K| = p. It
follows that G is a p-group, a contradiction. Hence P1 ∩K 6= 1, which implies that
ZU
∞(G) 6= 1. Since Op(G) is the unique minimal normal subgroup of G, Op(G) ≤

ZU
∞(G) and so |Op(G)| = p. By Lemma 2.7, CG(Op(G)) = Op(G). Hence M '

G/Op(G) = NG(Op(G))/CG(Op(G)) is a cyclic group of order p − 1. However,
since (|G|, p − 1) = 1, M = 1. It follows that G = Op(G). The final contradiction
completes the proof.

The following results now follows immediately from Theorem 5.1.

Corollary 5.1. Let p be the smallest prime number dividing the order of a group
G and P a Sylow p-subgroup of G. If every maximal subgroup of P is Uh-normal in
G, then G is p-nilpotent.

Corollary 5.2. [5] Let p be the smallest prime number dividing the order of a group
G and P a Sylow p-subgroup of G. If every maximal subgroup of P is c-normal in
G, then G is p-nilpotent.

Theorem 5.2. Let p be a prime dividing the order of a group G and P a Sylow
p-subgroup of G. Then G is p-nilpotent if and only if NG(P ) is p-nilpotent and every
maximal subgroup of P is Uh-normal in G.
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Proof. The necessity is clear. We only need to prove the sufficiency. If p = 2, then
G is p-nilpotent by Theorem 5.1. Thus we only need to consider the case when p is
an odd prime. Suppose that the theorem is not true and let G be a counterexample
of minimal order. Then:

(1) Op′(G) = 1.
In fact, if Op′(G) 6= 1, then we can consider the quotient group G/Op′(G). By

Lemma 2.6(3), it is easy to see that G/Op′(G) satisfies the hypotheses. The minimal
choice of G implies that G/Op′(G) is p-nilpotent. It follows that G is p-nilpotent, a
contradiction.

(2) If M is a proper subgroup of G with P ≤M < G, then M is p-nilpotent.
Since, clearly, NM (P ) ≤ NG(P ), NM (P ) is p-nilpotent. By Lemma 2.6(4), we

see that M satisfies the hypotheses. Hence by the choice of G, we have that M is
p-nilpotent.

(3) G = PQ is soluble, where Q is a Sylow q-subgroup of G with q 6= p.
Since G is not p-nilpotent, by Thompson theorem [11, (10.4.1)], there exists a

characteristic subgroup H of P such that NG(H) is not p-nilpotent. Since NG(P )
is p-nilpotent, we may choose a characteristic subgroup H of P such that NG(H) is
not p-nilpotent, but NG(K) is p-nilpotent for every characteristic subgroup K of P
with H < K ≤ P . Obviously, NG(P ) < NG(H). Then, by (2), NG(H) = G. This
leads to Op(G) 6= 1 and NG(K) is p-nilpotent for every characteristic subgroup K
of P satisfying Op(G) < K ≤ P . Now, by Thompson theorem [11, (10.4.1)] again,
we see that G/Op(G) is p-nilpotent and so G has the following p′p-series

1 < Op(G) < Opp′(G) < Opp′p(G) = G.

By [3, Theorem 6.3.5], we see that there exists a Sylow q-subgroup Q of G such that
G1 = PQ is a subgroup of G. If G1 < G, then by (2) G1 is p-nilpotent. This leads to
Q ≤ CG(Op(G)) ≤ Op(G) by [11, (9.3.1)]. This contradiction shows that (3) holds.

(4) Final contradiction.
By (1) and (3), Op(G) 6= 1. Let N be a minimal normal subgroup of G contained

in Op(G). It is easy to see that G/N satisfies the hypotheses. Hence G/N is p-
nilpotent by the choice of G. Since the class of all p-nilpotent groups is a saturated
formation, N is the unique minimal normal subgroup of G and N � Φ(G). Thus,
Op(G) = N is an elementary abelian p-group by Lemma 2.7 and there exists a
maximal subgroup L of G such that G = NL and N ∩ L = 1. Let P ∗ be a Sylow
p-subgroup of L. Then P = NP ∗. If P = N , then NG(P ) = NG(N) = G is p-
nilpotent, a contradiction. Thus P 6= N . Let P1 is a maximal subgroup of P with
P ∗ ≤ P1. By the hypotheses, there exists a normal subgroupK ofG such that P1K is
a normal Hall subgroup of G and (P1∩K)(P1)G/(P1)G ≤ ZU

∞(G/(P1)G). Obviously,
K 6= 1. SinceN is the unique minimal normal subgroup of G and N � P1, (P1)G = 1
and N ≤ K. Hence P1 ∩K ≤ ZU

∞(G). If P1K < G, then by (3), P1K = P EG. It
follows that G = NG(P ) is p-nilpotent, a contradiction. Hence P1K = G. If P1∩K 6=
1, then ZU

∞(G) 6= 1 and so N ≤ ZU
∞(G). It follows that |N | = p. Hence Aut(N) is
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a cyclic group of order p− 1. If p < q, then by [11, (10.1.9)], NQ is p-nilpotent and
therefore Q ≤ CG(N) = CG(Op(G)), which contradicts CG(Op(G)) ≤ Op(G). Thus
we may assume that q < p. Since CG(N) = CG(Op(G)) = Op(G) = N by Lemma
2.7, L ' G/N = NG(N)/CG(N) is isomorphic with a subgroup of Aut(N). Hence L
and Q are cyclic groups. By using [11, (10.1.9)] again, G is q-nilpotent and thereby
P is normal in G. This implies that NG(P ) = G is p-nilpotent, a contradiction
again. Hence P1 ∩ K = 1. Then since P = P ∩ G = P ∩ P1K = P1(P ∩ K) and
P1 ∩ (P ∩ K) = 1, |P ∩ K| = p. It follows from N ≤ P ∩ K that |N | = p. The
same as above we have NG(P ) = G is p-nilpotent. This contradiction completes the
proof.

Corollary 5.3. [5] Let p be an odd prime dividing the order of a group G and P a
Sylow p-subgroup of G. If NG(P ) is p-nilpotent and every maximal subgroup of P is
c-normal in G, then G is p-nilpotent.
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