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Abstract. A new comparison theorem is proved and then used to investigate

the solvability of a third-order two-point boundary value problem
u′′′(t) + f(t, u(t), u′(t), u′′(t)) = 0,
u(0) = u′(2π) = 0,

u′′(0) = u′′(2π).

Some existence results are established for this problem via upper and lower
solutions method and fixed point theory.
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1. Introductions

The third-order differential equations arise in an important number of physical prob-
lems, such as the deflection of a curved beam having a constant or varying cross
section, three layer beam, electromagnetic waves or gravity-driven flows [8]. During
the last three decades, third-order differential equations have attracted considerable
attention, and many techniques for such problems have appeared (see [1–3, 9–14]
and references therein).

Recently in [15], we established the following principle.

Theorem 1.1 (Comparison theorem). Assume 0 < M ≤ 2. If q ∈ C2[0, 1] satisfies

q′′(t) ≥M
∫ t

0

q(s)ds, t ∈ [0, 1]; q(0) ≤ 0, q(1) ≤ 0

then q(t) ≤ 0, t ∈ [0, 1].
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By the use of this result and the upper and lower solutions method, we show the
existence of solution and positive solution for the following problem.{

u′′′(t) + f(t, u(t)) = 0, 0 ≤ t ≤ 1,
u(0) = u′(0) = u′(1) = 0.

Then in [4], we get the existence results for the more generalized problem{
u′′′(t) + f(t, u(t), u′(t)) = 0, 0 ≤ t ≤ 1,
u(0) = u′(0) = u′(1) = 0,

by a new comparison theorem as follows.

Theorem 1.2 (Comparison theorem). Assume M ≥ 0, N ≥ 0,M + N ≤ 2. If
q ∈ C2[0, l] satisfies

q′′(t) ≥M
∫ t

0

q(s)ds+Nq(t), t ∈ [0, 1]; q(0) ≤ 0, q(1) ≤ 0

then q(t) ≤ 0, t ∈ [0, l].

Very recently in [5], we consider the boundary value problem of a semi-linear
third order differential equation as follows:{

u′′′(t)− a(t)u′(t) = f(t, u(t)), 0 ≤ t ≤ 1,
u′(0) = u(1) = u′(1) = 0,

where a(t) ∈ C([0, 1], [0,∞)),f : [0, 1] × R → R is continuous. The following com-
parison theorem is crucial to prove the existence result for the above problem.

Theorem 1.3 (Comparison theorem). If q(t) ∈ C2[0, 1]satisfies

q′′(t) ≥ b(t)
∫ 1

t

q(s)ds+ a(t)q(t), (0 ≤ t ≤ 1), q(0) ≤ 0, q(1) ≤ 0

where a(t), b(t) satisfy

0 < a(t) + (1− t)b(t) ≤ 2, ∀t ∈ (0, 1),

then q(t) ≤ 0, ∀t ∈ [0, 1].

In [6], we were concerned with the solvability of boundary value problems for
third-order implicit equations. In [7], we considered the existence and multiplicity
of positive periodic solutions for third-order equations.

In this paper, we are still concerned with the boundary value problem of third-
order differential equation

(1.1)

 u′′′(t) + f(t, u(t), u′(t), u′′(t)) = 0,
u(0) = u′(2π) = 0,
u′′(0) = u′′(2π),

where f : [0, 2π] × R3 → R is continuous. We prove a new comparison theorem,
and then establish the existence of solutions for the above given problem via the use
of the comparison theorem, fixed point theory and the upper and lower solutions
method. By these methods, we can obtain the iterative scheme for this problem,
which implies that the solutions are computable.



A New Comparison Theorem of a Boundary Value Problem 437

This paper is organized as follows. In Section 2, a new comparison theorem is
proved. The existence results for problem (1.1) are established in Section 3. In the
last section, we give the proof of the main result.

2. Comparison theorem

The following comparison theorem is crucial for the paper:

Theorem 2.1 (Comparison theorem). If m(t) is differentiable on [0, 2π] and satis-
fies

m′(t) ≤ −λ1

∫ 2π

0

G(t, s)m(s)ds− λ2

∫ 2π

t

m(s)ds− λ3m(t),m(0) ≤ m(2π),

where λ1, λ2, λ3 are positive numbers satisfying 8π3

3 λ1 + 2π2λ2 + 2πλ3 ≤ 1
2

G(t, s) =
{
s, 0 ≤ s ≤ t ≤ 2π
t, 0 ≤ t ≤ s ≤ 2π.

Then m(t) ≤ 0,∀t ∈ [0, 2π].

Proof. Let J = [0, 2π]. On the contrary, suppose there exists t0 ∈ (0, 2π] such that

m0 = m(t0) = max
t∈J

m(t) > 0,

we shall get a contradiction by the several steps.

Claim 1. There exists t1 ∈ [0, 2π) such that m1 = m(t1) = mint∈J m(t) < 0.
Otherwise, we have m(t) ≥ 0, t ∈ J . Noting that G(t, s) > 0, (t, s) ∈ (0, 2π) ×

(0, 2π) and m(t) is positive on some subset [τ1, τ2] of positive measure, we get that
for arbitrary τ ∈ (0, 2π),

m′(τ) ≤ −λ1

∫ 2π

0

G(τ, s)m(s)ds− λ2

∫ 2π

τ

m(s)ds− λ3m(τ)

≤ −λ1

∫ 2π

0

G(τ, s)m(s)ds < 0,

which means that m(t) is strictly decreasing on [0, 2π], so we have m(0) > m(2π),
which contradicts m(0) ≤ m(2π). Hence, Claim 1 is valid.

Claim 2. m(2π) < 0.
In fact, if

δ(t) =
∫ 2π

t

∫ 2π

0

G(τ, s)dsdτ,

then δ(t)is nonincreasing on [0, 2π], and

m(2π)−m1 =
∫ 2π

t1

m′(t)dt

≤
∫ 2π

t1

[−λ1

∫ 2π

0

G(t, s)m(s)ds− λ2

∫ 2π

t

m(s)ds− λ3m(t)]dt

≤ −λ1δ(t1)m1 − λ2
(2π − t1)2

2
m1 − λ3(2π − t1)m1
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≤ −λ1δ(0)m1 − λ22π2m1 − λ32πm1

= −
(

8π3

3
λ1 + 2π2λ2 + 2πλ3

)
m1.

Thus we have

m(2π) ≤
(

1− 8π3

3
λ1 − 2π2λ2 − 2πλ3

)
m1 < 0

and

m1 ≥
m(2π)

1− 8π3

3 λ1 − 2π2λ2 − 2πλ3

.

Hence, Claim 2 is valid.
Finally, we will get a contradiction.
In fact, m(t1) < 0 and m(t0) > 0 implies there exists t2 ∈ (0, 2π) such that

m(t2) = 0, and then

m(0) = m(0)−m(t2) =
∫ t2

0

−m′(t)dt

≥
∫ t2

0

[
λ1

∫ 2π

0

G(t, s)m(s)ds+ λ2

∫ 2π

t

m(s)ds+ λ3m(t)
]
dt

≥ λ1(δ(0)− δ(t2))m1 + λ2

(
2π2 − (2π − t2)2

2

)
m1 + λ3t2m1

> λ1δ(0)m1 + λ22π2m1 + λ32πm1

=
(

8π3

3
λ1 + 2π2λ2 + 2πλ3

)
m1.

Furthermore, we get

(2.1) 0 > m(2π) ≥ m(0) >
(

8π3

3
λ1 + 2π2λ2 + 2πλ3

)
m1,

(2.2) m1 ≥
m(2π)

1− 8π3

3 λ1 − 2π2λ2 − 2πλ3

.

and (2.1) and (2.2) imply

(2.3)
8π3

3 λ1 + 2π2λ2 + 2πλ3

1− 8π3

3 λ1 − 2π2λ2 − 2πλ3

> 1.

It is easy to compute that (2.3) holds if and only if 1
2 <

8π3

3 λ1 +2π2λ2 +2πλ3 < 1,
which contradicts the assumption that 8π3

3 λ1 + 2π2λ2 + 2πλ3 ≤ 1
2 .

3. Existence results and applications

α(t), β(t) ∈ C3[0, 2π] are called the lower solution and the upper solution of problem
(1.1), respectively, if {

α′′′(t) + f(t, α(t), α′(t), α′′(t)) ≥ 0,
α(0) = α′(2π) = 0, α′′(0) ≥ α′′(2π),
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β′′′(t) + f(t, β(t), β′(t), β′′(t)) ≤ 0,
β(0) = β′(2π) = 0, β′′(0) ≤ β′′(2π).

Throughout this section, we assume that f : [0, 2π]× R3 → R is continuous and
there exist positive numbers λ1, λ2, λ3 such that

(H1) for t ∈ [0, 2π], z ∈ R, x1 ≥ x2, y1 ≥ y2
f(t, x1, y1, z)− f(t, x2, y2, z) ≥ −λ1(x1 − x2)− λ2(y1 − y2)

(H2) for t ∈ [0, 2π], x, y ∈ R, z1 ≥ z2
f(t, x, y, z1)− f(t, x, y, z2) ≤ λ3(z1 − z2).

The main result reads as follows.

Theorem 3.1. Assume (1.1) have a lower solution α(t) and an upper solution β(t)
such that

α′′(t) ≥ β′′(t),∀t ∈ [0, 2π].

If 8π3

3 λ1 + 2π2λ2 + 2πλ3 ≤ 1/2 and λ3 > 1/2(
√

(1 + 4π)2 + 16π + 1 + 4π), then
problem (1.1) has a solution u∗(t) ∈ C3[0, 2π] satisfying α(t) ≤ u∗(t) ≤ β(t).

Corollary 3.1. Assume f satisfies (H1−H2) and λ1, λ2, λ3 satisfy 8π3

3 λ1 +2π2λ2 +
2πλ3 ≤ 1/2 andλ3 > 1/2(

√
(1 + 4π)2 + 16π + 1 + 4π).

(1) If min0≤t≤2π f(t, 0, 0, 0) ≥ 0 and there exists c > 0 such that

max{f(t, x, y,−c) | (t, x, y) ∈ [0, 2π]× [0, 2π2c]× [0, 2πc]} ≤ 0,

then (1.1) has a solution u∗ satisfying 0 ≤ u∗(t) ≤ c(2πt− t2

2 ).
(2) If max0≤t≤2π f(t, 0, 0, 0) ≤ 0 and there exists c > 0 such that

min{f(t, x, y, c) | (t, u, v) ∈ [0, 2π]× [−2π2c, 0]× [−2πc, 0]} ≥ 0,

then (1.1) has a solution u∗ satisfying 0 ≥ u∗(t) ≥ −c(2πt− t2

2 ).
(3) If there exists c > 0 such that

max{f(t, x, y,−c) | (t, u, v) ∈ [0, 2π]× [0, 2π2c]× [0, 2πc]} ≤ 0,

min{f(t, x, y, c) | (t, u, v) ∈ [0, 2π]× [−2π2c, 0]× [−2πc, 0]} ≥ 0,

then (1.1) has a solution u∗ satisfying −c(2πt− t2

2 ) ≤ u∗(t) ≤ c(2πt− t2

2 ).

Example 3.1. Consider the following third-order two-point boundary value prob-
lem: u′′′(t) + 1

12π (u′′(t) + e−u
′′(t)−4π) + 1

12π2 cosu′(t) + 1
32π3 ln(1 + (u(t))2) = 0,

u(0) = u′(2π) = 0, u′′(0) = u′′(2π).

Let

f(t, x, y, z) = f(x, y, z) =
1

32π3
ln(1 + x2) +

1
12π2

cos y +
1

12π
(z + e−z−4π).

Then f(0, 0, 0) > 0 and f satisfies (H1 −H2) with λ1 = 1
32π3 , λ2 = 1

12π2 , λ3 = 1
12π .

It is obvious that
8π3

3
λ1 + 2π2λ2 + 2πλ3 ≤

1
2
, λ3 >

1
2(
√

(1 + 4π)2 + 16π + 1 + 4π)
.
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Furthermore, let c = 4π, we have max{f(x, y,−4π) | (x, y) ∈ [0, 8π3]× [0, 8π2]} <
0.

Then Corollary 3.1(1) assures the above problem has a solution between 0, 4π(2πt−
t2

2 ).

4. Proof of the existence results

Let X = C[0, 2π], the norm on X is ‖.‖ : ‖x‖ = max0≤t≤2π |x(t)| for x ∈ X. Let
K = {x ∈ X | x(t) ≥ 0, 0 ≤ t ≤ 2π}, the partial order “≤” on X is induced by K:
for x, y ∈ X, y ≤ x⇔ x− y ∈ K, then (X,K) is an ordered Banach space.

Proof of Theorem 3.1. Let v(t) = −u′′
(t), then (1.1) is equivalent to the following

integro-differential equation:

(4.1)
{
v

′
(t) = f(t,

∫ 2π

0
G(t, s)v(s)ds,

∫ 2π

t
v(s)ds,−v(t)),

v(0) = v(2π),

where G(t, s) =
{
s, 0 ≤ s ≤ t ≤ 2π,
t, 0 ≤ t ≤ s ≤ 2π.

Defining two operators L : D ⊂ X → X,N : X → X as follows:

Lv = v
′
(t) + λ1

∫ 2π

0

G(t, s)v(s)ds+ λ2

∫ 2π

t

v(s)ds+ λ3v(t),

Nv = f

(
t,

∫ 2π

0

G(t, s)v(s)ds,
∫ 2π

t

v(s)ds,−v(t)
)

+ λ1

∫ 2π

0

G(t, s)v(s)ds+ λ2

∫ 2π

t

v(s)ds+ λ3v(t),

where D = {v ∈ X | v′ ∈ X, v(0) = v(2π)}.
By the definition of L andN , (4.1) is equivalent to the following operator equation:

(4.2) Lv = Nv

We shall show that the above operator equation is solvable. The proof will be
given in several steps.

Step 1. L : D ⊂ X → X is invertible.
We will prove that for ∀η ∈ X, there exists h ∈ X such that Lh = η.
Consider the following boundary value problem:{

v′(t) + λ3v(t) = η(t)− λ1

∫ 2π

0
G(t, s)v(s)ds− λ2

∫ 2π

t
v(s)ds,

v(0) = v(2π).

It is known by [12] that h is the solution of above problem if and only if h is the
fixed point of the operator Aη : X → X, where

Aηv(t) = e−λ3t

[
1

e2πλ3 − 1

∫ 2π

0

(
η(s)− λ1

∫ 2π

0

G(s, τ)v(τ)dτ − λ2

∫ 2π

s

v(τ)dτ
)
eλ3sds

+
∫ t

0

(
η(s)− λ1

∫ 2π

0

G(s, τ)v(τ)dτ − λ2

∫ 2π

s

v(τ)dτ
)
eλ3sds

]
.
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Noting that for all t ∈ [0, 2π], u, v ∈ X,

|Aηu(t)−Aηv(t)| ≤ e−λ3t

λ3

(
λ1

∫ 2π

0

∫ 2π

0

G(s, τ)dτds‖u− v‖+ 2π2λ2‖u− v‖
)

+
(
λ1

∫ 2π

0

∫ 2π

0

G(s, τ)dτds‖u− v‖+ 2π2λ2‖u− v‖
)

≤
(

1
λ3

+ 1
)(

λ1

∫ 2π

0

∫ 2π

0

G(s, τ)dτds+ 2π2λ2

)
‖u− v‖

=
(

1
λ3

+ 1
)(

8π3

3
λ1 + 2π2λ2

)
‖u− v‖

≤
(

1
λ3

+ 1
)(

1
2
− 2πλ3

)
‖u− v‖.

Let ρ =
(

1
λ3

+ 1
) (

1
2 − 2πλ3

)
, due to the monotonicity of f(x) =

(
1
x + 1

) (
1
2 − 2πx

)
,

we know that
1

4π
> λ3 >

1
2(
√

(1 + 4π)2 + 16π + 1 + 4π)

implies 0 < ρ < 1. Then Aη : X → X is a contractive mapping. The completeness
of X means there exists a unique h ∈ X, such that Aηh = h, which implies Lh = η.
In fact h ∈ D. Hence L : D ⊂ X → X is invertible.

Step 2. L−1 : X → D is continuous.
Let η ∈ X, {ηn} ⊂ X, ηn → η, L−1η = v, L−1ηn = vn, then

vn(t) = e−λ3t

[
1

e2πλ3 − 1

∫ 2π

0

(
ηn(s)− λ1

∫ 2π

0

G(s, τ)vn(τ)dτ − λ2

∫ 2π

s

vn(τ)dτ
)
eλ3sds

+
∫ t

0

(
ηn(s)− λ1

∫ 2π

0

G(s, τ)vn(τ)dτ − λ2

∫ 2π

s

vn(τ)dτ
)
eλ3sds

]
,

v(t) = e−λ3t

[
1

e2πλ3 − 1

∫ 2π

0

(
η(s)− λ1

∫ 2π

0

G(s, τ)v(τ)dτ − λ2

∫ 2π

s

v(τ)dτ
)
eλ3sds

+
∫ t

0

(
η(s)− λ1

∫ 2π

0

G(s, τ)v(τ)dτ − λ2

∫ 2π

s

v(τ)dτ
)
eλ3sds

]
.

As a result,

|vn(t)− v(t)| =
∣∣∣∣e−λ3t

{
1

e2πλ3 − 1

∫ 2π

0

[
(ηn(s)− η(s))− λ1

∫ 2π

0

G(s, τ)(vn(τ)

−v(τ))dτ − λ2

∫ 2π

s

(vn(τ)− v(τ))dτ
]
eλ3sds+

∫ t

0

[
(ηn(s)− η(s))

− λ1

∫ 2π

0

G(s, τ)(vn(τ)− v(τ))dτ

−λ2

∫ 2π

s

(vn(τ)− v(τ))dτ
]
eλ3sds

}∣∣∣∣
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≤ 2π
(

1
λ3

+ 1
)
‖ηn − η‖+

(
1
2
− 2πλ3

)(
1
λ3

+ 1
)
‖vn − v‖.

Hence we have

‖vn − v‖ ≤
1

1− ρ
2π
(

1
λ3

+ 1
)
‖ηn − η‖,

where ρ = ( 1
λ3

+ 1)( 1
2 − 2πλ3) has defined in Step 1 and 0 < ρ < 1.

Consequently, vn → v when ηn → η . Therefore L−1 : X → D is continuous.

Step 3. L−1 : X → D is a compact mapping.
Let S ⊂ X be a bounded subset, i.e., there exists a constant M > 0 such that

‖η‖ ≤M for any η ∈ S.
Let η ∈ E,L−1η = v, then

v(t) = e−λ3t

[
1

e2πλ3 − 1

∫ 2π

0

(
η(s)− λ1

∫ 2π

0

G(s, τ)v(τ)dτ − λ2

∫ 2π

s

v(τ)dτ
)
eλ3sds

+
∫ t

0

(
η(s)− λ1

∫ 2π

0

G(s, τ)v(τ)dτ − λ2

∫ 2π

s

v(τ)dτ
)
eλ3sds

]
.

As a result,

‖v‖ ≤ 2π
(

1
λ3

+ 1
)
‖η‖+

(
1
2
− 2πλ3

)(
1
λ3

+ 1
)
‖v‖

≤ 1
1− ρ

2π
(

1
λ3

+ 1
)
‖η‖ ≤ 1

1− ρ
2π
(

1
λ3

+ 1
)
M = T,

which implies L−1(S) is bounded.
In addition, let t1, t2 ∈ [0, 1], t1 < t2, δ(t) =

∫ 2π

t

∫ 2π

0
G(τ, s)dτds, then for any

v ∈ L−1(S) there exists η ∈ D such that L−1η = v and

|v(t1)− v(t2)| =| Aηv(t1)−Aηv(t2) |

≤ 1
λ3
| (e−λ3t1 − e−λ3t2)(2π‖η‖+ λ1δ(0)‖ u‖+ 2π2λ2‖u‖) |

+
∣∣∣‖η‖(t2 − t1) + λ1(δ(t1)− δ(t2))‖u‖

+ λ2‖u‖
(

(2π − t1)2

2
− (2π − t2)2

2

) ∣∣∣
≤ 1
λ3

[
2πM + (

1
2
− 2πλ3)T

]
(e−λ3t1 − e−λ3t2)

+M(t2 − t1) + λ1T (δ(t1)− δ(t2)) + λ2T

(
(2π − t1)2

2
− (2π − t2)2

2

)
.

Due to the uniformly continuous functions,

f1(t) = e−λ3t, f2(t) = t, δ(t) =
∫ 2π

t

∫ 2π

0

G(τ, s)dτds, f3(t) =
(2π − t)2

2

on [0, 2π], we know that for ∀ε > 0, there exists σ > 0 such that t2 − t1 < σ implies

|v(t1)− v(t2)| < ε.
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Hence L−1(S) is equi-continuous. Making use of Arzela–Ascoli’s theorem, we
know that L−1 : X → D is a compact mapping.

Since f is continuous, then N : X → X is continuous.

Step 4. L−1N : X → D is increasing.
Suppose η1, η2 ∈ X, η1 ≤ η2, then assumptions (H1−H2) imply Nη1 ≤ Nη2. Let

v1 = L−1Nη1, v2 = L−1Nη2, then Lv1 = Nη1 ≤ Nη2 = Lv2. By Theorem 2.1 we
obtain v1 ≤ v2. Hence L−1N : X → D is increasing.

Step 5. there exist x, y ∈ D,x ≤ y such that Lx ≤ Nx and Ly ≥ Ny.
In fact, by Step 1, we know that there exist x, y ∈ D such that Lx = N(−α′′), Ly =

N(−β′′). In the following, we will verify that

(1) x ≤ y;
(2) Lx ≤ Nx and Ly ≥ Ny.

Since α′′(t) ≥ β′′(t) and N is nondecreasing, it is easy to know

Lx = N(−α′′) ≤ N(−β′′) = Ly,

an application of Theorem 2.1 gives that x ≤ y.
By the definition of x,we have

(4.3)

 x′(t) + λ1

∫ 2π

0
G(t, s)x(s)ds+ λ2

∫ 2π

t
x(s)ds+ λ3x(t)

= f(t, α(t), α′(t), α′′(t)) + λ1α(t) + λ2α
′(t)− λ3α

′′(t),
x(0) = x(2π).

Let φ(t) = −α′′(t). α is the lower solution means

(4.4)

 φ′(t) + λ1

∫ 2π

0
G(t, s)φ(s)ds+ λ2

∫ 2π

t
φ(s)ds+ λ3φ(t)

≤ f(t, α(t), α′(t), α′′(t)) + λ1α(t) + λ2α
′(t)− λ3α

′′(t),
φ(0) ≤ φ(2π).

(4.3)–(4.4) together with (H2) lead to

(4.5)

 (x(t)− φ(t))′ + λ1

∫ 2π

0
G(t, s)(x(s)− φ(s))ds

+λ2

∫ 2π

t
(x(s)− φ(s))ds+ λ3(x(t)− φ(t)) ≥ 0,

(x(0)− φ(0)) ≥ (x(2π)− φ(2π)).

By virtue of Theorem 2.1, we have x(t) − φ(t) ≥ 0. The nondecreasing of N gives
Nx ≥ Nφ, hence Lx = Nφ ≤ Nx.
Ny ≤ Ly can be verified similarly.
Step 4–Step 5 means the operator L−1N maps [x, y]

⋂
D into [x, y]

⋂
D. Since

[x, y]
⋂
D is convex, closed and bounded and L−1N is completely continuous, an

application of Schauder fixed-point theorem implies Lv = Nv has a solution v∗ in
[x, y]. Let u∗(t) =

∫ 2π

0
G(t, s)v∗(s)ds, then u∗(t) is a solution of problem (1.1) and

satisfies α(t) ≤ u∗(t) ≤ β(t). This completes the proof.

Proof of Corollary 3.1. Under condition (1), let α(t) ≡ 0, β(t) = c(2πt− t2

2 ). Under
condition (2), let α(t) = −c(2πt − t2

2 ), β(t) ≡ 0 and while condition (3) holds, let
α(t) = −c(2πt − t2

2 ), β(t) = c(2πt − t2

2 ). It is easy to check that α, β are the lower
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and upper solutions of (P ) under condition (i), i = 1, 2, 3, respectively. Theorem
3.1 asserts the existence of solution u∗ of (P ) under condition (i), i = 1, 2, 3.

5. Conclusion

In this paper, we established a new comparison theorem and then use it to investigate
the solvability of a third-order two-point boundary value problem u′′′(t) + f(t, u(t), u′(t), u′′(t)) = 0,

u(0) = u′(2π) = 0,
u′′(0) = u′′(2π).

We give some existence results for this problem via upper and lower solutions method
and fixed point theory.
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