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Abstract. In this paper, we consider the third order nonlinear delay dynamic

equations

(a(t){[r(t)x∆(t)]∆}γ)∆ + f(t, x(τ(t))) = 0,

on a time scale T, where γ > 0 is a quotient of odd positive integers, a and r are
positive rd-continuous functions on T, and the so-called delay function τ : T→ T
satisfies τ(t) ≤ t, and τ(t)→∞ as t→∞, f ∈ C(T×R,R) is assumed to satisfy

uf(t, u) > 0, for u 6= 0 and there exists a positive rd-continuous function p on
T such that f(t, u)/uγ ≥ p(t), for u 6= 0.

We establish some new results. Some examples are considered to illustrate

the main results.
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1. Introduction

A time scale T is an arbitrary closed subset of the reals, and the cases when this
time scale is equal to the reals or to the integers represent the classical theories of
differential and of difference equations. Many other interesting time scales exist, and
they give rise to plenty of applications, among them the study of population dynamic
models which are discrete in season (and may follow a difference scheme with variable
step-size or often modeled by continuous dynamic systems), die out, say in winter,
while their eggs are incubating or dormant, and then in season again, hatching
gives rise to a nonoverlapping population. Not only does the new theory of the so-
called “dynamic equations” unify the theories of differential equations and difference
equations, but also extends these classical cases to cases “in between”, e.g., to the
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so-called q-difference equations when T = qN0 = {qt : t ∈ N0 for q > 1} (which
has important applications in quantum theory) and can be applied on different types
of time scales like T = hN,T = N2 and T = Tn the space of the harmonic numbers.

The theory of time scales, which has recently received a lot of attention, was
introduced by Hilger in his Ph.D. Thesis in 1988 in order to unify continuous and
discrete analysis (see Hilger [17]). Several authors have expounded on various aspects
of this new theory; see the survey paper by Agarwal et al. [1] and references cited
therein. A book on the subject of time scales, by Bohner and Peterson [3] summarizes
and organizes much of the time scale calculus. We refer also to the last book by
Bohner and Peterson [4] for advances in dynamic equation on time scales. For the
notations used below we refer to the next section that provides some basic facts on
time scales extracted from Bohner and Peterson [3].

In recent years, there has been much research activity concerning the oscillation
and nonoscillation of solutions of various second order dynamic equations on time
scales (we refer the reader to the articles [2, 5–7,11–14,18–24]).

To the best of our knowledge, there is very little known about the oscillatory
behavior of third order dynamic equations. Erbe et al. [8–10] considered the third
order dynamic equations

(a(t)[r(t)x∆(t)]∆)∆ + p(t)f(x(t)) = 0,

x∆∆∆(t) + p(t)x(t) = 0,

and
(a(t){[r(t)x∆(t)]∆}γ)∆ + f(t, x(t)) = 0,

respectively and established some sufficient conditions for oscillation.
Recently, Hassan [15] considered the third order delay dynamic equations

(1.1) (a(t){[r(t)x∆(t)]∆}γ)∆ + f(t, x(τ(t))) = 0,

on a time scale T, where γ ≥ 1 is a quotient of odd positive integers, a and r are
positive rd-continuous functions on T, and the so-called delay function τ : T → T
satisfies τ(t) ≤ t, τ∆(t) ≥ 0, for t ∈ T and τ(t) → ∞ as t → ∞, f ∈ C(T× R,R) is
assumed to satisfy uf(t, u) > 0, for u 6= 0 and there exists a positive rd-continuous
function p on T such that f(t, u)/uγ ≥ p(t), for u 6= 0. The author established some
sufficient conditions for oscillation of (1.1), when the condition τ(σ(t)) = σ(τ(t))
holds.

The restriction τ(σ(t)) = σ(τ(t)) depends on time scale, so by suitable choosing
for τ(t), we can find that, for example, in general, we can choose τ = ρk, k ∈ Z+,
where ρ is the backward jump operator, for any isolated time scale.

This paper considers equation (1.1) where γ > 0 is a quotient of odd positive
integers, a and r are positive rd-continuous functions on T, and the so-called delay
function τ : T → T satisfies τ(t) ≤ t, and τ(t) → ∞ as t → ∞, f ∈ C(T × R,R) is
assumed to satisfy uf(t, u) > 0, for u 6= 0 and there exists a positive rd-continuous
function p on T such that f(t, u)/uγ ≥ p(t), for u 6= 0.

As we are interested in oscillatory behavior, we assume throughout this paper
that the given time scale T is unbounded above. We assume t0 ∈ T and it is
convenient to assume t0 > 0. We define the time scale interval of the form [t0,∞)T
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by [t0,∞)T = [t0,∞) ∩ T. A solution x(t) is said to be oscillatory if it is neither
eventually positive nor eventually negative, otherwise it is called nonoscillatory.

We establish new oscillation criteria that can be applied on any time scale T and
we complement the results in [15].

2. Main results

In this section we give some new oscillation criteria for (1.1). Throughout this paper,
we let

d+(t) := max{0, d(t)}, d−(t) := max{0,−d(t)},
and

β(t) := b(t), 0 < γ ≤ 1, β(t) := bγ(t), γ > 1,

b(t) =
t

σ(t)
, δ(t, T1) :=

∫ t

T1

∆s

a
1
γ (s)

.

In order to prove our main results, we will use the formula

(2.1) ((x(t))γ)∆ = γ

∫ 1

0

[hxσ + (1− h)x]γ−1
x∆(t)dh,

where x(t) is delta differentiable and eventually positive or eventually negative, which
is a simple consequence of Keller’s chain rule (see Bohner and Peterson [3, Theorem
1.90]). Also, we need the following lemmas which will play an important role in the
proof of main results.

Lemma 2.1. [15, Lemma 2.1, p. 1574] Assume that

(2.2)
∫ ∞
t0

∆t

a
1
γ (t)

=∞,
∫ ∞
t0

∆t
r(t)

=∞,

and

(2.3)
∫ ∞
t0

1
r(t)

∫ ∞
t

[
1
a(s)

∫ ∞
s

p(u)∆u
] 1
γ

∆s∆t =∞.

Furthermore, suppose that (1.1) has a positive solution x on [t0,∞)T. Then there
exists a T ∈ [t0,∞)T, sufficiently large, so that

(a(t){[r(t)x∆(t)]∆}γ)∆ < 0, (r(t)x∆(t))∆ > 0, t ∈ [T,∞)T,

and either x∆(t) > 0 on [T,∞)T or limt→∞ x(t) = 0.

Lemma 2.2. [15, Lemma 2.2, p. 1575] Assume that x is a positive solution of
equation (1.1) such that

(r(t)x∆(t))∆ > 0, x∆(t) > 0,

on [t∗,∞)T, t∗ ≥ t0. Then

x∆(t) ≥ δ(t, t∗)
r(t)

a
1
γ (t)(r(t)x∆(t))∆.
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Lemma 2.3. Assume that x is a positive solution of equation (1.1) such that

(r(t)x∆(t))∆ > 0, x∆(t) > 0,

on [t∗,∞)T, t∗ ≥ t0. Furthermore, r∆(t) ≤ 0,

(2.4)
∫ ∞
t0

p(t)τγ(t)∆t =∞.

Then there exists a T ∈ [t∗,∞)T, sufficiently large, so that

x(t) > tx∆(t),

x(t)/t is strictly decreasing, t ∈ [T,∞)T.

Proof. In view of

(r(t)x∆(t))∆ = r∆(t)x∆(t) + rσ(t)x∆∆(t) > 0,

so we have x∆∆(t) > 0, t ∈ [t∗,∞)T. Let

U(t) := x(t)− tx∆(t).

Hence U∆(t) = −σ(t)x∆∆(t) < 0. We claim there exists a t1 ∈ [t∗,∞)T such that
U(t) > 0, x(τ(t)) > 0 on [t1,∞)T. Assume not. Then U(t) < 0 on [t1,∞)T. There-
fore,

(2.5)
(
x(t)
t

)∆

=
tx∆(t)− x(t)

tσ(t)
= − U(t)

tσ(t)
> 0, t ∈ [t1,∞)T,

which implies that x(t)/t is strictly increasing on [t1,∞)T. Pick t2 ∈ [t1,∞)T so that
τ(t) ≥ τ(t1), for t ≥ t2. Then

x(τ(t))
τ(t)

≥ x(τ(t1))
τ(t1)

:= d > 0,

so that x(τ(t)) ≥ dτ(t), for t ≥ t2. By (1.1) we have

(2.6) (a(t){[r(t)x∆(t)]∆}γ)∆ ≤ −p(t)xγ(τ(t)) < 0, t ≥ t2.

Now by integrating both sides of (2.6) from t2 to t, we have

a(t){[r(t)x∆(t)]∆}γ − a(t2){[r(t2)x∆(t2)]∆}γ +
∫ t

t2

p(s)xγ(τ(s))∆s ≤ 0.

This implies that

a(t2){[r(t2)x∆(t2)]∆}γ ≥
∫ t

t2

p(s)xγ(τ(s))∆s ≥ dγ
∫ t

t2

p(s)τγ(s)∆s,

which contradicts (2.4). So U(t) > 0 on t ∈ [t1,∞)T and consequently,

(2.7) (
x(t)
t

)∆ =
tx∆(t)− x(t)

tσ(t)
= − U(t)

tσ(t)
< 0, t ∈ [t1,∞)T,

and we have that x(t)/t is strictly decreasing on t ∈ [t1,∞)T. The proof is now
complete.
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Theorem 2.1. Assume that (2.2), (2.3) and (2.4) hold. r∆(t) ≤ 0. Furthermore,
assume that there exists a positive function α ∈ C1

rd([t0,∞)T,R), for all sufficiently
large T1 ∈ [t0,∞)T, there is a T > T1 such that

(2.8) lim sup
t→∞

∫ t

T

[
ασ(s)p(s)(

τ(s)
σ(s)

)γ − rγ(s)((α∆(s))+)γ+1

(γ + 1)γ+1(β(s)ασ(s)δ(s, T1))γ

]
∆s =∞.

Then every solution of equation (1.1) is either oscillatory or tends to zero.

Proof. Assume (1.1) has a nonoscillatory solution x on [t0,∞)T. We may assume
without loss of generality that x(t) > 0 and x(τ(t)) > 0 for all t ∈ [t1,∞)T, t1 ∈
[t0,∞)T. We shall consider only this case, since the proof when x(t) is eventually
negative is similar. Therefore from Lemma 2.1, we get

(a(t){[r(t)x∆(t)]∆}γ)∆ < 0, (r(t)x∆(t))∆ > 0, t ∈ [t1,∞)T,

and either x∆(t) > 0 for t ≥ t2 ≥ t1 or limt→∞ x(t) = 0. Let x∆(t) > 0 on [t2,∞)T.
Consider the generalized Riccati substitution

(2.9) ω(t) = α(t)
a(t){[r(t)x∆(t)]∆}γ

xγ(t)
.

By the product rule and then the quotient rule

ω∆(t) = α∆(t)
a(t){[r(t)x∆(t)]∆}γ

xγ(t)
+ ασ(t)[

a(t){[r(t)x∆(t)]∆}γ

xγ(t)
]∆

= α∆(t)
a(t){[r(t)x∆(t)]∆}γ

xγ(t)
+ ασ(t)

(a(t){[r(t)x∆(t)]∆}γ)∆

xγσ(t)

− ασ(t)
a(t){[r(t)x∆(t)]∆}γ(xγ(t))∆

xγ(t)xγσ(t)
.

From (1.1) and the definition of ω(t) and using the fact x(t)/t is strictly decreasing,
t ∈ [t3,∞)T, t3 ≥ t2, we have that

(2.10) ω∆(t) ≤ −ασ(t)p(t)( τ(t)
σ(t)

)γ +
α∆(t)

α(t)
ω(t)− ασ(t)a(t){[r(t)x

∆(t)]∆}γ(xγ(t))∆

xγ(t)xγσ(t)
.

If 0 < γ ≤ 1, by (2.1), we have

(xγ(t))∆ ≥ γ(xσ(t))γ−1x∆(t),

in view of (2.10), Lemma 2.2 and Lemma 2.3, we have

ω∆(t) ≤ −ασ(t)p(t)(
τ(t)
σ(t)

)γ +
α∆(t)
α(t)

ω(t)− γασ(t)
a(t){[r(t)x∆(t)]∆}γx(t)x∆(t)

xγ+1(t)xσ(t)

≤ −ασ(t)p(t)(
τ(t)
σ(t)

)γ +
α∆(t)
α(t)

ω(t)− γασ(t)
t

σ(t)
δ(t, t∗)
r(t)

w
γ+1
γ (t)

α
γ+1
γ (t)

.(2.11)

If γ > 1, also by (2.1), we have

(xγ(t))∆ ≥ γ(x(t))γ−1x∆(t),

in view of (2.10), Lemma 2.2 and Lemma 2.3, we have

ω∆(t) ≤ −ασ(t)p(t)(
τ(t)
σ(t)

)γ +
α∆(t)
α(t)

ω(t)− γασ(t)
a(t){[r(t)x∆(t)]∆}γxγ(t)x∆(t)

xγ+1(t)xγσ(t)
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≤ −ασ(t)p(t)(
τ(t)
σ(t)

)γ +
α∆(t)
α(t)

ω(t)− γασ(t)(
t

σ(t)
)γ
δ(t, t∗)
r(t)

w
γ+1
γ (t)

α
γ+1
γ (t)

.(2.12)

By (2.11), (2.12) and the definition of b and β, we have, for γ > 0,

(2.13) ω∆(t) ≤ −ασ(t)p(t)(
τ(t)
σ(t)

)γ +
(α∆(t))+

α(t)
ω(t)− γασ(t)β(t)

δ(t, t∗)
r(t)

wλ(t)
αλ(t)

,

where λ := (γ + 1)/γ. Define A ≥ 0 and B ≥ 0 by

Aλ := γασ(t)β(t)
δ(t, t∗)
r(t)

wλ(t)
αλ(t)

, Bλ−1 :=
(α∆(t))+r

1
λ (t)

λ(γβ(t)ασ(t)δ(t, t∗))
1
λ

.

Then using the inequality [16]

(2.14) λABλ−1 −Aλ ≤ (λ− 1)Bλ,

which yields

(α∆(t))+

α(t)
ω(t)− γασ(t)β(t)

δ(t, t∗)
r(t)

wλ(t)
αλ(t)

≤ rγ(t)((α∆(t))+)γ+1

(γ + 1)γ+1(β(t)ασ(t)δ(s, t∗))γ
.

From this last inequality and (2.13), we find

ω∆(t) ≤ −ασ(t)p(t)(
τ(t)
σ(t)

)γ +
rγ(t)((α∆(t))+)γ+1

(γ + 1)γ+1(β(t)ασ(t)δ(s, t∗))γ
.

Integrating both sides from t3 to t, we get∫ t

t3

[
ασ(s)p(s)(

τ(s)
σ(s)

)γ − rγ(s)((α∆(s))+)γ+1

(γ + 1)γ+1(β(s)ασ(s)δ(s, t∗))γ

]
∆s ≤ ω(t3)−ω(t) ≤ ω(t3),

which contradicts assumption (2.8). This contradiction completes the proof.

Remark 2.1. From Theorem 2.1, we can obtain different conditions for oscillation
of equation (1.1) with different choices of α(t).

Remark 2.2. The conclusion of Theorem 2.1 remains intact if assumption (2.8) is
replaced by the two conditions

lim sup
t→∞

∫ t

T

ασ(s)p(s)(
τ(s)
σ(s)

)γ∆s =∞,

lim inf
t→∞

∫ t

T

rγ(s)((α∆(s))+)γ+1

(γ + 1)γ+1(β(s)ασ(s)δ(s, T1))γ
∆s <∞.

Corollary 2.1. Assume that (2.2), (2.3) and (2.4) hold. r∆(t) ≤ 0. Furthermore,
suppose that there exist functions H,h ∈ Crd(D,R), where D ≡ {(t, s) : t ≥ s ≥ t0}
such that

H(t, t) = 0, t ≥ t0, H(t, s) > 0, t > s ≥ t0,
and H has a nonpositive continuous ∆-partial derivative H∆s(t, s) with respect to
the second variable and satisfies

H∆s(σ(t), s) +H(σ(t), σ(s))
α∆(s)
α(s)

= −h(t, s)
α(s)

H(σ(t), σ(s))
γ
γ+1 ,
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and for all sufficiently large T1 ∈ [t0,∞)T, there is a T > T1 such that

(2.15) lim sup
t→∞

1
H(σ(t), T )

∫ σ(t)

T

K(t, s)∆s =∞,

where α is a positive ∆−differentiable function and

K(t, s) = H(σ(t), σ(s))ασ(s)p(s)(
τ(s)
σ(s)

)γ − rγ(s)(h−(t, s))γ+1

(γ + 1)γ+1(β(s)ασ(s)δ(s, T1))γ
.

Then every solution of equation (1.1) is either oscillatory or tends to zero.

Remark 2.3. The conclusion of Corollary 2.1 remains intact if assumption (2.15)
is replaced by the two conditions

lim sup
t→∞

1
H(σ(t), T )

∫ σ(t)

T

H(σ(t), σ(s))ασ(s)p(s)(
τ(s)
σ(s)

)γ∆s =∞,

lim inf
t→∞

1
H(σ(t), T )

∫ σ(t)

T

rγ(s)(h−(t, s))γ+1

(γ + 1)γ+1(β(s)ασ(s)δ(s, T1))γ
∆s <∞.

Remark 2.4. Define ω as (2.9), we also get

ω∆(t) = (
α(t)
xγ(t)

)∆(a(t){[r(t)x∆(t)]∆}γ)σ +
α(t)
xγ(t)

(a(t){[r(t)x∆(t)]∆}γ)∆,

similar to the proofs of Theorem 2.1, we can obtain different results. We leave the
details to the reader.

3. Applications and examples

In this section, we give some examples to illustrate our main results.

Example 3.1. Consider the third order delay dynamic equation

(3.1) x∆∆∆(t) +
β

tτ(t)
x(τ(t)) = 0, t ∈ [t0,∞)T,

where β is a positive constant. We have

a(t) = r(t) = 1, p(t) =
β

tτ(t)
, t ∈ [t0,∞)T.

It is clear that condition (2.2), (2.3) and (2.4) hold. Therefore, by Theorem 2.1, pick
α(t) = t, we have

lim sup
t→∞

∫ t

T

[
ασ(s)p(s)(

τ(s)
σ(s)

)γ − rγ(s)((α∆(s))+)γ+1

(γ + 1)γ+1(β(s)ασ(s)δ(s, T1))γ

]
∆s

= lim sup
t→∞

∫ t

T

[
β

s
− 1

(γ + 1)γ+1(s(s− T1))

]
∆s =∞.

Hence, every solution of equation (3.1) is oscillatory or tends to zero if β > 0.
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Example 3.2. Consider the third order delay dynamic equation

(3.2)
(
tγ(x∆∆(t))γ

)∆
+

β

tτγ(t)
xγ(τ(t)) = 0, t ∈ [t0,∞)T,

where β is a positive constant, γ > 0. We have

a(t) = tγ , r(t) = 1, p(t) =
β

tτγ(t)
, t ∈ [t0,∞)T.

The condition (2.2), (2.3) and (2.4) hold (similar to [15, Example 2.1]). Thus, we
assume T is a time scale satisfying σ(t) ≤ kt, for some k > 0, t ≥ Tk > t∗.

When γ ≥ 1, by Theorem 2.1, pick α(t) = tγ , by (2.1), we have that α∆(t)(tγ)∆ ≤
γσγ−1(t). Therefore

lim sup
t→∞

∫ t

Tk

[
ασ(s)p(s)(

τ(s)
σ(s)

)γ − rγ(s)((α∆(s))+)γ+1

(γ + 1)γ+1(β(s)ασ(s)δ(s, T1))γ

]
∆s

≥ lim sup
t→∞

∫ t

Tk

[
β

s
− (

γ

γ + 1
)γ+1 k

γ2−1

s

]
∆s

≥
(
β − (

γ

γ + 1
)γ+1kγ

2−1

)
lim sup
t→∞

∫ t

Tk

∆s
s

=∞,

if β > (γ/(γ + 1))γ+1kγ
2−1.

When 0 < γ < 1, pick α(t) = t, by Theorem 2.1, we have that

lim sup
t→∞

∫ t

Tk

[
ασ(s)p(s)(

τ(s)
σ(s)

)γ − rγ(s)((α∆(s))+)γ+1

(γ + 1)γ+1(β(s)ασ(s)δ(s, T1))γ

]
∆s

≥ lim sup
t→∞

∫ t

Tk

[
β

kγ−1sγ
− 1

(γ + 1)γ+1sγ

]
∆s

≥
(

β

kγ−1
− 1

(γ + 1)γ+1

)
lim sup
t→∞

∫ t

Tk

∆s
sγ

=∞,

if β > kγ−1/(γ + 1)γ+1.
Hence, every solution of equation (3.2) is oscillatory or tends to zero if

β > (
γ

γ + 1
)γ+1kγ

2−1, γ ≥ 1;β >
kγ−1

(γ + 1)γ+1
, 0 < γ < 1.

Example 3.3. Consider the third order delay dynamic equation

(3.3)
(

((
1
t
x∆(t))∆)γ

)∆

+
βσγ(t)
tτγ(t)

xγ(τ(t)) = 0, t ∈ [t0,∞)T,

where β is a positive constant, γ > 0. We have

a(t) = 1, r(t) =
1
t
, p(t) =

βσγ(t)
tτγ(t)

, t ∈ [t0,∞)T.

It is clear that condition (2.2), (2.3) and (2.4) hold. Therefore, by Theorem 2.1, pick
α(t) = 1, we have

lim sup
t→∞

∫ t

T

[
ασ(s)p(s)(

τ(s)
σ(s)

)γ − rγ(s)((α∆(s))+)γ+1

(γ + 1)γ+1(β(s)ασ(s)δ(s, T1))γ

]
∆s
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= lim sup
t→∞

∫ t

T

β

s
∆s =∞.

Hence, every solution of equation (3.3) is oscillatory or tends to zero if β > 0.

Remark 3.1. In the equations (3.1), (3.2) and (3.3), we don’t need the condition
τ(σ(t)) = σ(τ(t)). Therefore, our results complement and improve the results in [15].
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