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Abstract. Let G be a finite non-abelian group. The noncommuting graph of G

is denoted by ∇(G) and is defined as follows: the vertex set of ∇(G) is G\Z(G)

and two vertices x and y are adjacent if and only if xy 6= yx. Let p be a prime
number. In this paper, it is proved that the almost simple group PGL(2, p)

is uniquely determined by its noncommuting graph. As a consequence of our

results the validity of a conjecture of Thompson and another conjecture of Shi
and Bi for the group PGL(2, p) are proved.
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1. Introduction

There is a close relation between group theory and graph theory. For studying some
algebraic properties of finite groups, many authors assign appropriate graphs to
groups and using the properties of these graphs, they have proved many interesting
results in group theory. For example, Kegel and Gruenberg introduced the prime
graph of a finite group G. The concept of prime graph arose during the investigation
of certain cohomological questions associated with integral representations of finite
groups. The prime graph of G is a graph whose vertex set is the set of all prime
divisors of |G| and two distinct primes p and q are joined by an edge (we write p ∼ q)
if and only if G contains an element of order pq (see [3]). We use A \ B for the set
of elements of A which are not in B.

The noncommuting graph of G is constructed as follows: the vertex set is G\Z(G)
and two distinct vertices x and y are adjacent if and only if xy 6= yx. This graph
is denoted by ∇(G). The noncommuting graph of a group G was first considered
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by Paul Erdös, when he posed the following problem in 1975: Let G be a group
whose noncommuting graph has no infinite complete subgraph. Is it true that there
is a finite bound on the cardinalities of complete subgraphs of ∇(G)? Neumann
answered positively to this question (see [13]).

In [2] and [12], some graph theoretical properties of ∇(G) and the relations be-
tween some properties of ∇(G) and the structure of G were studied. For example it
is proved that for every group G, the noncommuting graph ∇(G) is connected.

The noncommuting graphs of two finite groups G and H are said to be isomorphic
(we write ∇(G) ∼= ∇(H)) if there exists a bijective map φ : G \Z(G) −→ H \Z(H)
such that for every two distinct vertices x and y of ∇(G) we have xy = yx if and only
if φ(x)φ(y) = φ(y)φ(x). In [2], the authors put forward the following conjecture:

Conjecture 1.1 (AAM’s Conjecture). Let S be a finite non-abelian simple group
and G be a group such that ∇(G) ∼= ∇(S). Then G ∼= S.

This conjecture is known to hold for all simple groups with non-connected prime
graphs (for more details see [7, 19, 20, 23–25, 28, 29]). Also it is proved that some
finite simple groups with connected prime graphs, say A10, U4(7), L4(8), L4(4) and
L4(9), can be uniquely determined by their noncommuting graphs (see [22, 26, 27]).
In [1], it is proved that SL(2, q) is characterizable by its noncommuting graph.

In this paper as the main result we prove that if p is a prime number, then the
projective general linear group PGL(2, p), which is almost simple, is characterizable
by its noncommuting graph. For the proof of this result, we prove that if ∇(G) ∼=
∇(PGL(2, p)), then |Z(G)| = 1 and using this result we prove that |G| = |PGL(2, p)|
(Theorem 3.1). Then using Lemma 2.8 we conclude that OC(G) = OC(PGL(2, p)).
Hence G has a normal series 1 EH < K E G and K/H is a simple group (Lemma
3.1). By the classification of finite simple groups, it follows that K/H ∼= A1(q), for
q = 4 or p (Theorem 3.3). As a consequence of our results we prove the validity
of a conjecture of Thompson and another conjecture of Shi and Bi for the group
PGL(2, p).

In this paper, all groups are finite and by simple groups we mean non-abelian
simple groups. All further unexplained notations are standard and refer to [6], for
example. If n is an integer, then we denote by π(n) the set of all prime divisors of
n. If G is a finite group, then π(|G|) is denoted by π(G).

2. Preliminary results

Definition 2.1. If G is a finite group and Γ(G) is the prime graph of G, then
the number of connected components of Γ(G) is denoted by t(G) and the vertex set
of the connected components are denoted by πi(G), i = 1, . . . , t(G). If 2 ∈ π(G),
then we assume that 2 ∈ π1(G). Now |G| can be expressed as a product of coprime
positive integers mi, i = 1, . . . , t(G), where π(mi) = πi(G). These integers are called
the order components of |G| and the set of order components of |G| is denoted by
OC(G); i.e.,

OC(G) = {mi|i = 1, . . . , t(G)}.

Lemma 2.1. [2, Lemma 3.1] Let G be a finite non-abelian group. If H is a group
such that ∇(G) ∼= ∇(H), then H is a finite non-abelian group such that |Z(H)|
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divides

gcd(|G| − |Z(G)|, |G| − |CG(x)|, |CG(x)| − |Z(G)| : x ∈ G \ Z(G)).

Lemma 2.2. [2, Proposition 3.2] Let G be a group such that ∇(G) ∼= ∇(S3). Then
G ∼= S3.

Definition 2.2. [8] A finite group G is called a 2-Frobenius group if it has a normal
series 1 C H C K C G, where K and G/H are Frobenius groups with kernels H
and K/H, respectively.

Lemma 2.3. Let G be a Frobenius group of even order and H, K be Frobenius
complement and Frobenius kernel of G, respectively. Then t(G) = 2, and the prime
graph components of G are π(H), π(K) and G has one of the following structures:

(a) 2 ∈ π(K) and all Sylow subgroups of H are cyclic;
(b) 2 ∈ π(H), K is an abelian group, H is a solvable group, the Sylow subgroups

of odd order of H are cyclic groups and the Sylow 2-subgroups of H are
cyclic or generalized quaternion groups;

(c) 2 ∈ π(H), K is an abelian group and there exists H0 ≤ H such that |H :
H0| ≤ 2, H0 = Z × SL(2, 5), π(Z) ∩ {2, 3, 5} = ∅ and the Sylow subgroups
of Z are cyclic.

Also the next lemma follows from [8] and the properties of Frobenius groups
(see [9]):

Lemma 2.4. Let G be a 2-Frobenius group, i.e., G has a normal series 1 C H C
K C G, such that K and G/H are Frobenius groups with kernels H and K/H,
respectively. Then

(a) t(G) = 2, π1 = π(G/K) ∪ π(H) and π2 = π(K/H);
(b) The quotient groups G/K and K/H are cyclic groups, |G/K|

∣∣∣ (|K/H| − 1)
and G/K ≤ Aut(K/H);

(c) H is nilpotent and G is a solvable group.

Lemma 2.5. [5, Lemma 8] Let G be a finite group with t(G) ≥ 2 and let N be
a normal subgroup of G. If N is a πi-group for some prime graph component of
G and m1,m2, . . . ,mr are some order components of G but not πi-numbers, then
m1m2 · · ·mr is a divisor of |N | − 1.

Lemma 2.6. [4, Lemma 1.4] Suppose G and M are two finite groups satisfying
t(M) ≥ 2, N(G) = N(M), where N(G)={n | G has a conjugacy class of size n},
and Z(G) = 1. Then |G| = |M |.

Lemma 2.7. [4, Lemma 1.5] Let G1 and G2 be finite groups satisfying |G1| = |G2|
and N(G1) = N(G2). Then t(G1) = t(G2) and OC(G1) = OC(G2).

Lemma 2.8. Let G be a group such that ∇(G) ∼= ∇(M), where M is a finite group
such that |G| = |M |. Then OC(G) = OC(M).

Proof. Since ∇(G) ∼= ∇(M), the set of vertex degrees of two graphs are the same.
Thus

{|G| − |CG(x)| | x ∈ G} = {|M | − |CM (y)| | y ∈M}.
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Since |G| = |M |, it follows that N(G) = N(M). Now Lemma 2.7 implies that
OC(G) = OC(M).

Lemma 2.9. [11, Lemma 2.8] Let G be a finite group and M be a finite group with
t(M) = 2 satisfying OC(G) = OC(M). Let OC(M) = {m1,m2}. Then one of the
following holds:

(a) G is a Frobenius or 2-Frobenius group;
(b) G has a normal series 1 E H < K E G such that G/K is a π1-group, H

is a nilpotent π1-group, and K/H is a non-abelian simple group. Moreover
OC(K/H) = {m′1,m′2, . . . ,m′s,m2}, where m′1m

′
2 . . .m

′
s

∣∣∣m1. Also G/K ≤
Out(K/H).

3. Main results

Throughout this section let p be an odd prime number.

Theorem 3.1. Let G be a group such that ∇(G) ∼= ∇(M), where M = PGL(2, p).
Then |G| = |M |.

Proof. By Lemma 2.1, G is a finite non-abelian group. Since ∇(G) ∼= ∇(M), it
follows that |G| − |Z(G)| = |M | − |Z(M)|. We know that |Z(M)| = 1, so it is
sufficient to prove that |Z(G)| = 1.

Let P be a Sylow p-subgroup of M and x ∈ P . Note that |P | = p and so P is
abelian. Therefore P ≤ CM (x), which implies that |CM (x)| = kp, for some k > 0.
We claim that k = 1. Otherwise let p′ 6= p be a prime divisor of k. So there exists
y ∈ CM (x) such that o(y) = p′. Therefore o(xy) = pp′, which implies that p is
adjacent to p′ in Γ(M). But we note that p is an isolated vertex in Γ(M) and so we
get a contradiction. Therefore k = 1 and so |CM (x)| = p. By Lemma 2.1, we know
that |Z(G)| is a divisor of |M |−|Z(M)| = p(p2−1)−1 and |CM (x)|−|Z(M)| = p−1,
which implies that |Z(G)| = 1, as desired.

Theorem 3.2. Let G be a finite group and OC(G) = OC(PGL(2, p)). If p > 3,
then G is neither a Frobenius group nor a 2-Frobenius group. If p = 3 and G is a
2-Frobenius group, then G ∼= S4.

Proof. Clearly, OC(G) = OC(PGL(2, p)) = {p, p2 − 1}. If G is a Frobenius group,
then by Lemma 2.3, OC(G) = {|H|, |K|}, where K and H are Frobenius kernel and
Frobenius complement of G, respectively. Therefore {|H|, |K|} = {p, p2 − 1}. Since
|H|

∣∣∣(|K| − 1), it follows that |H| < |K| and so |H| = p and |K| = p2 − 1. Thus

p
∣∣∣(p2−2), which implies that p = 2, a contradiction. Therefore G is not a Frobenius

group.
Let G be a 2-Frobenius group. Hence G = ABC, where A and AB are normal

subgroups of G; AB and BC are Frobenius groups with kernels A, B and comple-
ments B, C, respectively. By Lemma 2.4, we have |B| = p and |A||C| = p2−1. Since
|B|

∣∣∣(|A| − 1), we may assume that |A| = pt+ 1, for some t > 0. On the other hand,

since |A|
∣∣∣(p2−1), it follows that p2−1 = k(pt+1), for some k > 0. Therefore p

∣∣∣(k+1)

and so p− 1 ≤ k. If t > 1, then p2− 1 = k(pt+ 1) ≥ (p− 1)(pt+ 1) > (p− 1)(p+ 1),
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which is a contradiction. Hence t = 1, which implies that |A| = p + 1 and so
|C| = p− 1.

If there exists an odd prime q such that q
∣∣∣(p+1), then let Q be a Sylow q-subgroup

of A. Since A is a nilpotent group, it follows that Q is a normal subgroup of G.
Now Lemma 2.5 implies that p

∣∣∣(|Q| − 1) and |Q|
∣∣∣(p+ 1)/2, which is a contradiction.

Therefore p+ 1 = 2α, for some α > 1. Since Z(A) 6= 1 is a characteristic subgroup
of A, it follows that A is abelian. Let X = {x ∈ A|o(x) = 2} ∪ {1}. Then X is
a non-identity characteristic subgroup of A. Therefore A is an elementary abelian
2-subgroup of G and |A| = 2α = p + 1. Let F = GF (2α) and so A is the additive
group of F . Also |B| = p = 2α−1 and so B is the multiplicative group of F . Now C
acts by conjugation on A and similarly C acts by conjugation on B and this action
is faithful. Therefore C keeps the structure of the field F and so C is isomorphic to
a subgroup of the automorphism group of F . Hence |C| = 2α − 2 ≤ |Aut(F )| = α.
Therefore α ≤ 2. Thus α = 2, and so G = S4, the symmetric group on 4 letters.

Lemma 3.1. Let G be a finite group and M = PGL(2, p), where p > 3 or p = 3
and G is not a 2-Frobenius group. If OC(G) = OC(M), then G has a normal
series 1 E H < K E G such that H and G/K are π1-groups and K/H is a simple
group. Moreover the odd order component of M is equal to an odd order component
of K/H. In particular, t(K/H) ≥ 2. Also |G/H| divides |Aut(K/H)|, and in fact
G/H ≤ Aut(K/H).

Proof. The first part of the lemma follows from Lemma 2.9 and Theorem 3.2, since
the prime graph of M has two components. If K/H has an element of order pq,
where p and q are primes, then G has an element of order pq. So by the definition
of prime graph component, the odd order component of G is equal to an odd order
component of K/H. Also K/H EG/H and CG/H(K/H) = 1, which implies that

G/H =
NG/H(K/H)
CG/H(K/H)

≤ Aut(K/H).

Theorem 3.3. Let G be a finite group such that OC(G) = OC(M), where M =
PGL(2, p). Then G ∼= PGL(2, p).

Proof. If p = 3 and G is a 2-Frobenius group, then Theorem 3.2 implies that G =
S4
∼= PGL(2, 3) as desired. Otherwise Lemma 3.1 implies that G has a normal series

1EH < KEG such that H and G/K are π1-groups and K/H is a simple subgroup
and t(K/H) ≥ 2. So the possibilities for K/H are:

(a) The alternating group An, where n ≥ 5,
(b) Sporadic simple groups,
(c) Simple groups of Lie type.

Using the classification of finite simple groups and the results in Tables 1–3 in [10],
we consider these cases.

Case (a). Let K/H ∼= An, where n ∈ {p′, p′ + 1, p′ + 2}, p′ ≥ 5 is a prime
number. If n and n − 2 are not primes simultaneously, then p′ = p. We note that
|An|

∣∣∣|G| = p(p2− 1). If n > p, then |An| > (p+ 1)p(p− 1), which is a contradiction.
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So n = p and |Ap| = p!/2 ≤ p(p2− 1). Hence (p− 2)!/2 ≤ p+ 1. Since p− 2 is not a
prime, we have p > 7. So (p−2)(p−3) < (p−2)!/2 ≤ p+1, which is a contradiction.

Let K/H ∼= Ap′ , where p′ and p′ − 2 are primes. Then p = p′ or p′ − 2.

If p = p′ − 2, then p2 − 1 = p′2 − 4p′ + 3. Since p′
∣∣∣|K/H| and |K/H|

∣∣∣p(p2 − 1)

and (p, p′) = 1, we have p′
∣∣∣(p2 − 1). So p′

∣∣∣3, which implies that p′ = 3 and hence
p = 1, a contradiction.

If p = p′ and p′ ≥ 7, then we can get a contradiction similarly to the previous
case. So p = 5 and K/H ∼= A5

∼= PSL(2, 5). Since K/H ≤ G/H ≤ Aut(K/H),
we have PSL(2, 5) ≤ G/H ≤ PGL(2, 5). Hence G/H is isomorphic to PSL(2, 5)
or PGL(2, 5). If G/H ∼= PSL(2, 5), then |H| = 2. But H E G, which implies that
H ⊆ Z(G) and so we get a contradiction. Therefore G/H ∼= PGL(2, 5), which im-
plies that H = 1 and G ∼= PGL(2, 5).

Case (b). Let K/H be a sporadic simple group.
IfK/H ∼= Ru, then p = 29. On the other hand, 32

∣∣∣|K/H| and so 32
∣∣∣(p2−1) = 840,

which is a contradiction.
If K/H ∼= J3, then p = 17 or 19. Let p = 17. Since 5

∣∣∣|K/H|, we have 5
∣∣∣(p2 −

1) = 288, which is impossible. So p = 19. Since 33
∣∣∣|K/H|, we conclude that

33
∣∣∣(p2 − 1) = 360, which is a contradiction.

If K/H ∼= F1 = M , then p = 41, 59 or 71. Let p = 41 or 59. Since 32
∣∣∣|K/H|, it

follows that 32
∣∣∣(p2 − 1), which is a contradiction. So p = 71. Since 11

∣∣∣|K/H|, we

have 11
∣∣∣(p2 − 1) = 5040, which is a contradiction.

For other sporadic simple groups we can get a contradiction similarly.

Case (c). Let K/H be a simple group of Lie type.
If K/H is isomorphic to one of the groups 2A3(2), 2F4(2)′, A2(4), 2A5(2), E7(2),

E7(3), 2E6(2), then we can get a contradiction similarly to Case (b).
If K/H ∼= Ap′−1(q), where (p′, q) 6= (3, 2), (3, 4), then p = (qp

′−1)/((q−1)(p′, q−
1)), which implies that p ≤ qp′ − 1 < qp

′
. So p2− 1 < p2 < q2p

′
. On the other hand,

qp
′(p′−1)/2

∣∣∣|K/H|. So qp
′(p′−1)/2 < q2p

′
and consequently p′2−5p′ < 0. Hence p′ = 3

and p = (q2 + q + 1)/(3, q − 1). So p < 2q2, which implies that p2 − 1 < 4q4 − 1.
Also q3(q − 1)(q2 − 1)

∣∣∣(p2 − 1). If q ≥ 5, then p2 − 1 < 4q4 − 1 < q3(q − 1)(q2 − 1),
which is impossible. So q = 2, 3 or 4. Since (p′, q) 6= (3, 2), (3, 4), we have q = 3 and
p = 13 and so 33(32 − 1)(3− 1)

∣∣∣(p2 − 1) = 168, which is a contradiction.
If K/H is isomorphic to one of the following groups: Bp′(3); Cp′(q), where q =

2, 3; Dp′(q), where q = 2, 3, 5 and p′ ≥ 5; Dp′+1(q), where q = 2, 3 and Ap′(q), where

(q − 1)
∣∣∣(p′ + 1), we can get a contradiction similarly. For example we consider the

following case:
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If K/H ∼= Dp′(q), where q = 2, 3, 5 and p′ ≥ 5, then p = (qp
′ − 1)/(q − 1). So

p ≤ qp′ − 1 < qp
′
, which implies that p2 − 1 < p2 < q2p

′
. Also qp

′(p′−1)
∣∣∣(p2 − 1) and

hence qp
′(p′−1) < q2p

′
. Therefore p′2 − 3p′ < 0, which is a contradiction.

If K/H ∼= 2Ap′−1(q), then p = (qp
′
+ 1)/((q+ 1)(p′, q+ 1)). Therefore p < qp

′
+ 1,

which implies that p2 − 1 < q2p
′

+ 2qp
′
< 2q2p

′ ≤ q2p
′+1. Also qp

′(p′−1)/2
∣∣∣(p2 − 1)

and hence p′(p′ − 1)/2 < 2p′ + 1. So p′ = 3, 5. Let p′ = 5. Then p2 − 1 < q11 and
q10(q+ 1)(q2− 1)(q3 + 1)(q4− 1)

∣∣∣(p2− 1), which implies that q10(q+ 1)(q2− 1)(q3 +

1)(q4 − 1) < q11. Therefore (q + 1)(q2 − 1)(q3 + 1)(q4 − 1) < q, which is impossible,
since q ≥ 2. So p′ = 3 and p2 − 1 < q6 + 2q3. Also q3(q + 1)(q2 − 1)

∣∣∣(p2 − 1), which

implies that q2 − q − 3 < 0. Hence q = 2 and so p = 1, which is impossible.
If K/H is isomorphic to one of the following groups: Bn(q), where n = 2m ≥ 4

and q is odd; Cn(q), where n = 2m ≥ 2; 2Dn(q), where n = 2m ≥ 4; 2Dn(2), where
n = 2m+1 ≥ 5; 2Dp′(3), where p′ 6= 2m+1 and p′ ≥ 5; 2Dn(3), where n = 2m+1 6= p′

and m ≥ 2; 2Dp′(3), where p′ = 2n + 1 ≥ 5 and 2Ap′(q), where (q + 1)
∣∣∣(p′ + 1),

then we get a contradiction similarly. For convenience we omit the proof of these
cases and as an example we consider the following case: If K/H ∼= Cn(q), where
n = 2m ≥ 2, then p = (qn + 1)/(2, q − 1). Hence p ≤ qn + 1, which implies that
p2 − 1 ≤ q2n + 2qn < 2q2n ≤ q2n+1. Also qn

2
∣∣∣(p2 − 1) and hence n2 < 2n + 1. So

n = 2 and p2 − 1 < 2q4 and q4(q2 − 1)2
∣∣∣(p2 − 1), which is a contradiction.

If K/H is isomorphic to one of the following groups: G2(q), where q ≡ ±1
(mod 3) and q > 2; 3D4(q); F4(q), where q is an odd number; E6(q); 2E6(q); F4(q),
where q = 2n > 2; G2(q), where 3

∣∣∣q and E8(q), then we can get a contradiction
similarly. For convenience we state the following case: If K/H ∼= E8(q), where
q ≡ 2, 3 (mod 5), then we have three subcases:

If p = q8 + q7 − q5 − q4 − q3 + q + 1, then p < 4q8 ≤ q10. So p2 − 1 < p2 ≤ q20.
But we have q120

∣∣∣(p2 − 1), which is a contradiction.

If p = q8−q7 +q5−q4 +q3−q+1, then p < 4q8 ≤ q10 and we get a contradiction
similarly.

If p = q8 − q4 + 1, then p < 2q8 ≤ q9. So p2 − 1 < p2 ≤ q18. But we have
q120

∣∣∣(p2 − 1), which is a contradiction.

If K/H is isomorphic to one of the following groups: 2B2(q), where q = 22n+1 >
2; 2F4(q), where q = 22n+1 > 2 and 2G2(q), where q = 32n+1, then we get a
contradiction similarly. For example if K/H ∼= 2G2(q), where q = 32n+1 ≥ 3,
then p = q +

√
3q + 1 or q −

√
3q + 1. If p = q −

√
3q + 1, then p < q + 1. So

p2 − 1 < q2 + 2q < 2q2. Also q3
∣∣∣(p2 − 1), which implies that q3 < 2q2, and this is

a contradiction. If p = q +
√

3q + 1, then p ≤ 2q + 1. So p2 − 1 ≤ 4q2 + 4q < 8q2.
Also q3

∣∣∣(p2 − 1), which implies that q3 < 8q2. Therefore q = 3 and p = 7 and so we

have 33
∣∣∣48, which is a contradiction.
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If K/H ∼= A1(q), where 4
∣∣∣q, then p = q − 1 or q + 1. If p = q − 1, then p < q and

so p2− 1 < q2. But we have q(q+ 1)
∣∣∣(p2− 1), which is a contradiction. If p = q+ 1,

then p2−1 = q2 +2q. Also q(q−1)
∣∣∣(p2−1) and hence (q2−q)

∣∣∣3q, which implies that

q2 − 4q ≤ 0. So q = 4 and hence K/H ∼= A1(4) ∼= A5. Therefore G ∼= PGL(2, 5), as
we showed in Case (a).

If K/H ∼= A1(q), where 4
∣∣∣(q+1), then p = q or (q−1)/2. If p = (q−1)/2, then p <

q−1 < q. So p2−1 < q2. Also q(q+1)
∣∣∣(p2−1), which is a contradiction. If p = q, then

K/H ∼= A1(p) = PSL(2, p). On the other hand, K/H ≤ G/H ≤ Aut(K/H), which
implies that PSL(2, p) ≤ G/H ≤ PGL(2, p). Since |PGL(2, p)| = 2|PSL(2, p)|, we
conclude that G/H is isomorphic to PSL(2, p) or PGL(2, p). If G/H ∼= PSL(2, p),
then |H| = 2 and since H E G we have H ⊆ Z(G), which is a contradiction by
Z(G) = 1. So G/H ∼= PGL(2, p). Since |G| = |PGL(2, p)|, we have H = 1 and
G ∼= PGL(2, p), as required.

If K/H ∼= A1(q), where 4
∣∣∣(q − 1), then p = q or (q + 1)/2. If p = (q + 1)/2, then

p2 − 1 = (q2 + 2q − 3)/4. Also q(q − 1)
∣∣∣(p2 − 1), which implies that q2 − 2q + 1 ≤ 0

and this is a contradiction. If p = q, then K/H ∼= A1(p) = PSL(2, p) and similarly
to the previous case we have G ∼= PGL(2, p).

Theorem 3.4. Let G be a group such that ∇(G) ∼= ∇(M), where M = PGL(2, p)
and p is a prime number. Then G ∼= M .

Proof. If p = 2, then PGL(2, 2) ∼= S3, and so the proof follows from Lemma 2.2. If
p is an odd prime, then obviously the theorem follows from Theorems 3.1, 3.3 and
Lemma 2.8.

Remark 3.1. It is a well known conjecture of J. G. Thompson that if G is a finite
group with Z(G) = 1 and M is a non-abelian simple group satisfying N(G) = N(M),
then G ∼= M .

We can give a positive answer to this conjecture for the group PGL(2, p) (where
p is a prime) by our characterization of this group.

Corollary 3.1. Let G be a finite group with Z(G) = 1 and M = PGL(2, p), where
p is a prime. If N(G) = N(M), then G ∼= M .

Proof. By Lemmas 2.6 and 2.7, if G and M are two finite groups satisfying the
conditions of Corollary 3.1, then OC(G) = OC(M). So by Theorem 3.3 we get the
result.

Remark 3.2. W. Shi and J. Bi in [17] put forward the following conjecture:

Conjecture 3.1. Let G be a group and M be a finite simple group. Then G ∼= M
if and only if

(i) |G| = |M |, and,
(ii) πe(G) = πe(M), where πe(G) denotes the set of orders of elements in G.
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This conjecture is valid for sporadic simple groups [14], alternating groups [18],
and some simple groups of Lie type [15–17]. As a consequence of Theorem 3.3, we
prove the validity of this conjecture for the almost simple group PGL(2, p), where
p is a prime.

Corollary 3.2. Let G be a finite group and M = PGL(2, p), where p is a prime. If
|G| = |M | and πe(G) = πe(M), then G ∼= M .

Proof. By assumption we have OC(G) = OC(M). Thus the corollary follows from
Theorem 3.3.
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