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1. Introduction

The notion of a quasi Einstein manifold was introduced by Chaki in [1]. A non flat
n-dimensional Riemannian manifold (M, g) is said to be a quasi Einstein manifold
if its Ricci tensor S satisfies

(1.1) S(X,Y)=ag(X,)Y)+bp(X)n(Y), VX, Y € TM
for some smooth functions a and b # 0, where 7 is a non zero 1-form such that
(1.2) 9(X, &) =n(X), 9(& &) =n(§) =1

for the associated vector field £. The 1-form 7 is called the associated 1-form and the
unit vector field £ is called the generator of the manifold. If b = 0 then the manifold
reduces to an Einstein manifold. For more details about quasi Einstein manifolds
see also [2, 6].

In [15], it was shown that a conformally flat quasi Einstein manifold is an N (k)-
quasi Einstein manifold and in particular a 3-dimensional quasi Einstein manifold
is an N(k)-quasi Einstein manifold. The derivation conditions R(£, X) - R =0 and
R(¢,X) - S = 0 were also studied in [15], where R and S denote the curvature and
Ricci tensor, respectively. In [10], derivation conditions R(&, X)-p =0, p(§, X)-S =0
and p(¢,X) - p = 0 were studied where p is the projective curvature tensor, also
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physical examples of N(k)-quasi Einstein manifolds were given. The derivation
conditions R(¢,X)-C =0, R(&,X) - C = 0 studied in [11], where C' and C' denote
the conformal curvature tensor and quasi conformal curvature tensor, respectively.
In this paper, we consider N (k)-quasi Einstein manifolds satisfying the conditions
R X)-H=0H(,X)-S=0,P(¢X)-H=0,R(¢X)-P=0and P(¢,X)-S =0,
where H, P and P denote the conharmonic curvature tensor, the projective curvature
tensor and the pseudo projective curvature tensor, respectively.

2. N(k)-quasi Einstein manifolds
From (1.1) and (1.2) we obtain
(2.1) 5(X,¢) = (a+b)n(X),
(2.2) r=na+b
where 7 is the scalar curvature of M.

The Ricci operator @ of a Riemannian manifold (M, g) is defined by

S(X)Y) =g(QX,Y).
If (M, g) is a quasi Einstein manifold [1], its Ricci operator satisfies
Q=al +n®E.

Let R denote the Riemannian curvature tensor of a Riemannian manifold M. The

k-nullity distribution N (k) [14] of a Riemannian manifold defined by
N() : p — Np(k) = {Z € T,M | R(X,Y)Z = k{g(Y, Z)X — g(X, Z)Y }}

forall X , Y € TM™, where k is some smooth function. In a quasi Einstein manifold
M, if the generator & belongs to some k-nullity distribution N(k), then is said to be
an N (k)-quasi Einstein manifold [15].
Lemma 2.1. [12] In an n-dimensional N(k)-quasi Einstein manifold it follows that
a+b
n—1
Let (M™,g) be an N(k)-quasi Einstein manifold. Then, we have [12]

S 2y —n(v)2).

(2.3) k=

(2.4) R(Y,2)¢ =

The equation (2.4) is equivalent to
a+b

n—1

(2.5) R(¢,Y)Z =

{9V, 2)§ —n(Z2)Y} = —R(Y,§)Z.

In [10], we view the following physical examples of N (k)-quasi Einstein manifolds.
In [15], Tripathi and Kim proved that an n-dimensional conformally flat quasi Ein-
stein manifold is an N (k)-quasi Einstein manifold. Now we consider a conformally
flat perfect fluid spacetime (M*, g) satisfying Einstein’s equation without cosmolog-
ical constant. Further, let £ be the unit time-like velocity vector of the fluid. It is
known [9] that Einstein’s equation without cosmological constant can be written as

(2.6) S(X,Y)— %rg(X,Y) =rT(X,Y),
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where £ is the gravitational constant and 7' is the energy momentum tensor of type
(0, 2). In the present case (2.6) can be written as follows:

S(X,Y) — 3rg(X,¥) = wllo + pIn(X)n(¥) + pg(X, V)],

where ¢ is the energy density and p is the isotropic pressure of the fluid. Then we
have

(2.7) S(X,Y) = </ip + ;r> g(X,Y) + k(o + p)n(X)n(Y).

Since the space-time is conformally flat, by [15], it is N(k)-quasi Einstein. From
(2.7), by a contraction we get

r = k(o — 3p).
Hence the equation (2.7) can be written as

SOLY) = (5o =) 9(X.Y) + k(o +pIn(X)n(Y):

So from (1.1) we have
K

a=5(0c—p)

[\

and
b= k(o +p).
Hence we can state the following example.
Example 2.1. [10] A conformally flat perfect fluid spacetime (M*, g) satisfying Ein-

stein’s equation without cosmological constant is an N (k(30 + p)/6)-quasi Einstein
manifold.

Now we consider a conformally flat perfect fluid spacetime (M*,g) satisfying
Einsteins equation with cosmological constant. Further, let £ be the unit time-like
velocity vector of the fluid. The Einstein’s equation can be written as

SOXY) — Srg(X,Y) 4+ 2g(X,Y) = (o + pIn(X)n(Y) + pg(X, V)],

which gives us
(2.8) S(X,Y) = (Hp + %r - A) 9(X,Y) + k(o + p)n(X)n(Y).

So from (2.8), by a contraction, we get
r =4\ + k(o — 3p).

Hence the equation (2.8) turns into
K
S(X,Y) = (A+ 50 =) 9 Y) + (o + p)n(X)n(Y):
So from (1.1) we have

a:A+g®*m

and
b= k(o +p).
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Since k = (a + b)/(n — 1) we obtain
A k(3o +p)

k=24 2200
377 6

So as a generalization of Example 2.1, we obtain the following example.

Example 2.2. [10] A conformally flat perfect fluid spacetime (M*,g) satisfying
Einstein’s equation with cosmological constant is an N((A/3)+ (x(30 + p)/6))-quasi
Einstein manifold.

3. Conharmonic curvature tensor of an N(k)-quasi Einstein manifold

Let (M™,g) be a Riemannian manifold. The conharmonic curvature tensor [7] is
defined by

H(X,Y)Z = R(X,Y)Z — 5{5(1@ 2)X - S(X, 2)Y
(3.1) +9(Y, 2)QX — g(X, 2)QY },

where () is the Ricci operator.
Also R - H is defined by

(R(&, X) - H)(Y, 2,W) = R(&, X)H(Y, Z)W ~ H(R(E, X)Y, Z)W
(3.2) — H(Y,R(&. X)Z)W) — H(Y, Z)R(E, X)W,

where R denote the Riemannian curvature tensor of a Riemannian manifold M [8].
Now, we prove the following theorem.

Theorem 3.1. Let M be an n-dimensional N(k)-quasi Einstein manifold. Then M
satisfies the condition R(§,X)-H =0 if and only if a+b =0 or

HO. 2 X) =~

where H(Y, Z,W,X) = g(H(Y, Z)W, X).

{g(X, Y)g(Zv W) - g(X7 Z)g(Y, W)}7

Proof. Let M be an N (k)-quasi Einstein manifold and satisfies the condition
R(£,X) - H =0, then from (3.2) we can write

0=R(X)H(Y,Z)W — H(R(E, X)Y, Z)W

(3-3) — H(Y, R(§, X)Z2)W — H(Y, Z)R(§, X)W
for all vector fields X, Y, Z, W on M. So from (2.5) in (3.3) we obtain
b, .
0= LAY, 2, W, X)€ - n(H(Y, Z)W)X

— g(X,Y)H(E )W +n(Y)H(X, Z)W
— (X, Z)H(Y, W +n(Z)H(Y, X)W
—g9(X,W)H(Y, Z)§ + n(W)H (Y, Z) X},
which implies either a +b =0 or
(3.4) 0=H(Y,2,W,X)§ —n(H(Y,Z)W)X
—9(X,Y)H(E, Z)W +n(Y)H (X, Z)W
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—9(X, 2)H(Y, )W +n(2)H(Y, X)W
- g(Xa W)H(Ya Z)E + n(W)H(Yv Z)Xa
holds on M. Taking the inner product of both sides of (3.4) with £ we obtain

’,

(3.5) 0=H(Y,Z,W,X) - n(H(Y,Z)W)n(X)
= 9(X,Y)n(H (& 2)W) +n(Y)n(H (X, Z2)W)
— 9(X, Z)n(H (Y, OW) + n(Z)n(H(Y, X)W)
— g(X, W)n(H (Y, Z2)€) + n(W)n(H(Y, 2)X).

On the other hand, since H is conharmonic curvature tensor from (1.1), (3.1) and
(2.5) we have

na+b
3.6 HXY)Z)=—————{9(Y, Z)n(X) — g(X, Z)n(Y
(36)  A(HXY)Z) = T o 2)0(X) — o, Zpn(Y)
for all vector fields X, Y, Z on M. So putting (3.6) in (3.5) we obtain
, na+b
0=HY, ZW, X))+ ——{g( X, Y)g(Z, W) — g(X, Z)g(Y,W)}.
(Y, Z,w, )+(n_1)(n_2){g( Y)9(Z,W) — g(X, Z)g(Y, W)}
Hence we have
. na+b
HY, ZW X)=—————{9(X,Y)g(Z,W) — g(X, Z)g(Y,W)}.
( ) (n—l)(n—Z){g( )9(Z, W) — g(X, Z)g(Y, W)}
The converse statement is trivial. This completes the proof of the theorem. 1

Next, we have the following theorem

Theorem 3.2. Let M be an n-dimensional N(k)-quasi Einstein manifold. Then M
satisfies the condition H(,X) - S =0 if and only if na +b = 0.

Proof. Since H(£,X) - S =0, we have

(3.7) SHEX)Y,Z)+S(Y,H(&, X)Z) =0.

In view of (1.1) in (3.7) we have

(3-8) b[n(H (&, X)Y)n(Z) +n(Y)n(H(E, X)2)] = 0.

Since b # 0, then from (3.8) we have

(3.9) n(H(E, X)Y)n(Z) +n(Y)n(H(¢, X)Z) = 0.

In view of (3.6) in (3.9) we have

(3.10) m{g(XvY)ﬁ(Z) +9(X, 2)n(Y) = 2n(X)n(Y)n(2)} = 0.

From (3.10) by a contraction, we obtain

b
na + —0,

n—2
which give us na + b = 0. The converse statement is trivial. This completes the
proof of the theorem. 1
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Let (M™,g) be a Riemannian manifold. The projective curvature tensor [16] is
defined by

P(X,Y)Z=R(X,Y)Z — ﬁ{S(Y, 2)X — S(X, Z)Y}.

If P is a projective curvature tensor in an n-dimensional N (k)-quasi Einstein
manifold, we have [10]

(311) P& X)Y = T {g(X,¥)E ~ n(X)n(Y)E).

Theorem 3.3. Let that M is an n-dimensional N (k)-quasi Finstein manifold. If M
satisfies the condition P(§,X)-H =0 then k =1/(n — 1) or M is conharmonically

flat.

Proof. Assume that M, is N(k)-quasi Einstein manifold such that satisfies the con-
dition P(§,X) - H = 0. We can write

(3.12) 0=PEX)H(Y,Z)W - H(P(,X)Y,Z)W
for all vector fields X, Y, Z, W on M. So from (3.11) in (3.12) we obtain

DY, 2, W, X)E — n(H(Y, Z)Wpn(X)¢

(
—9(X,Y)H(E Z)W +n(X)n(Y)H(E, Z)W
—g(X, Z)H(Y, )W +n(Z)n(X)H (Y, )W
—g(X, W)H(Y, Z2)§ +n(X)n(W)H(Y, Z)¢}-

n —

Since b # 0 we have
(3.13) 0=H(Y,Z,W,X)¢ = n(H(Y, Z)W)n(X)¢
—9(X,Y)H(& Z)W +n(X)n(Y)H(E, Z)W
—9(X, 2)H(Y, )W +n(Z)n(X)H (Y, )W
—g(X, W)H(Y, Z)§ + n(X)n(W)H(Y, Z)&.
Taking the inner product of (3.13) by &, we obtain
(3.14) 0=H(Y,ZW,X)—nH(Y,Z)W)n(X)
—9(X,Y)n(H(, Z)W) +n(X)n(Y)n(H(E, Z)W)
— g(X, Zn(H(Y,OW) + n(Z)n(X)n(H < W)
—g(X, W)n(H(Y, Z2)§) +n(X)n(W)n(H(Y, Z)§).
From (3.6) in (3.14) we have

/—\,.\

na+b

(n=1)(n—2)
—9(X, 2)g(Y, W) 4+ g(X, Z)n(Y )n(W) = 5(X, Z)g(Y, W)}.

In view of (3.1) and (3.15) we have

(3.15) 0=H(Y,Z,W,X) - {9(X,Y)g(2, W)

(3.16) 0=R(Y,Z,W,X) — 5{5(2, W)g(X,Y)
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—SY, W)g(X,Z) +g(Z W)S(X,Y)
na+b
(n—1)(n-2)
—9(X, Z2)g(Y, W) + g(X, Z)n(Y)n(W)
— S(X, Z)g(¥, W)},
From (3.16) by a contraction, we obtain

na+b

-2
which gives us either na+b =0 or n(Z)n(W)—S(Z,W) = 0 (this means that a = 0
and b = 1). If na + b = 0, then from (3.15) we have H(Y,Z,W,X) = 0. Also if
S(Z,W) =n(Z)n(W), then from Lemma 2.1 we have k = 1/(n — 1). This completes
the proof of the theorem. 1

—S(ZaX)g(WY)}‘F {g(X,Y)g(Z7W)

{n(Z)n(W) = 5(2,W)} =0,

4. Pseudo-projective curvature tensor of an N (k)-quasi Einstein manifold

The Pseudo-projective curvature tensor P on a manifold M of dimension n is defined
by [13]

(4.1) P(X,Y)Z = aR(X,Y)Z + B{S(Y, Z)X — S(X, Z)Y}

nlin-—1

L [ “ +6} {9(Y.Z2)X — g(X, Z)Y},

where a and b are constants such that a, b # 0 and R is the curvature tensor, S is
the Ricci tensor and r is the scalar curvature.

Proposition 4.1. In an n-dimensional N(k)-quasi Einstein manifold M, the Pseudo-
projective curvature tensor P satisfies

(1.2 P e = | =R Gy x - )
an ez =[O 200 - ox 2nw)

@) Pex)Y = | O 0y - a)X) + BECONY I~ 1))
for all vector fields X, Y, Z on M.

Proof. From (1.2), (2.1), (2.2), (2.4) and (4.1) the equations (4.2)—(4.4) follow
easily. 1

Theorem 4.1. Let M be an n-dimensional N(k)-quasi Einstein manifold. Then M

satisfies the condition R(§,X)- P =0 if and only ifa+b=0.

Proof. Assume that M is an n-dimensional N(k)-quasi Einstein manifold and sat-
isfies the condition R(§, X) - P = 0 we can write

(4.5) 0= R, X)P(Y,Z2)W — P(R(¢, X)Y, Z)W
— P(Y,R(&,X)Z)W — P(Y, Z)R(¢.X)W
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for all vector fields X, Y, Z, W on M.
Using (2.5), in (4.5) we find

a+b

n —

0:

P, Z, W, X)§ = n(P(Y, Z)W)X

9(X.Y)P(E, Z)W +n(Y)P(X, Z)W
*g(X Z)P(Y, W +n(Z)P(Y, X)W
— (X, W)P(Y, Z)§ +n(W)P(Y, Z) X},

which implies either a +b =0 or

(4.6) 0= P(Y,2,W, X)¢ = n(P(Y, Z)W)X
—9(X,Y)P(&, 2)W +n(Y)P(X, Z)W
—9(X, Z)P(Y, )W +n(Z)P(Y, X)W
—9(X,W)P(Y, Z)¢ +n(W)P(Y, 2)X,

where P(Y7 Z,W,X) = g(P(Y,Z)W, X). Assume that a + b # 0. Taking the inner
product of (4.6) with & we obtain
(47) 0 = B(Y, 2,W, X) — y(P(Y, Z)W)n(X)
= 9(X,Y)n(P(§, Z)W) + n(Y)n(P(X, Z)W)
—9(X, Z2n(P(Y. W) +n(Z)n(P(Y, X)W)
— g(X, W)n(P(Y, Z2)§) + n(W)n(P(Y, 2)X).
Hence in view of (4.2)—(4.4) the equation (4.7) is reduced to

+
+

(48)  0=P(Y,ZW.X) - [(O‘_nmb} {9(X.Y)g(Z.W) — (X, Z)g(Y. W)}.

From (4.1) in (4.8) we obtain
(4.9) 0= aR(Y,Z,W,X) + 5[5(Z,W)g(X,Y) = S(Y, W)g(X, Z)]

N % [ni 1 +5} {9(2W)g(X,Y) — g(Y.W)g(X, Z)}

- [(a—nﬁ)b] {9(X,Y)g(2,W) = g(X, Z)g(Y, W)}.

So by a suitable contraction of (4.9) we get

(4.10) [(n—1)8+a]S(Z,W) = [a(a+ (n—1)5) + ablg(Z, W).
If 8 = —a/(n — 1), then from (4.10) we have
abg(Z,W) = 0.

This contradicts to our assumption that M is an N(k)-quasi Einstein manifold.
Also if 8 # —a/(n — 1), then from (4.10) we have

ab

S(Z,W): a+m

g(Z,W).
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Since M is not an Einstein manifold this is not possible. The converse statement is
trivial. This completes the proof of the theorem. 1

Next, we have the following theorem.

Theorem 4.2. Let M be an n-dimensional N(k)-quasi Einstein manifold. Then M
satisfies the condition P(&,X)-S =0 if and only if a = (%er)ﬂ.

Proof. The condition P(¢, X) - S = 0, implies that
(4.11) S(P(&, X)Y, Z) + (Y, P(¢, X)Z) =0,
In view of (4.4) in (4.11) we get

b(ﬁ—a)}

(4.12) b {aﬂ + {9(X, Z2)n(Y) + 9(X,Y)n(Z) = 2n(X)n(Y)n(Z)} = 0.

From (4.12), by a contraction, we get

(4.13) (n—1)b [aﬁ + b(ﬂna)] n(Y)=0.

Since b # 0, from (4.13) we have

(4.14) af + w =0.

From (4.14) we get o = (na + b)3/b. The converse statement is trivial. This com-
pletes the proof of the theorem. 1
References

[1] M. C. Chaki and R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen 57 (2000),
no. 3-4, 297-306.
[2] M. C. Chaki and P. K. Ghoshal, Some global properties of quasi Einstein manifolds, Publ.
Math. Debrecen 63 (2003), no. 4, 635-641.
[3] U. C. De and G. C. Ghosh, On quasi Einstein manifolds, Period. Math. Hungar. 48 (2004),
no. 1-2, 223-231.
[4] U. C. De and G. C. Ghosh, On quasi Einstein manifolds. II, Bull. Calcutta Math. Soc. 96
(2004), no. 2, 135-138.
[5] U. C. De and G. C. Ghosh, On conformally flat special quasi Einstein manifolds, Publ. Math.
Debrecen 66 (2005), no. 1-2, 129-136.
[6] U. C. De, J. Sengupta and D. Saha, Conformally flat quasi-Einstein spaces, Kyungpook Math.
J. 46 (2006), no. 3, 417-423.
[7] U. C. De and A. A. Shaikh, Differential Geometry of Manifolds, Alpha Science Intl. Ltd.
Oxford, U.K. (2007), 263-272.
[8] R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg. Sér. A 44 (1992), no. 1, 1-34.
[9] B. O’Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, 103, Academic Press,
New York, 1983.
[10] C. Ozgiir, N(k)-quasi Einstein manifolds satisfying certain conditions, Chaos Solitons Fractals
38 (2008), no. 5, 1373-1377.
[11] C. Ozgiir and S. Sular, On N (k)-quasi Einstein manifolds satisfying certain conditions, Balkan
J. Geom. Appl. 13 (2008), no. 2, 74-79.
[12] C. Ozgiir and M. M. Tripathi, On the concircular curvature tensor of an N(k)-quasi Einstein
manifold, Math. Pannon. 18 (2007), no. 1, 95-100.
[13] B. Prasad, A pseudo projective curvature tensor on a Riemannian manifold, Bull. Calcutta
Math. Soc. 94 (2002), no. 3, 163-166.



464 A. Taleshian and A. A. Hosseinzadeh

[14] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J. (2) 40 (1988),
no. 3, 441-448.

[15] M. M. Tripathi and J.-S. Kim, On N(k)-quasi Einstein manifolds, Commun. Korean Math.
Soc. 22 (2007), no. 3, 411-417.

[16] K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics, 3, World Sci.
Publishing, Singapore, 1984.



