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Abstract. A characterization of semi-continuous interval-valued multihomo-
morphisms on (R, +) has been given as follows: An interval-valued multifunc-

tion f on R is a semi-continuous multihomomorphism on (R, +) if and only
if f is one of the following forms: f(x) = {cx}, f(x) = R, f(x) = (0,∞),

f(x) = (−∞, 0), f(x) = [cx,∞) and f(x) = (−∞, cx] where c is a constant in

R. Denote by SIM(R, +) the set of all such multifunctions on R. We show that
SIM(R, +) is a semigroup under composition and it is a regular semigroup.
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1. Introduction

A multifunction from a nonempty set X into a nonempty set Y is a function f :
X → P (Y ) r {∅} where P (Y ) is the power set of Y . By a multifunction on X we
mean a multifunction from X into itself.

A multifunction f from a group G into a group G′ is a multihomomorphism if

f(xy) = f(x)f(y) (= {st | s ∈ f(x) and t ∈ f(y)}) for all x, y ∈ G.
Multihomomorphisms between cyclic groups were characterized in [7]. These char-
acterizations were used in [2] to determine surjective multihomomorphisms between
cyclic groups. In [8], the authors provided some necessary conditions of multiho-
momorphisms from any group into groups of real numbers under the usual addition
and multiplication.

A multifunction f from a topological space X into a topological space Y is upper
semi-continuous at a ∈ X if for any open set V in Y containing f(a) as a subset,
there exists an open set U in X containing a such that f(U) ⊆ V . Such an f

Communicated by Lee See Keong.

Received: February 3, 2009; Revised: December 23, 2009.



504 S. Chaopraknoi and Y. Kemprasit

is called a lower semi-continuous at a ∈ X if for any open set V in Y such that
f(a)∩V 6= ∅, there exists an open set U ∈ X containing a such that f(x)∩V 6= ∅ for
all x ∈ U . See [3, p. 261]. If f is upper semi-continuous and lower semi-continuous
at a ∈ X, then we call f semi-continuous at a. If f is upper semi-continuous [lower
semi-continuous, semi-continuous] at every point in X, then f is called upper semi-
continuous [lower semi-continuous, semi-continuous] on X. Evidently, the upper
and lower semi-continuity as well as the continuity at a ∈ X of a single-valued
function are identical.

Let R be the set of real numbers. By an interval-valued multifunction on R,
we mean a multifunction f on R such that f(x) is an interval in R for all x ∈ R.
Notice that interval-valued multihomomorphisms on (R,+) are a generalization of
homomorphisms on (R,+).

It is well known that if f is a continuous homomorphism on (R,+), then there is
a constant c ∈ R such that f(x) = cx for all x ∈ R. This result was extended in [6]
as follows:

Theorem 1.1. [6] Let f be an interval-valued function on R. Then f is an up-
per semi-continuous multihomomorphism on (R,+) if and only if f is one of the
followings:

(i) There is a constant c ∈ R such that f(x) = {cx} for all x ∈ R.
(ii) f(x) = R for all x ∈ R.
(iii) f(x) = (0,∞) for all x ∈ R.
(iv) f(x) = (−∞, 0) for all x ∈ R.
(v) There is a constant c ∈ R such that f(x) = [cx,∞) for all x ∈ R.

(vi) There is a constant c ∈ R such that f(x) = (−∞, cx] for all x ∈ R.

In [5], the authors extended the above known result to lower semi-continuous
interval-valued multihomomorphisms on (R,+). The following result was provided
in [5].

Theorem 1.2. [5] Let f be an interval-valued multihomomorphism on (R,+). If f
is upper semi-continuous on R, then f is semi-continuous on R.

For a nonempty set X, let B(X) be the set of all binary relations on X. Then
B(X) is a monoid under the composition defined by

σ ◦ ρ = {(x, y) ∈ X ×X | (x, z) ∈ ρ and (z, y) ∈ σ for some z ∈ X},
having the identity function on X as its identity [1, p. 13]. If f and g ∈ B(X) are
multifunctions on X, then gf (the composition of f and g) ∈ B(X) is a multifunction
on X and

for all x ∈ X, (gf)(x) = g(f(x)) =
⋃

t∈f(x)

g(t).

An element a of a semigroup S is called an idempotent if a2 = a. An element a
of S is called regular if a = axa for some x ∈ S. Then every idempotent of S is
regular. We call S a regular semigroup if every element of S is regular.

Next, let SIM(R,+) be the set of all semi-continuous interval-valued multihomo-
morphisms on (R,+). By Theorem 1.2, SIM(R,+) is the set of all upper semi-
continuous interval-valued multihomomorphisms on (R,+). Also, SIM(R,+) ⊆
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B(R). For convenience, for c ∈ R, let gc, hR, h(0,∞), h(−∞,0), kc and kc be the
interval-valued multifunctions on R defined by

gc(x) = {cx},
hR(x) = R, h(0,∞)(x) = (0,∞), h(−∞,0)(x) = (−∞, 0),

kc(x) = [cx,∞), kc(x) = (−∞, cx]

for all x ∈ R. By Theorem 1.1,

SIM(R,+) = {gc | c ∈ R} ∪ {hR, h(0,∞), h(−∞,0)} ∪ {kc, kc | c ∈ R}.
Notice that g1 is the identity function on R.

In this paper, we show that SIM(R,+) is a semigroup under composition and it
is a regular semigroup. In addition, the idempotents of the semigroup SIM(R,+)
are determined.

2. Main results

First, we show that SIM(R,+) is a semigroup under composition, that is, SIM(R,+)
is a subsemigroup of B(R). The following two lemmas are needed.

Lemma 2.1. For f ∈ SIM(R,+), f(R) = R if and only if f is one of the followings:
gc, hR, kc and kc where c ∈ R r {0}.

Proof. We have that g0(R) = {0}, h(0,∞)(R) = (0,∞), h(−∞,0)(R) = (−∞, 0),
k0(R) = [0,∞) and k0(R) = (−∞, 0]. If c ∈ R r {0}, then

gc(R) = cR = R,

kc(R) =
⋃
x∈R

[cx,∞) =

{
c
(⋃

x∈R[x,∞)
)

= cR = R if c > 0,
c
(⋃

x∈R(−∞, x]
)

= cR = R if c < 0,

kc(R) =
⋃
x∈R

(−∞, cx] =

{
c
(⋃

x∈R(−∞, x]
)

= cR = R if c > 0,
c
(⋃

x∈R[x,∞)
)

= cR = R if c < 0.

Since SIM(R,+) = {gc | c ∈ R} ∪ {hR, h(0,∞), h(−∞,0)} ∪ {kc, kc | c ∈ R}, the result
follows.

Lemma 2.2. The following statements hold for c, d ∈ R.
(i) For a constant multifunction f on R and a multifunction l on R, f l = f .

In particular, if f ∈ {g0, hR, h(0,∞), h(−∞,0), k0, k0}, then fl = f for every
multifunction l on R.

(ii) gcgd = gcd,
(iii) gchR = kchR = kchR = hR if c 6= 0,

(iv) gch(0,∞) =

{
h(0,∞) if c > 0,
h(−∞,0) if c < 0,

gch(−∞,0) =

{
h(−∞,0) if c > 0,
h(0,∞) if c < 0,

(v) gckd =

{
kcd if c > 0,
kcd if c < 0,

gckd =

{
kcd if c > 0,
kcd if c < 0,

kcgd = kcd, kcgd = kcd,
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(vi) kch(0,∞) =

{
h(0,∞) if c > 0,
hR if c < 0,

kch(0,∞) =

{
hR if c > 0,
h(−∞,0) if c < 0,

kch(−∞,0) =

{
hR if c > 0,
h(0,∞) if c < 0,

kch(−∞,0) =

{
h(−∞,0) if c > 0,
hR if c < 0,

(vii) kckd =

{
kcd if c > 0,
hR if c < 0,

kckd =

{
hR if c > 0,
kcd if c < 0,

kckd =

{
hR if c > 0,
kcd if c < 0,

kckd =

{
kcd if c > 0,
hR if c < 0.

Proof. The proofs of (i) and (ii) are evident, (iii) follows directly from Lemma 2.1
while (iv) and (v) are obviously seen.
(vi) If x ∈ R, then

kch(0,∞)(x) =
⋃

t∈(0,∞)

[ct,∞)

=


c
(⋃

t∈(0,∞)[t,∞)
)

= c(0,∞) = (0,∞) = h(0,∞)(x) if c > 0,

c
(⋃

t∈(0,∞)(−∞, t]
)

= cR = R = hR(x) if c < 0,

kch(0,∞)(x) =
⋃

t∈(0,∞)

(−∞, ct]

=


c
(⋃

t∈(0,∞)(−∞, t]
)

= cR = R = hR(x) if c > 0,

c
(⋃

t∈(0,∞)[t,∞)
)

= c(0,∞) = (−∞, 0) = h(−∞,0)(x) if c < 0,

kch(−∞,0)(x) =
⋃

t∈(−∞,0)

[ct,∞)

=


c
(⋃

t∈(−∞,0)[t,∞)
)

= cR = R = hR(x) if c > 0,

c
(⋃

t∈(−∞,0)(−∞, t]
)

= c(−∞, 0) = (0,∞) = h(0,∞)(x)

if c < 0,

kch(−∞,0)(x) =
⋃

t∈(−∞,0)

(−∞, ct]

=


c
(⋃

t∈(−∞,0)(−∞, t]
)

= c(−∞, 0) = (−∞, 0) = h(−∞,0)(x)

if c > 0,

c
(⋃

t∈(−∞,0)[t,∞)
)

= cR = R = hR(x) if c < 0,

so (vi) is proved.
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(vii) Let x ∈ R. Then

kckd(x) =
⋃

t∈[dx,∞)

[ct,∞)

=


c
(⋃

t∈[dx,∞)[t,∞)
)

= c[dx,∞) = [cdx,∞) = kcd(x) if c > 0,

c
(⋃

t∈[dx,∞)(−∞, t]
)

= cR = R = hR(x) if c < 0,

kckd(x) =
⋃

t∈(−∞,dx]

[ct,∞)

=


c
(⋃

t∈(−∞,dx][t,∞)
)

= cR = R = hR(x) if c > 0,

c
(⋃

t∈(−∞,dx](−∞, t]
)

= c(−∞, dx] = [cdx,∞) = kcd(x)

if c < 0,

kckd(x) =
⋃

t∈[dx,∞)

(−∞, ct]

=


c
(⋃

t∈[dx,∞)(−∞, t]
)

= cR = R = hR(x) if c > 0,

c
(⋃

t∈[dx,∞)[t,∞)
)

= c[dx,∞) = (−∞, cdx] = kcd(x) if c < 0,

kckd(x) =
⋃

t∈(−∞,dx]

(−∞, ct]

=


c
(⋃

t∈(−∞,dx](−∞, t]
)

= c(−∞, dx] = (−∞, cdx] = kcd(x)

if c > 0,

c
(⋃

t∈(−∞,dx][t,∞)
)

= cR = R = hR(x) if c < 0.

Hence the proof is complete.
The following theorem is directly obtained from Lemma 2.2.

Theorem 2.1. SIM(R,+) is a semigroup under composition.

Theorem 2.2. All the idempotents of the semigroup SIM(R,+) are g0, g1, hR,
h(0,∞), h(−∞,0), k0, k1, k0 and k1.

Proof. It follows from Lemma 2.2(i), (ii) and (vii) that g0, g1, hR, h(0,∞), h(−∞,0),
k0, k1, k0, k1 are idempotents of the semigroup SIM(R,+). If c ∈ R\{0}, by Lemma
2.2(ii), g2

c = gc and then gc2 = gc which shows c2 = gc2(1) = gc(1) = c and
c = 1, respectively. Similarly, if k

2

c = kc then kc2 = kc and c > 0 from Lemma
2.2(vii) which implies [c2,∞) = kc2(1) = kc(1) = [c,∞) and c = 1, respectively.
Similarly, if k2

c = kc then kc2 = kc and c > 0 from Lemma 2.2(vii) which implies
(−∞, c2] = kc2(1) = kc(1) = (−∞, c] so c = 1.

Therefore the result follows, as desired.
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Theorem 2.3. The semigroup SIM(R,+) is a regular semigroup.

Proof. Since every idempotent is a regular element, it follows from Theorem 2.2 that
g0, g1, hR, h(0,∞), h(−∞,0), k0, k1, k0 and k1 are regular elements of the semigroup
SIM(R,+). Let c ∈ R \ {0}. Then by Lemma 2.2(ii), gcgc−1gc = gcc−1c = gc. Also,

kcgc−1kc =
(
kcgc−1

)
kc

= kcc−1kc from Lemma 2.2(v)

= k1kc

= k1c = kc from Lemma 2.2(vii),

and

kcgc−1kc = (kcgc−1) kc

= kcc−1kc from Lemma 2.2(v)
= k1kc

= k1c = kc from Lemma 2.2(vii).

Therefore SIM(R,+) is a regular semigroup, as desired.

Remark 2.1. It follows from Lemma 2.2(i) and (vii) that for c ∈ R \ {0},

kckc−1kc =
(
kckc−1

)
kc

=

{
k1kc = kc if c > 0,
hRkc = hR if c < 0,

and

kckc−1kc = (kckc−1) kc

=

{
k1kc = kc if c > 0,
hRkc = hR if c < 0.

Therefore the equalities kckc−1kc = kc and kckc−1kc = kc hold only the case that
c > 0.

Remark 2.2. If e is an idempotent of a semigroup S, then the greatest subgroup
of S having e as its identity is

Ge = {x ∈ S | xe = ex = x and xy = yx = e for some y ∈ S}.
[4, p.10]. Thus if S has an identity 1, then G1 is the unit group or the group of units
of S and

G1 = {x ∈ S | xy = yx = 1 for some y ∈ S}.
Let us considerGf of the semigroup SIM(R,+) where f is an idempotent of SIM(R,+).
By Theorem 2.2, all the idempotents of SIM(R,+) are

g0, g1, hR, h(0,∞), h(−∞,0), k0, k1, k0, k1.

It follows directly from Lemma 2.2(i) that

Gg0 = {g0}, GhR = {hR}, Gh(0,∞) = {h(0,∞)},
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Gh(−∞,0) = {h(−∞,0)}, Gk0
= {k0}, Gk0

= {k0}.
Also, it can be seen from Lemma 2.2(i)–(vii) that the unit group of the semigroup
SIM(R,+) is

Gg1 = {gc | c ∈ R \ {0}}
which is clearly isomorphic to the group (R \ {0}, ·). It follows from Lemma 2.2(i)–
(vii) that

Gk1
= {kc | c > 0} and Gk1

= {kc | c > 0}.
Evidently, both Gk1

and Gk1
are isomorphic to the group ((0,∞), ·).

Notice ⋃
{Gf | f is an idempotent of SIM(R,+)} ( SIM(R,+).

This implies that SIM(R,+) is not a union of groups. A semigroup S is called
an inverse semigroup if for every a ∈ S, there is a unique element a−1 ∈ S such
that a = aa−1a and a−1 = a−1aa−1. Then every inverse semigroup is a regular
semigroup. By Theorem 2.3, the semigroup SIM(R,+) is a regular semigroup. It is
interesting to know whether SIM(R,+) is an inverse semigroup. It is well known that
a semigroup S is an inverse semigroup if and only if S is a regular semigroup and
any two idempotents commute with each other [1, p.28]. From Lemma 2.2(i) and
Theorem 2.2, we have that g0 and hR are idempotents and g0hR = g0 6= hR = hRg0.
Therefore we deduce that SIM(R,+) is a regular semigroup which is neither an in-
verse semigroup nor a union of groups.

Acknowledgement. This research is supported by the Centre of Excellence in
Mathematics, the Commission on Higher Education, Thailand.

References

[1] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups. Vol. I, Mathematical
Surveys, No. 7 Amer. Math. Soc., Providence, RI, 1961.

[2] S. Nenthein and P. Lertwichitsilp, Surjective multihomomorphisms between cyclic groups, Thai
J. Math. 4 (2006), no. 1, 35–42.

[3] T. Neubrunn, Quasi-continuity, Real Anal. Exchange 14 (1988/89), no. 2, 259–306.

[4] M. Petrich, Introduction to Semigroups, Charles E. Merrill Publishing Co., Columbus, OH,
1973.

[5] S. Pianskool, P. Udomkavanich and P. Youngkhong, On lower semi-continuity of interval-valued

multihomomorphisms, preprint.
[6] I. Termwuttipong, W. Hemakul and Y. Kemprasit, Upper semi-continuous interval-valued

multihomomorphisms, Int. Math. Forum 5 (2010), no. 27, 1323–1330.

[7] N. Triphop, A. Harnchoowong and Y. Kemprasit, Multihomomorphisms between cyclic groups,
Set-valued Math. and Appl. 1 (2008), no. 1, 9–18.

[8] P. Youngkhong and K. Savettaraseranee, Multihomomorphisms from groups into groups of

real numbers, Thai J. Math. 4 (2006), no. 1, 43–48.


