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1. Introduction

The study of BCK/BCI-algebras was initiated by Iséki as a generalization of the
concept of set-theoretic difference and propositional calculus [2, 3]. In [6], Neggers
and Kim introduced the notion of d-algebras which is a generalization of BCK-
algebras. Moreover, Jun, Roh and Kim [4] introduced a new notion, called a BH-
algebra, which is a generalization of BCK/BCI-algebras. Recently, as another
generalization of BCK-algebras, the notion of a BE-algebra was introduced by Kim
and Kim [5]. They provided an equivalent condition of the filters in BE-algebras
using the notion of upper sets. In [1], Ahn and So gave several descriptions of ideals
in BE-algebras. Also, the fuzzification of ideals in BE-algebras was studied by Jun
et al. [7]. In this paper, we investigate several properties of upper sets in BE-
algebras, and we introduce more extended upper sets of BE-algebras, and obtain
some relations with filters of BE-algebras. Also, the notion of Krull dimension of a
BE-algebra and the notion of regular sequences in a BE-algebra are introduced.
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2. Preliminaries

By a BE-algebra we mean an algebra (X; ∗, 1) of type (2, 0) satisfying the following
identities: for any x, y, z ∈ X,
(BE1) x ∗ x = 1;
(BE2) x ∗ 1 = 1;
(BE3) 1 ∗ x = x;
(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z).

The BE-algebra determines an relation on X: x ≤ y ⇔ x ∗ y = 1 [5].

Definition 2.1. [5] A non-empty subset F of a BE-algebra X is called a filter of
X if

(F1) 1 ∈ F ;
(F2) x ∗ y ∈ F and x ∈ F implies y ∈ F .

Example 2.1.
(1) Let X be a finite (or infinite) set with element 1. Define a binary operation

on X as follows: for any x, y ∈ X, x ∗ y = 1 if x = y and x ∗ y = y if x 6= y.
Then (X; ∗, 1) is a BE-algebra, and every non-empty subset containing 1 is
a filter of X.

(2) Let X := {1, a, b, c} be a set with the following Cayley table:

∗ 1 a b c
1 1 a b c
a 1 1 b b
b 1 a 1 a
c 1 1 1 1

Then (X; ∗, 1) is a BE-algebra. Also, {1, a} and {1, b} are filters of X, but
{1, c}, {1, a, b}, {1, a, c} and {1, b, c} are not filters of X.

(3) Let X := {1, a, b, c, d} be a set with the following Cayley table:

∗ 1 a b c d
1 1 a b c d
a 1 1 b c d
b 1 a 1 c c
c 1 1 b 1 b
d 1 1 1 1 1

Then (X; ∗, 1) is a BE-algebra [5]. It is easy to see that {1, a}, {1, a, b} and
{1, a, c} are filters of X, but {1, a, b, c} is not a filter of X.

(4) Let X := {1, a, b, c, d, 0} be a set with the following Cayley table:

∗ 1 a b c d 0
1 1 a b c d 0
a 1 1 a c c d
b 1 1 1 c c c
c 1 a b 1 a b
d 1 1 a 1 1 a
0 1 1 1 1 1 1
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Then (X; ∗, 1) is a BE-algebra, and {1, a, b} is a filter of X, but {1, a} is
not a filter of X [5].

Proposition 2.1. Let X be a BE-algebra. If Fi are filters of X, then
⋂
i∈I

Fi is a

filter of X.

Proof. Straightforward.

3. Upper sets

Let X be a BE-algebra. For any x, y ∈ X, we define

A(x) := {z ∈ X | x ∗ z = 1} and A(x, y) := {z ∈ X | x ∗ (y ∗ z) = 1}.

The set A(x) (resp. A(x, y)) is called an upper set of x (resp. of x and y). Obviously,
1, x ∈ A(x) and 1, x, y ∈ A(x, y). We know that A(1) = {1} is always a filter
of X. But the sets A(x) and A(x, y) need not be filters of X in general, since
A(a) = A(a, 1) = {1, a} is not a filter of X in Example 2.1(4).

Example 3.1.
(1) Consider a BE-algebra X in Example 2.1(1). For any x, y ∈ X, we have

that A(x) = {1, x} and A(x, y) = {1, x, y}. Also, every upper set in X is a
filter of X.

(2) Let X be a BE-algebra in Example 2.1(2). Then A(1) = {1}, A(a) =
A(a, 1) = A(a, a) = {1, a}, A(b) = A(b, 1) = A(b, b) = {1, b}, and A(c) =
A(c, 1) = A(c, c) = A(a, b) = A(a, c) = A(b, c) = X.

(3) In Example 2.1(3), we obtain that A(a) = {1, a}, A(c) = {1, a, c}, A(a, b) =
{1, a, b}, A(b, c) = X, etc.

Proposition 3.1. If X is a BE-algebra, then A(x) ⊆ A(x, y) for any x, y ∈ X.

Proof. Let z ∈ A(x). Then x∗z = 1. By (BE2) and (BE4), we have that x∗(y∗z) =
y ∗ (x ∗ z) = y ∗ 1 = 1, and hence z ∈ A(x, y).

Proposition 3.2. Let X be a BE-algebra and x ∈ X. Then

A(x) =
⋂
y∈X

A(x, y).

Proof. By Proposition 3.1, we have A(x) ⊆
⋂
y∈X

A(x, y). If z ∈
⋂
y∈X

A(x, y), then

z ∈ A(x, y) for any y ∈ X, and so z ∈ A(x, 1). Hence 1 = x ∗ (1 ∗ z) = x ∗ z, which
proves z ∈ A(x). This means that

⋂
y∈X

A(x, y) ⊆ A(x).

Using Proposition 3.1 and Proposition 3.2 we obtain the following:

Corollary 3.1. Let X be a BE-algebra. Then for any x ∈ X, we have that A(x) =
A(x, 1) =

⋂
y∈X

A(x, y).

Proposition 3.3. If X is a BE-algebra, then A(x, y) = A(y, x) for any x, y ∈ X.

Proof. It follows immediately from (BE4).
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Proposition 3.4. Let X be a BE-algebra and α ∈ X. Then the followings are
equivalent:

(i) α ≤ x for any x ∈ X,
(ii) X = A(α),
(iii) X = A(α, x) = A(x, α) for any x ∈ X.

Proof. (i) ⇐⇒ (ii) Straightforward.
(ii) =⇒ (iii) X = A(α) ⊆ A(α, x) ⊆ X, by Proposition 3.1.
(iii) =⇒ (ii) X = A(α, 1) = A(α), by Corollary 3.1.
Using the notion of upper set A(x, y), H. S. Kim and Y. H. Kim obtained an

equivalent condition of the filter in BE-algebras.

Theorem 3.1. [5] Let F be a non-empty subset of a BE-algebra X. Then F is a
filter of X if and only if A(x, y) ⊆ F for any x, y ∈ F .

From this theorem and Proposition 3.1 we immediately obtain the following result.

Corollary 3.2. Let X be a BE-algebra. If F is a filter of X, then A(x) ⊆ F for
any x ∈ F .

However, the converse of Corollary 3.2 need not be true in general. In Example
2.1(4), F := {1, a} contains A(1) and A(a), but F is not a filter of X.

Theorem 3.2. [5] If F is a filter of a BE-algebra X, then F =
⋃

x,y∈F
A(x, y).

Corollary 3.3. [5] If F is a filter of a BE-algebra X, then

F =
⋃
x∈F

A(x, 1).

Corollary 3.4. If F is a filter of a BE-algebra X, then F =
⋃
x∈F

A(x).

Proof. By Corollary 3.1 and Corollary 3.3, we have that

F =
⋃
x∈F

A(x, 1) =
⋃
x∈F

A(x).

Definition 3.1. [5] A BE-algebra (X; ∗, 1) is said to be self distributive if x∗(y∗z) =
(x ∗ y) ∗ (x ∗ z) for any x, y, z ∈ X.

The BE-algebras X in Example 2.1(1), (2) and (3) are self distributive, but
the BE-algebra X in Example 2.1(4) is not self distributive, since d ∗ (a ∗ 0) 6=
(d ∗ a) ∗ (d ∗ 0).

Theorem 3.3. [5] Let X be a self distributive BE-algebra. Then the upper set
A(x, y) is a filter of X for any x, y ∈ X.

Combining Proposition 2.1 and Proposition 3.2 with Theorem 3.3, we have the
following result.

Corollary 3.5. If X is a self distributive BE-algebra, then the upper set A(x) is a
filter of X for any x ∈ X.
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We discuss some relations between A(x) and A(x, y) in a self distributive BE-
algebra.

Proposition 3.5. Let X be a self distributive BE-algebra and let x, y ∈ X. Then
y ∈ A(x) if and only if A(x) = A(x, y).

Proof. Assume that y ∈ A(x). Then x ∗ y = 1. By Proposition 3.1, A(x) ⊆ A(x, y).
For any z ∈ A(x, y), we have 1 = x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) = 1 ∗ (x ∗ z) = x ∗ z,
and so z ∈ A(x). Hence A(x) = A(x, y). Conversely, if A(x) = A(x, y), then
y ∈ A(x, y) = A(x).

From this proposition we obtain the fact that y /∈ A(x) if and only if A(x) &
A(x, y). In Example 3.1(3), we observe that A(c) = {1, a, c} = A(c, 1) = A(c, a) =
A(c, c), A(c) $ A(c, b) = X, and A(a) = {1, a} $ A(a, b) = {1, a, b}.

Theorem 3.4. Let X be a self distributive BE-algebra and let x, y ∈ X. Then
x ≤ y if and only if A(y) ⊆ A(x).

Proof. Let x ≤ y. Then x∗y = 1. For any z ∈ A(y), we have y∗z = 1. It follows from
the self distributive law that x∗z = 1∗(x∗z) = (x∗y)∗(x∗z) = x∗(y∗z) = x∗1 = 1,
and so z ∈ A(x). Hence A(y) ⊆ A(x). Conversely, if A(y) ⊆ A(x), then y ∈ A(x),
and hence x ≤ y.

In Example 2.1(2), we see that there exists only c ≤ a and c ≤ b except trivial
cases. Also, we observe that there exists only A(a) ⊆ A(c) and A(b) ⊆ A(c) except
trivial cases. See Example 3.1(2).

Corollary 3.6. Let X be a self distributive BE-algebra and let x, y ∈ X. Then
x ≤ y and y ≤ x if and only if A(y) = A(x).

Example 3.2. Let X := {1, a, b, c} be a set with the following Cayley table:

∗ 1 a b c
1 1 a b c
a 1 1 b 1
b 1 c 1 c
c 1 1 b 1

Then we see that (X; ∗, 1) is a self distributive BE-algebra. Here, it is easy to obtain
that a ≤ c, c ≤ a and A(a) = A(c) = {1, a, c}.

4. Extended upper sets

In this section, let X and N denote a BE-algebra and the set of all positive integers,
respectively, unless otherwise specified.

For any elements x1, x2, · · · , xn ∈ X and n ∈ N, we define

A(x1, x2, · · · , xn) := {z ∈ X |
n∏
i=1

xi ∗ z = 1},

where
n∏
i=1

xi ∗ z := xn ∗ (xn−1 ∗ (· · · ∗ (x1 ∗ z) · · · )). We call it an extended upper set

of x1, x2, · · · , xn. It follows from (BE4) that

xn ∗ (xn−1 ∗ (· · · ∗ (x1 ∗ z) · · · )) = x1 ∗ (x2 ∗ (· · · ∗ (xn ∗ z) · · · ))
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for any x1, x2, · · · , xn ∈ X. Obviously, 1, xi ∈ A(x1, x2, · · · , xn) for any i =
1, 2, · · · , n. For example, we observe that

A(x1, x2, · · · , xn) = {1, x1, x2, · · · , xn}

in Example 2.1(1), and A(a, b, c) = A(a, b, d) = A(a, c, d) = X in Example 2.1(3).

Proposition 4.1. For any x1, x2, · · · , xn ∈ X and n ∈ N, we have

A(x1) ⊆ A(x1, x2) ⊆ · · · ⊆ A(x1, x2, · · · , xn).

Proof. For any k = 1, 2, · · · , n − 1, let z ∈ A(x1, x2, · · · , xk). Then
k∏
i=1

xi ∗ z =

1, and hence
k+1∏
i=1

xi ∗ z = xk+1 ∗ (
k∏
i=1

xi ∗ z) = xk+1 ∗ 1 = 1, proving that z ∈

A(x1, x2, · · · , xk+1). This completes the proof.

Proposition 4.2. For any x1, x2, · · · , xn, y ∈ X and n ∈ N, we have

A(x1, x2, · · · , xn) =
⋂
y∈X

A(x1, x2, · · · , xn, y).

Proof. Let z ∈
⋂
y∈X

A(x1, x2, · · · , xn, y). Then z ∈ A(x1, x2, · · · , xn, y) for any y ∈

X, and so z ∈ A(x1, x2, · · · , xn, 1). Thus we have 1 =
n∏
i=1

xi ∗ (1 ∗ z) =
n∏
i=1

xi ∗ z.

This means that z ∈ A(x1, x2, · · · , xn). The converse of the proof follows from
Proposition 4.1.

Similarly, the following result holds by using Proposition 4.1 and Proposition 4.2.

Corollary 4.1. For any x1, x2, · · · , xn, y ∈ X and n ∈ N, we obtain that

A(x1, x2, · · · , xn) = A(x1, x2, · · · , xn, 1) =
⋂
y∈X

A(x1, x2, · · · , xn, y).

Proposition 4.3. Let x1, x2, · · · , xn ∈ X and n ∈ N. Then we have

A(x1, x2, · · · , xn) = A(xσ(1), xσ(2), · · · , xσ(n)),

where σ is a permutation on {1, 2, · · · , n}.

Proposition 4.4. For α ∈ X, the followings are equivalent:
(i) α ≤ x for any x ∈ X,
(ii) X = A(α),
(iii) X = A(α, x1, x2, · · · , xn) = A(x1, α, x2, · · · , xn) = · · ·

= A(x1, x2, · · · , xn, α) for any x1, x2, · · · , xn ∈ X.

The proof of Proposition 4.3 is straightforward and the proof of Proposition 4.4
is similar to Proposition 3.4.

The next theorems are similar to Theorem 3.1, Theorem 3.2 and Theorem 3.3.

Theorem 4.1. Let F be a non-empty subset of X and n ∈ N. Then F is a filter of
X if and only if A(x1, x2, · · · , xn) ⊆ F for any x1, x2, · · · , xn ∈ F , where n ≥ 2.
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Proof. Assume that F is a filter of X. If z ∈ A(x1, x2, · · · , xn), then
n∏
i=1

xi ∗ z = 1 ∈

F . Since each xi ∈ F , by (F2), z ∈ F . Conversely, let A(x1, x2, · · · , xn) ⊆ F for
any x1, x2, · · · , xn ∈ F , where n ≥ 2. Then A(x1, x2) = A(x1, x2, 1, · · · , 1) ⊆ F for
any x1, x2 ∈ F . By Theorem 3.1, F is a filter of X.

Remark 4.1. The necessity of Theorem 4.1 always holds for any n ∈ N. But the
sufficiency of Theorem 4.1 does not hold when n = 1. See Corollary 3.2 below.

Theorem 4.2. If F is a filter of X and n ∈ N, then

F =
⋃
xi∈F

A(x1, x2, · · · , xn).

Proof. Let F be a filter of X. By Theorem 4.1, A(x1, x2, · · · , xn) ⊆ F for any
x1, x2, · · · , xn ∈ F , and hence

⋃
xi∈F

A(x1, x2, · · · , xn) ⊆ F . Also, it follows from

Corollary 3.4 and Corollary 4.1 that

F =
⋃
x∈F

A(x) =
⋃
x∈F

A(x, 1, · · · , 1) ⊆
⋃
xi∈F

A(x1, x2, · · · , xn).

Theorem 4.3. If X is self distributive, then A(x1, x2, · · · , xn) is a filter of X for
any x1, x2, · · · , xn ∈ X and n ∈ N.

Proof. Clearly 1 ∈ A(x1, x2, · · · , xn). Let x ∗ y ∈ A(x1, x2, · · · , xn) and x ∈
A(x1, x2, · · · , xn). Then

n∏
i=1

xi ∗ (x ∗ y) = 1 and
n∏
i=1

xi ∗ x = 1. It follows from

the self distributive law that

1 =
n∏
i=1

xi ∗ (x ∗ y) =

(
n∏
i=1

xi ∗ x

)
∗

(
n∏
i=1

xi ∗ y

)

= 1 ∗

(
n∏
i=1

xi ∗ y

)
=

n∏
i=1

xi ∗ y,

and hence y ∈ A(x1, x2, · · · , xn). This proves that A(x1, x2, · · · , xn) is a filter of X
for any x1, x2, · · · , xn ∈ X and n ∈ N.

Proposition 4.5. Let X be self distributive and let x1, x2, · · · , xn, y ∈ X and n ∈ N.
Then y ∈ A(x1, x2, · · · , xn) if and only if A(x1, x2, · · · , xn) = A(x1, x2, · · · , xn, y).

Proof. The proof is similar to Proposition 3.5.

Proposition 4.6. Let X be self distributive and let x1, x2, · · · , xn ∈ X and n ∈ N.
If x1 ≤ x2 ≤ · · · ≤ xn, then we have

A(x1) = A(x1, x2) = · · · = A(x1, x2, · · · , xn).

Proof. If x1 ≤ x2, then x1 ∗ x2 = 1, and so x2 ∈ A(x1). By Proposition 4.5,
A(x1) = A(x1, x2). If x2 ≤ x3, then x2 ∗ x3 = 1, and so x3 ∈ A(x2) ⊆ A(x1, x2).
Also we have A(x1, x2) = A(x1, x2, x3) by Proposition 4.5. Continuing this process,
we obtain our result.

The converse of Proposition 4.6 may not be true, sinceA(a) = A(d, a) = A(d, a, b) =
X, but a � b in Example 2.1(3).
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5. Krull dimension and regular sequences

In this section, we introduce the notion of Krull dimension of a BE-algebra X and
the notion of regular sequences in a BE-algebra X, and provide the relation between
these ones. Let us denote X and N by as before in Section 4, unless otherwise
specified.

Now, we consider a chain

F : F0 = {1} ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = X

of distinct filters in X. If n is finite, then we say that F is a finite chain in X and
n is the length of F. Otherwise, F is said to be an infinite chain in X. In Example
2.1(3), if we let

F : F0 = {1} ⊂ F1 = {1, a, c} ⊂ F2 = X,

G : G0 = {1} ⊂ G1 = {1, a} ⊂ G2 = {1, a, b} ⊂ G3 = X,

H : H0 = {1} ⊂ H1 = {1, a} ⊂ H2 = {1, a, c} ⊂ H3 = X,

then F is a finite chain of length 2, and both G and H are finite chains of length 3
in X.

Definition 5.1. The maximal length of any chain of distinct filters in X is called
the Krull dimension of X, denoted by Kdim(X), and this chain with the maximal
length is said to be a maximal chain of distinct filters in X.

Example 5.1.
(1) LetX be as before in Example 2.1(1). IfX is an infinite set, then Kdim(X) =
∞ , and if |X| = n, then Kdim(X) = n − 1, since every non-empty subset
containing 1 is a filter of X.

(2) In Example 2.1(3), we obtain that Kdim(X) = 3, since

F : F0 = {1} ⊂ F1 = {1, a} ⊂ F2 = {1, a, b} ⊂ F3 = X

is a maximal chain of distinct filters in X.

Proposition 5.1. Let X be self distributive. If

F : F0 = {1} ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = X

is a maximal chain of distinct filters in X, then each Fk = A(x1, x2, · · · , xk) for
some xi ∈ F .

Proof. First we know that F0 = {1} = A(1). Since F1 is a filter of X, if we take
x1 6= 1 in F1, then F0 = {1} ⊂ A(x1) ⊆ F1 by Corollary 3.2. Since A(x1) is a filter
of X, if F1 6= A(x1), this contradicts to the maximality, and so F1 = A(x1). Now,
we take x2 ∈ F2 \ F1. Then F1 = A(x1) ⊂ A(x1, x2) ⊆ F2 by Proposition 4.1 and
Theorem 4.1. Since A(x1, x2) is also a filter of X, if F2 6= A(x1, x2), this contradicts
to the maximality, and so F2 = A(x1, x2). Continuing this process, we have that
each Fk = A(x1, x2, · · · , xk) for some xi ∈ F .

Corollary 5.1. Let X be self distributive. If Kdim(X) = n, then there exists a
chain of distinct extended upper sets in X as follows:

F : A(1) = {1} ⊂ A(x1) ⊂ A(x1, x2) ⊂ · · · ⊂ A(x1, x2, · · · , xn) = X.
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Proof. Assume that Kdim(X) = n. Then there exists a maximal chain

F : F0 = {1} ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = X

of distinct filters in X. It follows from Proposition 5.1 that each Fk has of the form
A(x1, x2, · · · , xk) for some xi ∈ F . Hence we have our result.

Theorem 5.1. Let X be self distributive. Then Kdim(X) = n if and only if there
exists a maximal chain of distinct upper sets in X as follows:

F : A(1) = {1} ⊂ A(x1) ⊂ A(x1, x2) ⊂ · · · ⊂ A(x1, x2, · · · , xn) = X.

Proof. Assume that Kdim(X) = n. By Corollary 5.1, there exists a chain

F : A(1) = {1} ⊂ A(x1) ⊂ A(x1, x2) ⊂ · · · ⊂ A(x1, x2, · · · , xn) = X

of distinct upper sets in X. If G is another chain of distinct upper sets in X with
length m, then n ≥ m, since all upper sets are filters of X by Theorem 4.3. Hence
F is a maximal chain of distinct upper sets in X. Conversely, assume that

F : A(1) = {1} ⊂ A(x1) ⊂ A(x1, x2) ⊂ · · · ⊂ A(x1, x2, · · · , xn) = X

is a maximal chain of distinct upper sets in X. Since all A(x1, x2, · · · , xk) are filters
of X, Kdim(X) ≥ n. Let Kdim(X) = m. By Corollary 5.1, there exists a chain

A(1) = {1} ⊂ A(y1) ⊂ A(y1, y2) ⊂ · · · ⊂ A(y1, y2, · · · , ym) = X

of distinct upper sets in X. Since F is a maximal chain of distinct upper sets in X,
n ≥ m. Hence n = m.

Definition 5.2. A sequence a1, a2, · · · , an in X is called regular if it is a maximal
sequence in X such that 1 = a0 ≥ a1 ≥ a2 ≥ · · · ≥ an and A(ak−1) 6= A(ak) for any
k = 1, 2, · · · , n.

Remark 5.1. Let a1, a2, · · · , an be a regular sequence in X. Then the condition
A(ak−1) 6= A(ak) is equivalent to ak−1 � ak, for any k = 1, 2, · · · , n, since we have
that ak−1 ≥ ak. See Corollary 3.6.

Example 5.2.
(1) In Example 2.1(1), every regular sequence in X is of the form 1 ≥ x for any

x ∈ X.
(2) In Example 2.1(2), there are only two regular sequences in X, i.e., 1 ≥ a ≥ c

and 1 ≥ b ≥ c. And 1 ≥ a ≥ c ≥ d is only a regular sequence in X, which
was defined in Example 2.1(3).

Lemma 5.1. Let X be self distributive. If a1, a2, · · · , an is a regular sequence in X,
then A(1) = {1} ⊂ A(a1) ⊂ A(a2) ⊂ · · · ⊂ A(an) is a chain of distinct upper sets in
X.

Proof. It follows from Theorem 3.4 and Definition 5.2.

Proposition 5.2. Let X be self distributive and let a1, a2, · · · , an be a regular se-
quence in X. Then

F : A(1) = {1} ⊂ A(a1) ⊂ A(a1, a2) ⊂ · · · ⊂ A(a1, a2, · · · , an) = X

is a chain of distinct upper sets in X.
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Proof. By Proposition 4.1, we can see that

A(1) = {1} ⊆ A(a1) ⊆ A(a1, a2) ⊆ · · · ⊆ A(a1, a2, · · · , an)

is a chain of upper sets in X. By applying Proposition 4.5 and Lemma 5.1, we have
A(ak) = A(a1, a2, · · · , ak) for any k = 1, 2, · · · , n. It follows from Lemma 5.1 that
F is a chain of distinct upper sets in X.

Combining this proposition with Theorem 5.1, we have directly the following
result.

Corollary 5.2. Let X be self distributive. If a1, a2, · · · , an is a regular sequence in
X, then Kdim(X) ≥ n.

Theorem 5.2. Let X be self distributive and let a1, a2, · · · , an be a regular sequence
in X. If A(an) = X, then Kdim(X) = n. Moreover,

F : A(1) = {1} ⊂ A(a1) ⊂ A(a2) ⊂ · · · ⊂ A(an) = X

is a maximal chain of distinct upper sets in X.

Proof. By Corollary 5.2, Kdim(X) ≥ n. Let Kdim(X) = m. Then we have a
maximal chain of distinct upper sets in X as follows:

A(1) = {1} ⊂ A(x1) ⊂ A(x1, x2) ⊂ · · · ⊂ A(x1, x2, · · · , xm) = X,

by Theorem 5.1. Since A(an) = X = A(x1, x2, · · · , xm), an ≤ xk for any k =
1, 2, · · · ,m by Proposition 4.4. Now, we show that A(xk−1) 6= A(xk) for any k =
1, 2, · · · ,m, where x0 = 1. For any k = 1, 2, · · · ,m, if A(xk−1) = A(xk), then xk−1 ∗
xk = 1, and hence xk ∈ A(x1, x2, · · · , xk−1). This means that A(x1, x2, · · · , xk−1) =
A(x1, x2, · · · , xk−1, xk) by Proposition 4.5, which is a contradiction. Thus every
sequence satisfying the regularity in {x1, x2, · · · , xm} has a length ≤ m + 1. Since
a1, a2, · · · , an is a regular sequence in X, m+ 1 ≤ n, and hence m ≤ n, i.e., m = n.
Finally, if follows from Lemma 5.1 and Proposition 5.2 that F is a maximal chain of
distinct upper sets in X.
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