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Abstract. The sum-connectivity index is a new variant of the famous Randić

connectivity index usable in quantitative structure-property relationship and
quantitative structure-activity relationship studies. We determine the minimum

sum-connectivity index of bicyclic graphs with n vertices and matching number

m, where 2 ≤ m ≤ bn/2c, the minimum and the second minimum, as well as
the maximum and the second maximum sum-connectivity indices of bicyclic

graphs with n ≥ 5 vertices. The extremal graphs are characterized.

2010 Mathematics Subject Classification: 05C35, 05C90, 05C07

Keywords and phrases: Sum-connectivity index, Randić connectivity index,
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1. Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). For u ∈ V (G),
dG(u) denotes the degree of u in G. The Randić connectivity index (or product-
connectivity index [8, 14]) of the graph G is defined as [11]

R(G) =
∑

uv∈E(G)

1√
dG(u)dG(v)

.

The Randić connectivity index is one of the most successful molecular descriptors
in structure-property and structure-activity relationships studies, e.g., [6, 10, 12].
Its mathematical properties as well as those of its generalizations have been studied
extensively as summarized in the books [5, 7].

Various variants of Randić connectivity index have been proposed in the literature,
see, e.g., [1, 3, 10, 12]. One new such variant is the sum-connectivity index. For the
graph G, it is defined as [14]

χ(G) =
∑

uv∈E(G)

1√
dG(u) + dG(v)

.
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The sum-connectivity index has been found to be well correlated with a variety
of physicochemical properties and thus belongs among the molecular structure-
descriptors [12] usable in quantitative structure-property relationship and quanti-
tative structure-activity relationship studies [8, 9]. Some mathematical properties
of the sum-connectivity index have been established in [4, 14]. Recall that a con-
nected graph on n vertices is known as a tree, a unicyclic graph and a bicyclic graph
if it possesses n−1, n and n+1 edges, respectively. We obtained in [4] the minimum
sum-connectivity indices of trees and unicyclic graphs respectively with given num-
ber of vertices and matching number, and determined the corresponding extremal
graphs.

Study on the Randić connectivity indices of bicyclic graphs may be found in
[2, 7, 13, 15].

In this paper, we obtain the minimum sum-connectivity index in the set of bicyclic
graphs with n vertices and matching number m, where 2 ≤ m ≤ bn/2c. We also
determine the minimum and the second minimum, as well as the maximum and the
second maximum sum-connectivity indices in the set of bicyclic graphs with n ≥ 5
vertices. The extremal graphs are characterized.

2. Preliminaries

A matching M of the graph G is a subset of E(G) such that no two edges in M
share a common vertex. A matching M of G is said to be maximum, if for any other
matching M ′ of G, |M ′| ≤ |M |. The matching number of G is the number of edges
of a maximum matching in G.

If M is a matching of a graph G and vertex v ∈ V (G) is incident with an edge of
M , then v is said to be M -saturated, and if every vertex of G is M -saturated, then
M is a perfect matching.

For 2 ≤ m ≤ bn/2c, let B(n,m) be the set of bicyclic graphs with n vertices and
matching number m.

For 3 ≤ m ≤ bn/2c, let Bn,m be the graph obtained by identifying a vertex of
two triangles, and attaching n−2m+1 pendent vertices (vertices of degree one) and
m − 3 paths on two vertices to the common vertex of the two triangles, see Figure
1. Obviously, Bn,m ∈ B(n,m).
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Figure 1. The graph Bn,m.
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Let Cn be a cycle on n ≥ 3 vertices. Let B̃(n) be the set of bicyclic graphs on n

vertices without pendent vertices, where n ≥ 4. Let B(1)
1 (n) be the set of bicyclic

graphs obtained by joining two vertex-disjoint cycles Ca and Cb with a + b = n by
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an edge, where n ≥ 6. Let B(2)
1 (n) be the set of bicyclic graphs obtained by joining

two vertex-disjoint cycles Ca and Cb with a+ b < n by a path of length n−a− b+1,
where n ≥ 7. Let B2(n) be the set of bicyclic graphs obtained by identifying a
vertex of Ca and a vertex of Cb with a + b = n + 1, where n ≥ 5. Let B(1)

3 (n) be
the set of bicyclic graphs obtained from Cn by adding an edge, where n ≥ 4. Let
B(2)

3 (n) be the set of bicyclic graphs obtained by joining two non-adjacent vertices
of Ca with 4 ≤ a ≤ n − 1 by a path of length n − a + 1, where n ≥ 5. Obviously,
B̃(n) = B(1)

1 (n) ∪B(2)
1 (n) ∪B2(n) ∪B(1)

3 (n) ∪B(2)
3 (n).

Let B(n) be the set of bicyclic graphs on n ≥ 4 vertices.

3. Minimum sum-connectivity index of bicyclic graphs with given match-
ing number

First we give some lemmas that will be used.
For a graph G with u ∈ V (G), G − u denotes the graph resulting from G by

deleting the vertex u (and its incident edges).

Lemma 3.1. [4] Let G be a connected graph on n vertices with a pendent vertex u,
where n ≥ 4. Let v be the unique neighbor of u, and let w be a neighbor of v different
from u.

(i) If dG(v) = 2 and there is at most one pendent neighbor of w in G, then

χ(G)− χ(G− u− v) ≥ dG(w)− 1√
dG(w) + 2

− dG(w)− 3√
dG(w) + 1

− 1√
dG(w)

+
1√
3

with equality if and only if one neighbor of w has degree one, and the other
neighbors of w are of degree two.

(ii) If there are exactly k pendent neighbors of v in G, then

χ(G)− χ(G− u) ≥ dG(v)− k√
dG(v) + 2

+
2k − dG(v)√
dG(v) + 1

− k − 1√
dG(v)

with equality if and only if k neighbors of v have degree one, and the other
neighbors of v are of degree two.

Lemma 3.2. [4]
(i) The function

x− 1√
x+ 2

− x− 3√
x+ 1

− 1√
x

is decreasing for x ≥ 2.
(ii) For integer a ≥ 1, the function

x− a√
x+ 2

+
2a− x√
x+ 1

− a− 1√
x

is decreasing for x ≥ a+ 1.

Lemma 3.3. [4] Let G be a connected graph with uv ∈ E(G), where dG(u), dG(v) ≥
2, and u and v have no common neighbor in G. Let G1 be the graph obtained from
G by deleting the edge uv, identifying u and v, which is denoted by w, and attaching
a pendent vertex to w. Then χ(G) > χ(G1).
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Lemma 3.4. For m ≥ 3,

m+
4√
6
− 3

2
>

m+ 1√
m+ 4

+
1√
m+ 3

+
m− 3√

3
+ 1,

and for m ≥ 5,(
1
2

+
1√
6

)
m− 1

2
− 2√

6
+
√

2 >
m+ 1√
m+ 4

+
1√
m+ 3

+
m− 3√

3
+ 1.

Proof. Let

f(m) =
(
m+

4√
6
− 3

2

)
−
(
m+ 1√
m+ 4

+
1√
m+ 3

+
m− 3√

3
+ 1
)

for m ≥ 3, and let

g(m) =
[(

1
2

+
1√
6

)
m− 1

2
− 2√

6
+
√

2
]
−
(
m+ 1√
m+ 4

+
1√
m+ 3

+
m− 3√

3
+ 1
)

for m ≥ 5. Note that f ′′(m) = g′′(m) = − 3
4 (m+3)−5/2 +( 1

4m+ 13
4 )(m+4)−5/2 > 0.

Then f ′(m) ≥ f ′(3) > 0, implying that f(m) ≥ f(3) > 0, and g′(m) ≥ g′(5) > 0,
implying that g(m) ≥ g(5) > 0.

Lemma 3.5. For m ≥ 3,

− m+ 1√
m+ 4

+
m− 1√
m+ 3

+
1√
m+ 2

≥ − 4√
7

+
2√
6

+
1√
5

with equality if and only if m = 3.

Proof. Let f(m) = (m + 2)−1/2 + m(m + 3)−1/2 for m ≥ 3. Then f ′′(m) = 3
4 (m +

2)−5/2 − ( 1
4m+ 3)(m+ 3)−5/2 < 0, implying that f(m)− f(m+ 1) is increasing on

m. It is easily seen that

− m+ 1√
m+ 4

+
m− 1√
m+ 3

+
1√
m+ 2

= f(m)− f(m+ 1)

≥ f(3)− f(4)

= − 4√
7

+
2√
6

+
1√
5

with equality if and only if m = 3.
Let H6 be the graph obtained by attaching a pendent vertex to every vertex of a

triangle. For 2 ≤ m ≤ bn/2c, let Un,m be the unicyclic graph obtained by attaching
n − 2m + 1 pendent vertices and m − 2 paths on two vertices to one vertex of a
triangle.

Lemma 3.6. [4] Let G be a unicyclic graph with 2m vertices and perfect matching,
where m ≥ 3. Suppose that G 6= H6. Then

χ(G) ≥ m√
m+ 3

+
1√
m+ 2

+
m− 2√

3
+

1
2

with equality if and only if G = U2m,m.

For an edge uv of the graph G (the complement of G, respectively), G−uv (G+uv,
respectively) denotes the graph resulting from G by deleting (adding, respectively)
the edge uv.
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Lemma 3.7. Let G ∈ B(2m,m) and no pendent vertex has neighbor of degree two,
where m ≥ 3. Then

χ(G) ≥ m+ 1√
m+ 4

+
1√
m+ 3

+
m− 3√

3
+ 1

with equality if and only if m = 3 and G = B6,3.

Proof. Let

f(m) =
m+ 1√
m+ 4

+
1√
m+ 3

+
m− 3√

3
+ 1.

Since G ∈ B(2m,m) and no pendent vertex has neighbor of degree two, G is obtain-
able by attaching some pendent vertices to a graph in B̃(k), where m ≤ k ≤ 2m, and
any two pendent vertices have no common neighbor (if k = 2m, then no pendent
vertex is attached).

Case 1. There is no vertex of degree two in G. Then either k = m, G is obtainable
by attaching a pendent vertex to every vertex of a graph in B̃(m), or k = m + 1,
G is obtainable by attaching a pendent vertex to every vertex with degree two of a
graph in B(1)

1 (m+ 1) ∪B(1)
3 (m+ 1). By direct calculation, we find that

χ(G) =
5√
6

+ 1 > f(3)

for m = 3,

χ(G) ≥ 1√
8

+
4√
7

+
2√
5

+ 1 > f(4)

for m = 4, and

χ(G) ≥
(

1
2

+
1√
6

)
m− 1

2
− 2√

6
+
√

2

for m ≥ 5. Thus by Lemma 3.4, we have χ(G) > f(m).

Case 2. There is a vertex, say u, of degree two in G. Denote by v and w the two
neighbors of u in G. Then one of the two edges incident with u, say uv ∈M , where
M is a perfect matching of G. Suppose that there is no vertex of degree two in any
cycle of G. Since no pendent vertex has neighbor of degree two in G, u lies on the
path joining the two disjoint cycles of G. For G1 = G − uw + vw ∈ B(2m,m), the
number of vertices of degree two in G1 is less than that in G and thus by Lemma
3.3, χ(G1) < χ(G). Repeating the operation from G to G1, we finally get a graph
G∗ ∈ B(2m,m), which has no vertex of degree two, such that χ(G) > χ(G∗), and
thus the result follows from Case 1. Now suppose that u lies on some cycle of G.
Consider G′ = G−uw, which is a unicyclic graph with perfect matching. If G′ = H6,
then G is obtained from H6 by adding an edge either between two pendent vertices,
and thus

χ(G) =
3√
6

+
2√
5

+ 1,

or between two neighbors of a vertex of degree three, one of which being a pendent
vertex, and thus

χ(G) =
2√
7

+
2√
6

+
2√
5

+
1
2
.
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In either case, χ(G) > f(3). Suppose that G′ 6= H6. Then by Lemma 3.6,

χ(G′) ≥ m√
m+ 3

+
1√
m+ 2

+
m− 2√

3
+

1
2
.

Note that 2 ≤ dG(v), dG(w) ≤ 5 and w has at most one pendent neighbor. By
Lemmas 3.2(i) and 3.5, we have

χ(G) = χ(G′) +
1√

dG(w) + 2
+

(
1√

dG(v) + 2
− 1√

dG(v) + 1

)

+
∑

xw∈E(G′)

(
1√

dG(w) + dG(x)
− 1√

dG(w) + dG(x)− 1

)

≥ χ(G′) +
1√

dG(w) + 2
+
(

1√
2 + 2

− 1√
2 + 1

)

+

[
1√

dG(w) + 1
− 1√

dG(w) + 1− 1

+ (dG(w)− 2)

(
1√

dG(w) + 2
− 1√

dG(w) + 2− 1

)]

= χ(G′) +

(
dG(w)− 1√
dG(w) + 2

− dG(w)− 3√
dG(w) + 1

− 1√
dG(w)

)
+

1
2
− 1√

3

≥
(

m√
m+ 3

+
1√
m+ 2

+
m− 2√

3
+

1
2

)
+
(

5− 1√
5 + 2

− 5− 3√
5 + 1

− 1√
5

)
+

1
2
− 1√

3

=
m√
m+ 3

+
1√
m+ 2

+
m− 2√

3
+ 1− 1√

3
+
(

4√
7
− 2√

6
− 1√

5

)
≥ m√

m+ 3
+

1√
m+ 2

+
m− 2√

3
+ 1− 1√

3

+
(
m+ 1√
m+ 4

− m− 1√
m+ 3

− 1√
m+ 2

)
= f(m)

with equalities if and only if dG(v) = 2, dG(w) = 5, G′ = U2m,m and m = 3, i.e.,
G = B6,3.

By combining Cases 1 and 2, the result follows.

Lemma 3.8. Let G ∈ B(6, 3). Then

χ(G) ≥ 4√
7

+
1√
6

+ 1

with equality if and only if G = B6,3.

Proof. If G has a pendent vertex whose neighbor is of degree two, then G is the
graph obtained from the unique bicyclic graph on four vertices by attaching a path
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on two vertices to either a vertex of degree three, or a vertex of degree two, and thus
it is easily seen that χ(G) > 4/

√
7 + 1/

√
6 + 1. Otherwise, by Lemma 3.7, B6,3 is

the unique graph with the minimum sum-connectivity index.

Now we consider the sum-connectivity index of bicyclic graphs with perfect match-
ing. There is a unique bicyclic graph with four vertices, and its matching number is
two.

Theorem 3.1. Let G ∈ B(2m,m), where m ≥ 3. Then

χ(G) ≥ m+ 1√
m+ 4

+
1√
m+ 3

+
m− 3√

3
+ 1

with equality if and only if G = B2m,m.

Proof. Let

f(m) =
m+ 1√
m+ 4

+
1√
m+ 3

+
m− 3√

3
+ 1.

We prove the result by induction on m. If m = 3, then the result follows from
Lemma 3.8.

Suppose that m ≥ 4 and the result holds for graphs in B(2m − 2,m − 1). Let
G ∈ B(2m,m) with a perfect matching M . If there is no pendent vertex with
neighbor of degree two in G, then by Lemma 3.7, χ(G) > f(m). Suppose that
G has a pendent vertex u whose neighbor v is of degree two. Then uv ∈ M and
G − u − v ∈ B(2m − 2,m − 1). Let w be the neighbor of v different from u. Since
|M | = m, we have dG(w) ≤ m+ 2. Note that there is at most one pendent neighbor
of w in G. Then by Lemma 3.1(i), Lemma 3.2(i) and the induction hypothesis,

χ(G) ≥ χ(G− u− v) +
dG(w)− 1√
dG(w) + 2

− dG(w)− 3√
dG(w) + 1

− 1√
dG(w)

+
1√
3

≥ f(m− 1) +
(m+ 2)− 1√
(m+ 2) + 2

− (m+ 2)− 3√
(m+ 2) + 1

− 1√
m+ 2

+
1√
3

= f(m)

with equalities if and only if G − u − v = B2m−2,m−1 and dG(w) = m + 2, i.e.,
G = B2m,m.

In the following we consider the sum-connectivity indices of graphs in the set of
bicyclic graphs with n vertices and matching number m. We first consider the case
m ≥ 3.

Lemma 3.9. [15] Let G ∈ B(n,m) with n > 2m ≥ 6, and G has at least one pendent
vertex. Then there is a maximum matching M and a pendent vertex u such that u
is not M -saturated.

Theorem 3.2. Let G ∈ B(n,m), where 3 ≤ m ≤ bn/2c. Then

χ(G) ≥ m+ 1√
n−m+ 4

+
n− 2m+ 1√
n−m+ 3

+
m− 3√

3
+ 1

with equality if and only if G = Bn,m.
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Proof. Let

f(n,m) =
m+ 1√
n−m+ 4

+
n− 2m+ 1√
n−m+ 3

+
m− 3√

3
+ 1.

We prove the result by induction on n. If n = 2m, then the result follows from
Theorem 3.1. Suppose that n > 2m and the result holds for graphs in B(n− 1,m).
Let G ∈ B(n,m).

Suppose that there is no pendent vertex in G. Then G ∈ B̃(n) and n = 2m + 1.
It is easily seen that there are exactly three values for χ(G), and thus we have

χ(G) ≥ χ(H) = m− 1 +
4√
6

with H ∈ B2(2m+ 1). Let

g(m) =
(
m− 1 +

4√
6

)
− f(2m+ 1,m)

=
(
m− 1 +

4√
6

)
−
(
m+ 1√
m+ 5

+
2√
m+ 4

+
m− 3√

3
+ 1
)

for m ≥ 3. Then

g′′(m) =
(

1
4
m+

17
4

)
(m+ 5)−5/2 − 3

2
(m+ 4)−5/2 > 0,

and thus g′(m) ≥ g′(3) > 0, implying that g(m) ≥ g(3) > 0, i.e., m − 1 + 4/
√

6 >
f(2m+ 1,m). Then χ(G) > f(2m+ 1,m).

Suppose that there is at least one pendent vertex in G. By Lemma 3.9, there is a
maximum matching M and a pendent vertex u of G such that u is not M -saturated.
Then G−u ∈ B(n−1,m). Let v be the unique neighbor of u. Since M is a maximum
matching, M contains one edge incident with v. Note that there are n+1−m edges
of G outside M . Then dG(v) − 1 ≤ n + 1 −m, i.e., dG(v) ≤ n −m + 2. Let s be
the number of pendent neighbors of v in G. Since at least s− 1 pendent neighbors
of v are not M -saturated, we have s− 1 ≤ n− 2m, i.e., s ≤ n− 2m+ 1. By Lemma
3.1(ii), Lemma 3.2(ii) and the induction hypothesis,

χ(G) ≥ χ(G− u) +
dG(v)− s√
dG(v) + 2

+
2s− dG(v)√
dG(v) + 1

− s− 1√
dG(v)

≥ f(n− 1,m) +
(n−m+ 2)− (n− 2m+ 1)√

(n−m+ 2) + 2

+
2(n− 2m+ 1)− (n−m+ 2)√

(n−m+ 2) + 1
− (n− 2m+ 1)− 1√

n−m+ 2

= f(n,m)

with equalities if and only if G−u = Bn−1,m, s = n−2m+1 and dG(v) = n−m+2,
i.e., G = Bn,m.

Now we consider the sum-connectivity indices of bicyclic graphs with matching
number two. Let Bn(a, b) be the graph obtained by attaching a − 3 and b − 3
pendent vertices to the two vertices of degree three of the unique bicyclic graph on
four vertices, respectively, where a ≥ b ≥ 3, a+ b = n+ 2 and n ≥ 4.
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Lemma 3.10. Among the graphs in B(n, 2) with n ≥ 6, Bn(n−1, 3) and Bn(n−2, 4)
are respectively the unique graphs with the minimum and the second minimum sum-
connectivity indices, which are equal to

1√
n+ 2

+
n− 4√
n

+
2√
n+ 1

+
2√
5

and
1√
n+ 2

+
2√
n

+
n− 5√
n− 1

+
2√
6

+
1√
5
,

respectively.

Proof. Let G ∈ B(n, 2). Then G may be of three types:
(a) G = Bn(a, b) with a ≥ b ≥ 3. Suppose that a ≥ b ≥ 4. Let f(x) = (x−4)x−1/2 +
2(x + 1)−1/2 for x ≥ 3. Then f ′′(x) = −((1/4)x + 3)x−5/2 + (3/2)(x + 1)−5/2 < 0,
implying that f(x+ 1)− f(x) is decreasing for x ≥ 3. It is easily seen that

χ(Bn(a+ 1, b− 1))− χ(Bn(a, b))

= [χ(Bn(a+ 1, b− 1))− χ(Bn−1(a, b− 1))]

− [χ(Bn(a, b))− χ(Bn−1(a, b− 1))]

=
(
a− 4√
a+ 2

− a− 3√
a+ 1

+
2√
a+ 3

)
−
(
b− 5√
b+ 1

− b− 4√
b

+
2√
b+ 2

)
= [f(a+ 2)− f(a+ 1)]− [f(b+ 1)− f(b)] < 0,

and thus, χ(Bn(a, b)) > χ(Bn(a+1, b−1)) for a ≥ b ≥ 4. It follows that Bn(n−1, 3)
and Bn(n−2, 4) are respectively the unique graphs with the minimum and the second
minimum sum-connectivity indices, which are equal to

1√
n+ 2

+
2√
n+ 1

+
n− 4√
n

+
2√
5

and
1√
n+ 2

+
2√
n

+
n− 5√
n− 1

+
2√
6

+
1√
5
,

respectively.
(b) G is the graph obtained by attaching n−4 pendent vertices to a vertex of degree
two of the unique bicyclic graph on four vertices. Then

χ(G) =
2√
n+ 1

+
n− 4√
n− 1

+
1√
6

+
2√
5

> χ(Bn(n− 2, 4)) =
1√
n+ 2

+
2√
n

+
n− 5√
n− 1

+
2√
6

+
1√
5
,

since

χ(G)− χ(Bn(n− 2, 4)) = [g(n− 1)− g(n)] +
1√
5
− 1√

6
> 0,

where

g(x) =
1√
x+ 2

+
1√
x
− 1√

x+ 1
is decreasing for x ≥ 5.
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(c) G is the graph obtained by attaching some pendent vertices to one or two vertices
of degree three of the unique bicyclic graph on five vertices in B(2)

3 (5), and by Lemma
3.3 and the arguments in case (a), χ(G) > χ(Bn(n − 2, 4)). Now the result follows
easily.

4. Minimum sum-connectivity index of bicyclic graphs

In this section, we determine the minimum and the second minimum sum-connectivity
indices of bicyclic graphs with n ≥ 5 vertices.

Theorem 4.1. Among the graphs in B(n) with n ≥ 5, Bn(n − 1, 3) is the unique
graph with the minimum sum-connectivity index, which is equal to

1√
n+ 2

+
n− 4√
n

+
2√
n+ 1

+
2√
5
,

the graph obtained by attaching a pendent vertex to a vertex of degree two of the
unique bicyclic graph on four vertices for n = 5 is the unique graph with the second
minimum sum-connectivity index, which is equal to

3√
6

+
2√
5

+
1
2
,

Bn(n − 2, 4) for n = 6, 7 is the unique graph with the second minimum sum-
connectivity index, which is equal to

1√
n+ 2

+
2√
n

+
n− 5√
n− 1

+
2√
6

+
1√
5
,

and Bn,3 for n ≥ 8 is the unique graph with the second minimum sum-connectivity
index, which is equal to

4√
n+ 1

+
n− 5√
n

+ 1.

Proof. There are five graphs in B(5). Thus, the case n = 5 may be checked directly.
Suppose in the following that n ≥ 6.

Let G ∈ B(n) and m the matching number of G, where 2 ≤ m ≤ bn/2c. If
m = 2, then by Lemma 3.10, χ(G) ≥ χ(Bn(n − 1, 3)) with equality if and only if
G = Bn(n − 1, 3). If m = 3, then by Theorem 3.2, χ(G) ≥ χ(Bn,3) with equality
if and only if G = Bn,3. If m ≥ 4, then by Theorem 3.2 and Lemma 3.3, χ(G) ≥
χ(Bn,m) > χ(Bn,m−1) > · · · > χ(Bn,3). Let

f(x) =
1√
x
− 1√

x+ 1
for x ≥ 6. Then

f ′′(x) =
3
4
x−5/2 − 3

4
(x+ 1)−5/2 > 0,

implying that f(x+ 1)− f(x) is increasing for x ≥ 6. Note that

χ(Bn,3)− χ(Bn(n− 1, 3))

=
(

4√
n+ 1

+
n− 5√
n

+ 1
)
−
(

1√
n+ 2

+
n− 4√
n

+
2√
n+ 1

+
2√
5

)
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= f(n+ 1)− f(n) + 1− 2√
5

≥ f(7)− f(6) + 1− 2√
5
> 0.

Thus Bn(n− 1, 3) is the unique graph with the minimum sum-connectivity index.
Suppose that G 6= Bn(n−1, 3). If m = 2, then by Lemma 3.10, χ(G) ≥ χ(Bn(n−

2, 4)) with equality if and only if G = Bn(n − 2, 4). By the arguments as above,
the second minimum sum-connectivity index of graphs in B(n) is precisely achieved
by the minimum one of χ(Bn,3) and χ(Bn(n − 2, 4)). If n = 6, 7, then χ(Bn,3) >
χ(Bn(n− 2, 4)). Suppose that n ≥ 8. Let

g(x) =
1√
x+ 1

− 3√
x
− x− 5√

x− 1
for x ≥ 8. Then

g′′(x) =
3
4

(x+ 1)−5/2 +
[(

1
4
x+

11
4

)
(x− 1)−5/2 − 9

4
x−5/2

]
> 0,

implying that g(x)− g(x+ 1) is decreasing for x ≥ 8. Note that

χ(Bn,3)− χ(Bn(n− 2, 4))

=
(

4√
n+ 1

+
n− 5√
n

+ 1
)
−
(

1√
n+ 2

+
2√
n

+
n− 5√
n− 1

+
2√
6

+
1√
5

)
= − 1√

n+ 2
+

4√
n+ 1

+
n− 7√
n
− n− 5√

n− 1
+ 1− 2√

6
− 1√

5

= g(n)− g(n+ 1) + 1− 2√
6
− 1√

5

≤ g(8)− g(9) + 1− 2√
6
− 1√

5
< 0,

and then χ(Bn,3) < χ(Bn(n − 2, 4)). Thus Bn(n − 2, 4) for n = 6, 7 and Bn,3

for n ≥ 8 are the unique graphs with the second minimum sum-connectivity index
among graphs in B(n).

5. Maximum sum-connectivity index of bicyclic graphs

In this section, we determine the maximum and the second maximum sum-connectivity
indices of bicyclic graphs with n ≥ 5 vertices. Let Pn be the path on n vertices.

Lemma 5.1. [14] For a connected graph Q with at least two vertices and a vertex
u ∈ V (Q), let G1 be the graph obtained from Q by attaching two paths Pa and Pb to
u, G2 the graph obtained from Q by attaching a path Pa+b to u, where a ≥ b ≥ 1.
Then χ(G1) < χ(G2).

Lemma 5.2. Suppose that M is a connected graph with u ∈ V (M) and 2 ≤ dM (u) ≤
4. Let H be the graph obtained from M by attaching a path Pa to u. Denote by u1

and u2 the two neighbors of u in M , and u′ the pendent vertex of the path attached
to u in H. Let H ′ = H − uu2 + u′u2.

(i) If dM (u) = 2 and the maximum degree of M is at most five, then χ(H ′) >
χ(H).
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(ii) If dM (u) = 3, and there are at least two neighbors of u in M with degree
two and dM (u2) = 2, then χ(H ′) > χ(H).

(iii) If dM (u) = 4 and all the neighbors of u in M are of degree two, then χ(H ′) >
χ(H).

Proof. (i) If a = 1, then

χ(H ′)− χ(H)

=

(
1√

dM (u1) + 2
+

1√
dM (u2) + 2

)
−

(
1√

dM (u1) + 3
+

1√
dM (u2) + 3

)
> 0.

If a ≥ 2, then

χ(H ′)− χ(H)

=

(
1√

dM (u1) + 2
− 1√

dM (u1) + 3

)
+

(
1√

dM (u2) + 2
− 1√

dM (u2) + 3

)

+ 1− 1√
3
− 1√

5

≥
(

1√
5 + 2

− 1√
5 + 3

)
+
(

1√
5 + 2

− 1√
5 + 3

)
+ 1− 1√

3
− 1√

5
> 0.

(ii) There are two neighbors of u with degree two, let d1 be the degree of the third
neighbor of u in M . If a = 1, then since 1

2 + 1√
5
− 2√

6
> 0, we have

χ(H ′)− χ(H)

=
(

1√
d1 + 3

+
1
2

+
2√
5

)
−
(

1√
d1 + 4

+
2√
6

+
1√
5

)
=
(

1√
d1 + 3

− 1√
d1 + 4

)
+

1
2

+
1√
5
− 2√

6
> 0.

If a ≥ 2, then since

1 +
2√
5
− 3√

6
− 1√

3
> 0,

we have

χ(H ′)− χ(H)

=
(

1√
d1 + 3

+ 1 +
2√
5

)
−
(

1√
d1 + 4

+
3√
6

+
1√
3

)
=
(

1√
d1 + 3

− 1√
d1 + 4

)
+ 1 +

2√
5
− 3√

6
− 1√

3
> 0.

(iii) If a = 1, then

χ(H ′)− χ(H) =
(

1
2

+
4√
6

)
−
(

4√
7

+
1√
6

)
> 0.



On Sum-Connectivity Index of Bicyclic Graphs 113

If a ≥ 2, then

χ(H ′)− χ(H) =
(

1 +
4√
6

)
−
(

5√
7

+
1√
3

)
> 0.

The proof is now completed.
Let B1(n) be the set of connected graphs on n ≥ 6 vertices with exactly two

vertex-disjoint cycles. Let B2(n) be the set of connected graphs on n ≥ 5 vertices
with exactly two cycles of a common vertex. Let B3(n) be the set of connected
graphs on n ≥ 4 vertices with exactly two cycles with at least one edge in common.
Obviously, B(n) = B1(n) ∪ B2(n) ∪ B3(n). For u, v ∈ V (G), let dG(u, v) be the
distance between u and v in G.

Lemma 5.3. Among the graphs in B1(n) with n ≥ 7, the graphs in B(1)
1 (n) and

the graphs in B(2)
1 (n) are respectively the unique graphs with the maximum and the

second maximum sum-connectivity indices, which are equal to
n− 4

2
+

1√
6

+
4√
5

and
n− 5

2
+

6√
5
,

respectively.

Proof. Suppose that G is a graph in B1(n) \
{
B(1)

1 (n)
}

with the maximum sum-
connectivity index, and C(1) and C(2) are its two cycles. Let x1 ∈ V

(
C(1)

)
and y1 ∈

V
(
C(2)

)
be the two vertices such that dG(x1, y1) = min{dG(x, y) : x ∈ V

(
C(1)

)
, y ∈

V
(
C(2)

)
}. Let Q be the path joining x1 and y1. By Lemma 5.1, the vertices outside

C(1), C(2) and Q are of degree one or two, the vertices on C(1), C(2) and Q different
from x1 and y1 are of degree two or three, and dG(x1), dG(y1) = 3 or 4.

Suppose that dG(x1, y1) ≥ 2. If there is some vertex, say x, on C(1), C(2) or
Q different from x1 and y1 with degree three, then making use of Lemma 5.2(i) to
H = G by setting u = x, we may get a graph in B1(n) \

{
B(1)

1 (n)
}

with larger sum-
connectivity index, a contradiction. Thus the vertices on C(1), C(2) and Q different
from x1 and y1 are of degree two. If dG(x1) = 4, then making use of Lemma 5.2
(ii) to H = G by setting u = x1, we may get a graph in B1(n) \

{
B(1)

1 (n)
}

with
larger sum-connectivity index, a contradiction. Thus dG(x1) = 3. Similarly, we have
dG(y1) = 3. It follows that G ∈ B(2)

1 (n).
Suppose that dG(x1, y1) = 1. Suppose that one of x1 and y1, say x1, is of degree

four. Then by Lemma 5.2(i), the vertices on C(1) and C(2) different from x1 and y1
are of degree two. If dG(y1) = 4, then making use of Lemma 5.2(ii) to H = G by
setting u = y1, we may get a graph in B1(n)\

{
B(1)

1 (n)
}

with larger sum-connectivity
index, a contradiction. Thus dG(y1) = 3. Denote by x2 the pendent vertex of the
path attached to x1. Consider G1 = G− x1y1 + x2y1 ∈ B(2)

1 (n). If dG(x1, x2) = 1,
then

χ(G1)− χ(G) =
4√
5
−
(

1√
7

+
2√
6

+
1√
5

)
> 0.
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If dG(x1, x2) ≥ 2, then

χ(G1)− χ(G) =
(

1
2

+
4√
5

)
−
(

1√
7

+
3√
6

+
1√
3

)
> 0.

In either case, χ(G1) > χ(G) with G1 ∈ B(2)
1 (n), a contradiction. Thus dG(x1) =

dG(y1) = 3. Note that G 6∈ B(1)
1 (n) and by Lemma 5.2(i), there is exactly one

vertex, say x3 ∈ V
(
C(1)

)
, on C(1) and C(2) different from x1 and y1 with degree

three. Denote by x4 the pendent vertex of the path attached to x3. Consider
G2 = G − x1y1 + x4y1 ∈ B(2)

1 (n). Let d1 be the degree of the neighbor of x4, one
neighbor of x1 on C(1) is of degree two, and we denote by d2 the degree of the other
neighbor of x1 on C(1), where d1, d2 = 2 or 3. We have

χ(G2)− χ(G)

=
(

1√
d1 + 2

− 1√
d1 + 1

)
+
(

1√
d2 + 2

− 1√
d2 + 3

)
+

1
2
− 1√

6

≥
(

1√
2 + 2

− 1√
2 + 1

)
+
(

1√
3 + 2

− 1√
3 + 3

)
+

1
2
− 1√

6
> 0,

and thus, χ(G2) > χ(G) with G2 ∈ B(2)
1 (n), which is also a contradiction.

Now we have shown that the graphs in B(2)
1 (n) are the unique graphs in B1(n) \{

B(1)
1 (n)

}
with the maximum sum-connectivity index. Note that for H1 ∈ B(1)

1 (n)
and H2 ∈ B(2)

1 (n),

χ(H1) =
n− 4

2
+

1√
6

+
4√
5
> χ(H2) =

n− 5
2

+
6√
5
.

The result follows.

Lemma 5.4. Among the graphs in B3(n) with n ≥ 5, the graphs in B(1)
3 (n) and

the graphs in B(2)
3 (n) are respectively the unique graphs with the maximum and the

second maximum sum-connectivity indices, which are equal to
n− 4

2
+

1√
6

+
4√
5

and
n− 5

2
+

6√
5
,

respectively.

Proof. Suppose that G is a graph in B3(n) \
{
B(1)

3 (n)
}

with the maximum sum-
connectivity index. Then G has exactly three cycles, let C(1) and C(2) be its two
cycles such that the remaining one is of the maximum length. Let A be the set of
the common vertices of C(1) and C(2). Let v1 and v2 be the two vertices in A such
that dG(v1, v2) = max {dG(x, y) : x, y ∈ A}. By Lemma 5.1, the vertices outside
C(1) and C(2) are of degree one or two, the vertices on C(1) and C(2) different from
v1 and v2 are of degree two or three, and dG(v1), dG(v2) = 3 or 4. Denote by v′1 (v′2,
respectively) the neighbor of v1 on C(1) (v2 on C(2), respectively) different from the
vertices in A.
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If dG(v1, v2) ≥ 2, then by Lemma 5.2(i)(ii), we have G ∈ B(2)
3 (n).

Suppose that dG(v1, v2) = 1. Suppose that the lengths of C(1) and C(2) are at least
four. Consider G1 = G − {v1v′1, v2v′2} + {v′1v2, v1v′2} ∈ B1(n) \ {B(1)

1 (n),B(2)
1 (n)}.

Note that

χ(G1)− χ(G) =

(
1√

dG(v′1) + dG(v2)
+

1√
dG(v1) + dG(v′2)

)

−

(
1√

dG(v1) + dG(v′1)
+

1√
dG(v2) + dG(v′2)

)
.

If dG(v1) = dG(v2), then χ(G1) = χ(G). If dG(v1) 6= dG(v2), then by Lemma 5.2
(i), we have dG(v′1) = dG(v′2) = 2, and thus χ(G1) = χ(G). In either case, we have
χ(G1) = χ(G). By Lemma 5.3, we have χ(G) = χ(G1) < χ(H) = (n− 5)/2 + 6/

√
5

for H ∈ B(2)
1 (n).

Suppose that at least one of C(1) and C(2), say C(1), is of length three. Since
G 6∈ B(1)

3 (n), there are some vertices outside C(1) and C(2). By Lemma 5.2(i)(ii), the
subgraph induced by the vertices outside C(1) and C(2) is a path, say Pk, which is
attached to x ∈ V

(
C(1)

)
∪V

(
C(2)

)
. Suppose that x 6= v′1. Denote by v3 the neighbor

of x outside C(1) and C(2). Consider G2 = G− xv3 + v′1v3 ∈ B3(n) \
{
B(1)

3 (n)
}

. If
x = v1 or v2, then

χ(G2)− χ(G) =

(
1√

dG(v3) + 3
− 1√

dG(v3) + 4

)
+
(

1√
6
− 1√

7

)
> 0,

and thus χ(G2) > χ(G), a contradiction. Hence x ∈ V
(
C(2)

)
\ {v1, v2}, and the

length of C(2) is at least four. Note that one neighbor of x on C(2) is of degree two.
Denote by d1 the degree of the other neighbor of x on C(2), where d1 = 2 or 3. Then

χ(G2)− χ(G) =
(

1√
d1 + 2

− 1√
d1 + 3

)
+

1
2

+
2√
6
− 3√

5

≥
(

1√
3 + 2

− 1√
3 + 3

)
+

1
2

+
2√
6
− 3√

5
> 0,

and thus χ(G2) > χ(G), which is also a contradiction. Thus, x = v′1. If k = 1, then

χ(G) =
n− 5

2
+

3√
6

+
2√
5

+
1
2
,

and if k ≥ 2, then

χ(G) =
n− 6

2
+

3√
6

+
3√
5

+
1√
3
.

In either case, we have

χ(G) <
n− 5

2
+

6√
5
.

Now we have shown that the graphs in B(2)
3 (n) are the unique graphs in B3(n) \{

B(1)
3 (n)

}
with the maximum sum-connectivity index. Note that for H1 ∈ B(1)

3 (n)
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and H2 ∈ B(2)
3 (n),

χ(H1) =
n− 4

2
+

1√
6

+
4√
5
> χ(H2) =

n− 5
2

+
6√
5
.

The result follows.

Theorem 5.1. Among the graphs in B(n) with n ≥ 5, the graph in B(1)
3 (5) and the

graph in B(2)
3 (5) for n = 5 are respectively the unique graphs with the maximum and

the second maximum sum-connectivity indices, the graphs in B(1)
1 (6) ∪B(1)

3 (6) and
the graph in B(2)

3 (6) for n = 6 are respectively the unique graphs with the maximum
and the second maximum sum-connectivity indices, the graphs in B(1)

1 (n) ∪B(1)
3 (n)

and the graphs in B(2)
1 (n)∪B(2)

3 (n) for n ≥ 7 are respectively the unique graphs with
the maximum and the second maximum sum-connectivity indices, where

χ(G) =
n− 4

2
+

1√
6

+
4√
5

for G ∈ B(1)
1 (n) ∪B(1)

3 (n) and

χ(H) =
n− 5

2
+

6√
5

for H ∈ B(2)
1 (n) ∪B(2)

3 (n).

Proof. Suppose that G is a graph in B2(n) with the maximum sum-connectivity
index, and C(1) and C(2) are its two cycles. Let u be the unique common vertex of
C(1) and C(2). By Lemma 5.1, the vertices outside C(1) and C(2) are of degree one
or two, the vertices on C(1) and C(2) different from u are of degree two or three, and
dG(u) = 4 or 5. Moreover, by Lemma 5.2(i), the vertices on C(1) and C(2) different
from u are of degree two. If dG(u) = 5, then making use of Lemma 5.2(iii) to H = G,
we may get a graph in B2(n) with larger sum-connectivity index, a contradiction.
Thus dG(u) = 4, i.e., G ∈ B2(n).

Note that for H1 ∈ B(1)
1 (n), H ′1 ∈ B(2)

1 (n), H2 ∈ B2(n), H3 ∈ B(1)
3 (n) and

H ′3 ∈ B(2)
3 (n),

χ(H1) = χ(H3) =
n− 4

2
+

1√
6

+
4√
5

> χ(H ′1) = χ(H ′3) =
n− 5

2
+

6√
5

> χ(H2) =
n− 3

2
+

4√
6
.

Then the result follows from Lemmas 5.3 and 5.4.
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