# On Sum-Connectivity Index of Bicyclic Graphs 

Zhibin Du and Bo Zhou<br>Department of Mathematics, South China Normal University, Guangzhou 510631, P. R. China zhibindu@126.com, zhoubo@scnu.edu.cn


#### Abstract

The sum-connectivity index is a new variant of the famous Randić connectivity index usable in quantitative structure-property relationship and quantitative structure-activity relationship studies. We determine the minimum sum-connectivity index of bicyclic graphs with $n$ vertices and matching number $m$, where $2 \leq m \leq\lfloor n / 2\rfloor$, the minimum and the second minimum, as well as the maximum and the second maximum sum-connectivity indices of bicyclic graphs with $n \geq 5$ vertices. The extremal graphs are characterized.


2010 Mathematics Subject Classification: 05C35, 05C90, 05C07
Keywords and phrases: Sum-connectivity index, Randić connectivity index, product-connectivity index, bicyclic graphs, matching number, extremal graphs.

## 1. Introduction

Let $G$ be a simple graph with vertex set $V(G)$ and edge set $E(G)$. For $u \in V(G)$, $d_{G}(u)$ denotes the degree of $u$ in $G$. The Randić connectivity index (or productconnectivity index $[8,14]$ ) of the graph $G$ is defined as [11]

$$
R(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{d_{G}(u) d_{G}(v)}}
$$

The Randić connectivity index is one of the most successful molecular descriptors in structure-property and structure-activity relationships studies, e.g., [6, 10, 12]. Its mathematical properties as well as those of its generalizations have been studied extensively as summarized in the books [5, 7].

Various variants of Randić connectivity index have been proposed in the literature, see, e.g., $[1,3,10,12]$. One new such variant is the sum-connectivity index. For the graph $G$, it is defined as [14]

$$
\chi(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{d_{G}(u)+d_{G}(v)}}
$$

[^0]The sum-connectivity index has been found to be well correlated with a variety of physicochemical properties and thus belongs among the molecular structuredescriptors [12] usable in quantitative structure-property relationship and quantitative structure-activity relationship studies $[8,9]$. Some mathematical properties of the sum-connectivity index have been established in [4, 14]. Recall that a connected graph on $n$ vertices is known as a tree, a unicyclic graph and a bicyclic graph if it possesses $n-1, n$ and $n+1$ edges, respectively. We obtained in [4] the minimum sum-connectivity indices of trees and unicyclic graphs respectively with given number of vertices and matching number, and determined the corresponding extremal graphs.

Study on the Randić connectivity indices of bicyclic graphs may be found in $[2,7,13,15]$.

In this paper, we obtain the minimum sum-connectivity index in the set of bicyclic graphs with $n$ vertices and matching number $m$, where $2 \leq m \leq\lfloor n / 2\rfloor$. We also determine the minimum and the second minimum, as well as the maximum and the second maximum sum-connectivity indices in the set of bicyclic graphs with $n \geq 5$ vertices. The extremal graphs are characterized.

## 2. Preliminaries

A matching $M$ of the graph $G$ is a subset of $E(G)$ such that no two edges in $M$ share a common vertex. A matching $M$ of $G$ is said to be maximum, if for any other matching $M^{\prime}$ of $G,\left|M^{\prime}\right| \leq|M|$. The matching number of $G$ is the number of edges of a maximum matching in $G$.

If $M$ is a matching of a graph $G$ and vertex $v \in V(G)$ is incident with an edge of $M$, then $v$ is said to be $M$-saturated, and if every vertex of $G$ is $M$-saturated, then $M$ is a perfect matching.

For $2 \leq m \leq\lfloor n / 2\rfloor$, let $\mathcal{B}(n, m)$ be the set of bicyclic graphs with $n$ vertices and matching number $m$.

For $3 \leq m \leq\lfloor n / 2\rfloor$, let $B_{n, m}$ be the graph obtained by identifying a vertex of two triangles, and attaching $n-2 m+1$ pendent vertices (vertices of degree one) and $m-3$ paths on two vertices to the common vertex of the two triangles, see Figure 1. Obviously, $B_{n, m} \in \mathcal{B}(n, m)$.


Figure 1. The graph $B_{n, m}$.
Let $C_{n}$ be a cycle on $n \geq 3$ vertices. Let $\widetilde{\mathbb{B}}(n)$ be the set of bicyclic graphs on $n$ vertices without pendent vertices, where $n \geq 4$. Let $\mathbf{B}_{1}^{(1)}(n)$ be the set of bicyclic graphs obtained by joining two vertex-disjoint cycles $C_{a}$ and $C_{b}$ with $a+b=n$ by
an edge, where $n \geq 6$. Let $\mathbf{B}_{1}^{(2)}(n)$ be the set of bicyclic graphs obtained by joining two vertex-disjoint cycles $C_{a}$ and $C_{b}$ with $a+b<n$ by a path of length $n-a-b+1$, where $n \geq 7$. Let $\mathbf{B}_{2}(n)$ be the set of bicyclic graphs obtained by identifying a vertex of $C_{a}$ and a vertex of $C_{b}$ with $a+b=n+1$, where $n \geq 5$. Let $\mathbf{B}_{3}^{(1)}(n)$ be the set of bicyclic graphs obtained from $C_{n}$ by adding an edge, where $n \geq 4$. Let $\mathbf{B}_{3}^{(2)}(n)$ be the set of bicyclic graphs obtained by joining two non-adjacent vertices of $C_{a}$ with $4 \leq a \leq n-1$ by a path of length $n-a+1$, where $n \geq 5$. Obviously, $\widetilde{\mathbb{B}}(n)=\mathbf{B}_{1}^{(1)}(n) \cup \mathbf{B}_{1}^{(2)}(n) \cup \mathbf{B}_{2}(n) \cup \mathbf{B}_{3}^{(1)}(n) \cup \mathbf{B}_{3}^{(2)}(n)$.

Let $\mathbb{B}(n)$ be the set of bicyclic graphs on $n \geq 4$ vertices.

## 3. Minimum sum-connectivity index of bicyclic graphs with given matching number

First we give some lemmas that will be used.
For a graph $G$ with $u \in V(G), G-u$ denotes the graph resulting from $G$ by deleting the vertex $u$ (and its incident edges).

Lemma 3.1. [4] Let $G$ be a connected graph on $n$ vertices with a pendent vertex $u$, where $n \geq 4$. Let $v$ be the unique neighbor of $u$, and let $w$ be a neighbor of $v$ different from $u$.
(i) If $d_{G}(v)=2$ and there is at most one pendent neighbor of $w$ in $G$, then

$$
\chi(G)-\chi(G-u-v) \geq \frac{d_{G}(w)-1}{\sqrt{d_{G}(w)+2}}-\frac{d_{G}(w)-3}{\sqrt{d_{G}(w)+1}}-\frac{1}{\sqrt{d_{G}(w)}}+\frac{1}{\sqrt{3}}
$$

with equality if and only if one neighbor of $w$ has degree one, and the other neighbors of $w$ are of degree two.
(ii) If there are exactly $k$ pendent neighbors of $v$ in $G$, then

$$
\chi(G)-\chi(G-u) \geq \frac{d_{G}(v)-k}{\sqrt{d_{G}(v)+2}}+\frac{2 k-d_{G}(v)}{\sqrt{d_{G}(v)+1}}-\frac{k-1}{\sqrt{d_{G}(v)}}
$$

with equality if and only if $k$ neighbors of $v$ have degree one, and the other neighbors of $v$ are of degree two.
Lemma 3.2. [4]
(i) The function

$$
\frac{x-1}{\sqrt{x+2}}-\frac{x-3}{\sqrt{x+1}}-\frac{1}{\sqrt{x}}
$$

is decreasing for $x \geq 2$.
(ii) For integer $a \geq 1$, the function

$$
\frac{x-a}{\sqrt{x+2}}+\frac{2 a-x}{\sqrt{x+1}}-\frac{a-1}{\sqrt{x}}
$$

is decreasing for $x \geq a+1$.
Lemma 3.3. [4] Let $G$ be a connected graph with $u v \in E(G)$, where $d_{G}(u), d_{G}(v) \geq$ 2 , and $u$ and $v$ have no common neighbor in $G$. Let $G_{1}$ be the graph obtained from $G$ by deleting the edge uv, identifying $u$ and $v$, which is denoted by $w$, and attaching a pendent vertex to $w$. Then $\chi(G)>\chi\left(G_{1}\right)$.

Lemma 3.4. For $m \geq 3$,

$$
m+\frac{4}{\sqrt{6}}-\frac{3}{2}>\frac{m+1}{\sqrt{m+4}}+\frac{1}{\sqrt{m+3}}+\frac{m-3}{\sqrt{3}}+1
$$

and for $m \geq 5$,

$$
\left(\frac{1}{2}+\frac{1}{\sqrt{6}}\right) m-\frac{1}{2}-\frac{2}{\sqrt{6}}+\sqrt{2}>\frac{m+1}{\sqrt{m+4}}+\frac{1}{\sqrt{m+3}}+\frac{m-3}{\sqrt{3}}+1 .
$$

Proof. Let

$$
f(m)=\left(m+\frac{4}{\sqrt{6}}-\frac{3}{2}\right)-\left(\frac{m+1}{\sqrt{m+4}}+\frac{1}{\sqrt{m+3}}+\frac{m-3}{\sqrt{3}}+1\right)
$$

for $m \geq 3$, and let

$$
g(m)=\left[\left(\frac{1}{2}+\frac{1}{\sqrt{6}}\right) m-\frac{1}{2}-\frac{2}{\sqrt{6}}+\sqrt{2}\right]-\left(\frac{m+1}{\sqrt{m+4}}+\frac{1}{\sqrt{m+3}}+\frac{m-3}{\sqrt{3}}+1\right)
$$

for $m \geq 5$. Note that $f^{\prime \prime}(m)=g^{\prime \prime}(m)=-\frac{3}{4}(m+3)^{-5 / 2}+\left(\frac{1}{4} m+\frac{13}{4}\right)(m+4)^{-5 / 2}>0$. Then $f^{\prime}(m) \geq f^{\prime}(3)>0$, implying that $f(m) \geq f(3)>0$, and $g^{\prime}(m) \geq g^{\prime}(5)>0$, implying that $g(m) \geq g(5)>0$.
Lemma 3.5. For $m \geq 3$,

$$
-\frac{m+1}{\sqrt{m+4}}+\frac{m-1}{\sqrt{m+3}}+\frac{1}{\sqrt{m+2}} \geq-\frac{4}{\sqrt{7}}+\frac{2}{\sqrt{6}}+\frac{1}{\sqrt{5}}
$$

with equality if and only if $m=3$.
Proof. Let $f(m)=(m+2)^{-1 / 2}+m(m+3)^{-1 / 2}$ for $m \geq 3$. Then $f^{\prime \prime}(m)=\frac{3}{4}(m+$ $2)^{-5 / 2}-\left(\frac{1}{4} m+3\right)(m+3)^{-5 / 2}<0$, implying that $f(m)-f(m+1)$ is increasing on $m$. It is easily seen that

$$
\begin{aligned}
-\frac{m+1}{\sqrt{m+4}}+\frac{m-1}{\sqrt{m+3}}+\frac{1}{\sqrt{m+2}} & =f(m)-f(m+1) \\
& \geq f(3)-f(4) \\
& =-\frac{4}{\sqrt{7}}+\frac{2}{\sqrt{6}}+\frac{1}{\sqrt{5}}
\end{aligned}
$$

with equality if and only if $m=3$.
Let $H_{6}$ be the graph obtained by attaching a pendent vertex to every vertex of a triangle. For $2 \leq m \leq\lfloor n / 2\rfloor$, let $U_{n, m}$ be the unicyclic graph obtained by attaching $n-2 m+1$ pendent vertices and $m-2$ paths on two vertices to one vertex of a triangle.
Lemma 3.6. [4] Let $G$ be a unicyclic graph with $2 m$ vertices and perfect matching, where $m \geq 3$. Suppose that $G \neq H_{6}$. Then

$$
\chi(G) \geq \frac{m}{\sqrt{m+3}}+\frac{1}{\sqrt{m+2}}+\frac{m-2}{\sqrt{3}}+\frac{1}{2}
$$

with equality if and only if $G=U_{2 m, m}$.
For an edge $u v$ of the graph $G$ (the complement of $G$, respectively), $G-u v(G+u v$, respectively) denotes the graph resulting from $G$ by deleting (adding, respectively) the edge $u v$.

Lemma 3.7. Let $G \in \mathcal{B}(2 m, m)$ and no pendent vertex has neighbor of degree two, where $m \geq 3$. Then

$$
\chi(G) \geq \frac{m+1}{\sqrt{m+4}}+\frac{1}{\sqrt{m+3}}+\frac{m-3}{\sqrt{3}}+1
$$

with equality if and only if $m=3$ and $G=B_{6,3}$.
Proof. Let

$$
f(m)=\frac{m+1}{\sqrt{m+4}}+\frac{1}{\sqrt{m+3}}+\frac{m-3}{\sqrt{3}}+1 .
$$

Since $G \in \mathcal{B}(2 m, m)$ and no pendent vertex has neighbor of degree two, $G$ is obtainable by attaching some pendent vertices to a graph in $\widetilde{\mathbb{B}}(k)$, where $m \leq k \leq 2 m$, and any two pendent vertices have no common neighbor (if $k=2 m$, then no pendent vertex is attached).

Case 1. There is no vertex of degree two in $G$. Then either $k=m, G$ is obtainable by attaching a pendent vertex to every vertex of a graph in $\widetilde{\mathbb{B}}(m)$, or $k=m+1$, $G$ is obtainable by attaching a pendent vertex to every vertex with degree two of a graph in $\mathbf{B}_{1}^{(1)}(m+1) \cup \mathbf{B}_{3}^{(1)}(m+1)$. By direct calculation, we find that

$$
\chi(G)=\frac{5}{\sqrt{6}}+1>f(3)
$$

for $m=3$,

$$
\chi(G) \geq \frac{1}{\sqrt{8}}+\frac{4}{\sqrt{7}}+\frac{2}{\sqrt{5}}+1>f(4)
$$

for $m=4$, and

$$
\chi(G) \geq\left(\frac{1}{2}+\frac{1}{\sqrt{6}}\right) m-\frac{1}{2}-\frac{2}{\sqrt{6}}+\sqrt{2}
$$

for $m \geq 5$. Thus by Lemma 3.4, we have $\chi(G)>f(m)$.
Case 2. There is a vertex, say $u$, of degree two in $G$. Denote by $v$ and $w$ the two neighbors of $u$ in $G$. Then one of the two edges incident with $u$, say $u v \in M$, where $M$ is a perfect matching of $G$. Suppose that there is no vertex of degree two in any cycle of $G$. Since no pendent vertex has neighbor of degree two in $G, u$ lies on the path joining the two disjoint cycles of $G$. For $G_{1}=G-u w+v w \in \mathcal{B}(2 m, m)$, the number of vertices of degree two in $G_{1}$ is less than that in $G$ and thus by Lemma 3.3, $\chi\left(G_{1}\right)<\chi(G)$. Repeating the operation from $G$ to $G_{1}$, we finally get a graph $G^{*} \in \mathcal{B}(2 m, m)$, which has no vertex of degree two, such that $\chi(G)>\chi\left(G^{*}\right)$, and thus the result follows from Case 1. Now suppose that $u$ lies on some cycle of $G$. Consider $G^{\prime}=G-u w$, which is a unicyclic graph with perfect matching. If $G^{\prime}=H_{6}$, then $G$ is obtained from $H_{6}$ by adding an edge either between two pendent vertices, and thus

$$
\chi(G)=\frac{3}{\sqrt{6}}+\frac{2}{\sqrt{5}}+1,
$$

or between two neighbors of a vertex of degree three, one of which being a pendent vertex, and thus

$$
\chi(G)=\frac{2}{\sqrt{7}}+\frac{2}{\sqrt{6}}+\frac{2}{\sqrt{5}}+\frac{1}{2} .
$$

In either case, $\chi(G)>f(3)$. Suppose that $G^{\prime} \neq H_{6}$. Then by Lemma 3.6,

$$
\chi\left(G^{\prime}\right) \geq \frac{m}{\sqrt{m+3}}+\frac{1}{\sqrt{m+2}}+\frac{m-2}{\sqrt{3}}+\frac{1}{2} .
$$

Note that $2 \leq d_{G}(v), d_{G}(w) \leq 5$ and $w$ has at most one pendent neighbor. By Lemmas 3.2(i) and 3.5, we have

$$
\begin{aligned}
\chi(G)= & \chi\left(G^{\prime}\right)+\frac{1}{\sqrt{d_{G}(w)+2}}+\left(\frac{1}{\sqrt{d_{G}(v)+2}}-\frac{1}{\sqrt{d_{G}(v)+1}}\right) \\
& +\sum_{x w \in E\left(G^{\prime}\right)}\left(\frac{1}{\sqrt{d_{G}(w)+d_{G}(x)}}-\frac{1}{\sqrt{d_{G}(w)+d_{G}(x)-1}}\right) \\
\geq & \chi\left(G^{\prime}\right)+\frac{1}{\sqrt{d_{G}(w)+2}}+\left(\frac{1}{\sqrt{2+2}}-\frac{1}{\sqrt{2+1}}\right) \\
& +\left[\frac{1}{\sqrt{d_{G}(w)+1}}-\frac{1}{\sqrt{d_{G}(w)+1-1}}\right. \\
& \left.+\left(d_{G}(w)-2\right)\left(\frac{1}{\sqrt{d_{G}(w)+2}}-\frac{1}{\sqrt{d_{G}(w)+2-1}}\right)\right] \\
= & \chi\left(G^{\prime}\right)+\left(\frac{d_{G}(w)-1}{\left.\sqrt{d_{G}(w)+2}-\frac{d_{G}(w)-3}{\sqrt{d_{G}(w)+1}}-\frac{1}{\sqrt{d_{G}(w)}}\right)+\frac{1}{2}-\frac{1}{\sqrt{3}}}\right. \\
\geq & \left(\frac{m}{\sqrt{m+3}}+\frac{1}{\sqrt{m+2}}+\frac{m-2}{\sqrt{3}}+\frac{1}{2}\right) \\
& +\left(\frac{5-1}{\sqrt{5+2}}-\frac{5-3}{\sqrt{5+1}}-\frac{1}{\sqrt{5}}\right)+\frac{1}{2}-\frac{1}{\sqrt{3}} \\
= & \frac{m}{\sqrt{m+3}}+\frac{1}{\sqrt{m+2}}+\frac{m-2}{\sqrt{3}}+1-\frac{1}{\sqrt{3}}+\left(\frac{4}{\sqrt{7}}-\frac{2}{\sqrt{6}}-\frac{1}{\sqrt{5}}\right) \\
\geq & \frac{m}{\sqrt{m+3}}+\frac{1}{\sqrt{m+2}}+\frac{m-2}{\sqrt{3}}+1-\frac{1}{\sqrt{3}} \\
& +\left(\frac{m+1}{\sqrt{m+4}}-\frac{m-1}{\sqrt{m+3}}-\frac{1}{\sqrt{m+2}}\right) \\
= & f(m)
\end{aligned}
$$

with equalities if and only if $d_{G}(v)=2, d_{G}(w)=5, G^{\prime}=U_{2 m, m}$ and $m=3$, i.e., $G=B_{6,3}$.

By combining Cases 1 and 2, the result follows.
Lemma 3.8. Let $G \in \mathcal{B}(6,3)$. Then

$$
\chi(G) \geq \frac{4}{\sqrt{7}}+\frac{1}{\sqrt{6}}+1
$$

with equality if and only if $G=B_{6,3}$.
Proof. If $G$ has a pendent vertex whose neighbor is of degree two, then $G$ is the graph obtained from the unique bicyclic graph on four vertices by attaching a path
on two vertices to either a vertex of degree three, or a vertex of degree two, and thus it is easily seen that $\chi(G)>4 / \sqrt{7}+1 / \sqrt{6}+1$. Otherwise, by Lemma 3.7, $B_{6,3}$ is the unique graph with the minimum sum-connectivity index.

Now we consider the sum-connectivity index of bicyclic graphs with perfect matching. There is a unique bicyclic graph with four vertices, and its matching number is two.

Theorem 3.1. Let $G \in \mathcal{B}(2 m, m)$, where $m \geq 3$. Then

$$
\chi(G) \geq \frac{m+1}{\sqrt{m+4}}+\frac{1}{\sqrt{m+3}}+\frac{m-3}{\sqrt{3}}+1
$$

with equality if and only if $G=B_{2 m, m}$.
Proof. Let

$$
f(m)=\frac{m+1}{\sqrt{m+4}}+\frac{1}{\sqrt{m+3}}+\frac{m-3}{\sqrt{3}}+1 .
$$

We prove the result by induction on $m$. If $m=3$, then the result follows from Lemma 3.8.

Suppose that $m \geq 4$ and the result holds for graphs in $\mathcal{B}(2 m-2, m-1)$. Let $G \in \mathcal{B}(2 m, m)$ with a perfect matching $M$. If there is no pendent vertex with neighbor of degree two in $G$, then by Lemma 3.7, $\chi(G)>f(m)$. Suppose that $G$ has a pendent vertex $u$ whose neighbor $v$ is of degree two. Then $u v \in M$ and $G-u-v \in \mathcal{B}(2 m-2, m-1)$. Let $w$ be the neighbor of $v$ different from $u$. Since $|M|=m$, we have $d_{G}(w) \leq m+2$. Note that there is at most one pendent neighbor of $w$ in $G$. Then by Lemma 3.1(i), Lemma 3.2(i) and the induction hypothesis,

$$
\begin{aligned}
\chi(G) & \geq \chi(G-u-v)+\frac{d_{G}(w)-1}{\sqrt{d_{G}(w)+2}}-\frac{d_{G}(w)-3}{\sqrt{d_{G}(w)+1}}-\frac{1}{\sqrt{d_{G}(w)}}+\frac{1}{\sqrt{3}} \\
& \geq f(m-1)+\frac{(m+2)-1}{\sqrt{(m+2)+2}}-\frac{(m+2)-3}{\sqrt{(m+2)+1}}-\frac{1}{\sqrt{m+2}}+\frac{1}{\sqrt{3}} \\
& =f(m)
\end{aligned}
$$

with equalities if and only if $G-u-v=B_{2 m-2, m-1}$ and $d_{G}(w)=m+2$, i.e., $G=B_{2 m, m}$.

In the following we consider the sum-connectivity indices of graphs in the set of bicyclic graphs with $n$ vertices and matching number $m$. We first consider the case $m \geq 3$.

Lemma 3.9. [15] Let $G \in \mathcal{B}(n, m)$ with $n>2 m \geq 6$, and $G$ has at least one pendent vertex. Then there is a maximum matching $M$ and a pendent vertex $u$ such that $u$ is not $M$-saturated.

Theorem 3.2. Let $G \in \mathcal{B}(n, m)$, where $3 \leq m \leq\lfloor n / 2\rfloor$. Then

$$
\chi(G) \geq \frac{m+1}{\sqrt{n-m+4}}+\frac{n-2 m+1}{\sqrt{n-m+3}}+\frac{m-3}{\sqrt{3}}+1
$$

with equality if and only if $G=B_{n, m}$.

Proof. Let

$$
f(n, m)=\frac{m+1}{\sqrt{n-m+4}}+\frac{n-2 m+1}{\sqrt{n-m+3}}+\frac{m-3}{\sqrt{3}}+1 .
$$

We prove the result by induction on $n$. If $n=2 m$, then the result follows from Theorem 3.1. Suppose that $n>2 m$ and the result holds for graphs in $\mathcal{B}(n-1, m)$. Let $G \in \mathcal{B}(n, m)$.

Suppose that there is no pendent vertex in $G$. Then $G \in \widetilde{\mathbb{B}}(n)$ and $n=2 m+1$. It is easily seen that there are exactly three values for $\chi(G)$, and thus we have

$$
\chi(G) \geq \chi(H)=m-1+\frac{4}{\sqrt{6}}
$$

with $H \in \mathbf{B}_{2}(2 m+1)$. Let

$$
\begin{aligned}
g(m) & =\left(m-1+\frac{4}{\sqrt{6}}\right)-f(2 m+1, m) \\
& =\left(m-1+\frac{4}{\sqrt{6}}\right)-\left(\frac{m+1}{\sqrt{m+5}}+\frac{2}{\sqrt{m+4}}+\frac{m-3}{\sqrt{3}}+1\right)
\end{aligned}
$$

for $m \geq 3$. Then

$$
g^{\prime \prime}(m)=\left(\frac{1}{4} m+\frac{17}{4}\right)(m+5)^{-5 / 2}-\frac{3}{2}(m+4)^{-5 / 2}>0,
$$

and thus $g^{\prime}(m) \geq g^{\prime}(3)>0$, implying that $g(m) \geq g(3)>0$, i.e., $m-1+4 / \sqrt{6}>$ $f(2 m+1, m)$. Then $\chi(G)>f(2 m+1, m)$.

Suppose that there is at least one pendent vertex in $G$. By Lemma 3.9, there is a maximum matching $M$ and a pendent vertex $u$ of $G$ such that $u$ is not $M$-saturated. Then $G-u \in \mathcal{B}(n-1, m)$. Let $v$ be the unique neighbor of $u$. Since $M$ is a maximum matching, $M$ contains one edge incident with $v$. Note that there are $n+1-m$ edges of $G$ outside $M$. Then $d_{G}(v)-1 \leq n+1-m$, i.e., $d_{G}(v) \leq n-m+2$. Let $s$ be the number of pendent neighbors of $v$ in $G$. Since at least $s-1$ pendent neighbors of $v$ are not $M$-saturated, we have $s-1 \leq n-2 m$, i.e., $s \leq n-2 m+1$. By Lemma 3.1(ii), Lemma 3.2(ii) and the induction hypothesis,

$$
\begin{aligned}
\chi(G) \geq & \chi(G-u)+\frac{d_{G}(v)-s}{\sqrt{d_{G}(v)+2}}+\frac{2 s-d_{G}(v)}{\sqrt{d_{G}(v)+1}}-\frac{s-1}{\sqrt{d_{G}(v)}} \\
\geq & f(n-1, m)+\frac{(n-m+2)-(n-2 m+1)}{\sqrt{(n-m+2)+2}} \\
& +\frac{2(n-2 m+1)-(n-m+2)}{\sqrt{(n-m+2)+1}}-\frac{(n-2 m+1)-1}{\sqrt{n-m+2}} \\
= & f(n, m)
\end{aligned}
$$

with equalities if and only if $G-u=B_{n-1, m}, s=n-2 m+1$ and $d_{G}(v)=n-m+2$, i.e., $G=B_{n, m}$.

Now we consider the sum-connectivity indices of bicyclic graphs with matching number two. Let $B_{n}(a, b)$ be the graph obtained by attaching $a-3$ and $b-3$ pendent vertices to the two vertices of degree three of the unique bicyclic graph on four vertices, respectively, where $a \geq b \geq 3, a+b=n+2$ and $n \geq 4$.

Lemma 3.10. Among the graphs in $\mathcal{B}(n, 2)$ with $n \geq 6, B_{n}(n-1,3)$ and $B_{n}(n-2,4)$ are respectively the unique graphs with the minimum and the second minimum sumconnectivity indices, which are equal to

$$
\frac{1}{\sqrt{n+2}}+\frac{n-4}{\sqrt{n}}+\frac{2}{\sqrt{n+1}}+\frac{2}{\sqrt{5}}
$$

and

$$
\frac{1}{\sqrt{n+2}}+\frac{2}{\sqrt{n}}+\frac{n-5}{\sqrt{n-1}}+\frac{2}{\sqrt{6}}+\frac{1}{\sqrt{5}}
$$

respectively.
Proof. Let $G \in \mathcal{B}(n, 2)$. Then $G$ may be of three types:
(a) $G=B_{n}(a, b)$ with $a \geq b \geq 3$. Suppose that $a \geq b \geq 4$. Let $f(x)=(x-4) x^{-1 / 2}+$ $2(x+1)^{-1 / 2}$ for $x \geq 3$. Then $f^{\prime \prime}(x)=-((1 / 4) x+3) x^{-5 / 2}+(3 / 2)(x+1)^{-5 / 2}<0$, implying that $f(x+1)-f(x)$ is decreasing for $x \geq 3$. It is easily seen that

$$
\begin{aligned}
& \chi\left(B_{n}(a+1, b-1)\right)-\chi\left(B_{n}(a, b)\right) \\
& =\left[\chi\left(B_{n}(a+1, b-1)\right)-\chi\left(B_{n-1}(a, b-1)\right)\right] \\
& \quad-\left[\chi\left(B_{n}(a, b)\right)-\chi\left(B_{n-1}(a, b-1)\right)\right] \\
& =\left(\frac{a-4}{\sqrt{a+2}}-\frac{a-3}{\sqrt{a+1}}+\frac{2}{\sqrt{a+3}}\right)-\left(\frac{b-5}{\sqrt{b+1}}-\frac{b-4}{\sqrt{b}}+\frac{2}{\sqrt{b+2}}\right) \\
& =[f(a+2)-f(a+1)]-[f(b+1)-f(b)]<0,
\end{aligned}
$$

and thus, $\chi\left(B_{n}(a, b)\right)>\chi\left(B_{n}(a+1, b-1)\right)$ for $a \geq b \geq 4$. It follows that $B_{n}(n-1,3)$ and $B_{n}(n-2,4)$ are respectively the unique graphs with the minimum and the second minimum sum-connectivity indices, which are equal to

$$
\frac{1}{\sqrt{n+2}}+\frac{2}{\sqrt{n+1}}+\frac{n-4}{\sqrt{n}}+\frac{2}{\sqrt{5}}
$$

and

$$
\frac{1}{\sqrt{n+2}}+\frac{2}{\sqrt{n}}+\frac{n-5}{\sqrt{n-1}}+\frac{2}{\sqrt{6}}+\frac{1}{\sqrt{5}},
$$

respectively.
(b) $G$ is the graph obtained by attaching $n-4$ pendent vertices to a vertex of degree two of the unique bicyclic graph on four vertices. Then

$$
\begin{aligned}
\chi(G) & =\frac{2}{\sqrt{n+1}}+\frac{n-4}{\sqrt{n-1}}+\frac{1}{\sqrt{6}}+\frac{2}{\sqrt{5}} \\
& >\chi\left(B_{n}(n-2,4)\right)=\frac{1}{\sqrt{n+2}}+\frac{2}{\sqrt{n}}+\frac{n-5}{\sqrt{n-1}}+\frac{2}{\sqrt{6}}+\frac{1}{\sqrt{5}},
\end{aligned}
$$

since

$$
\chi(G)-\chi\left(B_{n}(n-2,4)\right)=[g(n-1)-g(n)]+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{6}}>0,
$$

where

$$
g(x)=\frac{1}{\sqrt{x+2}}+\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}
$$

is decreasing for $x \geq 5$.
(c) $G$ is the graph obtained by attaching some pendent vertices to one or two vertices of degree three of the unique bicyclic graph on five vertices in $\mathbf{B}_{3}^{(2)}(5)$, and by Lemma 3.3 and the arguments in case (a), $\chi(G)>\chi\left(B_{n}(n-2,4)\right)$. Now the result follows easily.

## 4. Minimum sum-connectivity index of bicyclic graphs

In this section, we determine the minimum and the second minimum sum-connectivity indices of bicyclic graphs with $n \geq 5$ vertices.

Theorem 4.1. Among the graphs in $\mathbb{B}(n)$ with $n \geq 5, B_{n}(n-1,3)$ is the unique graph with the minimum sum-connectivity index, which is equal to

$$
\frac{1}{\sqrt{n+2}}+\frac{n-4}{\sqrt{n}}+\frac{2}{\sqrt{n+1}}+\frac{2}{\sqrt{5}}
$$

the graph obtained by attaching a pendent vertex to a vertex of degree two of the unique bicyclic graph on four vertices for $n=5$ is the unique graph with the second minimum sum-connectivity index, which is equal to

$$
\frac{3}{\sqrt{6}}+\frac{2}{\sqrt{5}}+\frac{1}{2}
$$

$B_{n}(n-2,4)$ for $n=6,7$ is the unique graph with the second minimum sumconnectivity index, which is equal to

$$
\frac{1}{\sqrt{n+2}}+\frac{2}{\sqrt{n}}+\frac{n-5}{\sqrt{n-1}}+\frac{2}{\sqrt{6}}+\frac{1}{\sqrt{5}}
$$

and $B_{n, 3}$ for $n \geq 8$ is the unique graph with the second minimum sum-connectivity index, which is equal to

$$
\frac{4}{\sqrt{n+1}}+\frac{n-5}{\sqrt{n}}+1
$$

Proof. There are five graphs in $\mathbb{B}(5)$. Thus, the case $n=5$ may be checked directly. Suppose in the following that $n \geq 6$.

Let $G \in \mathbb{B}(n)$ and $m$ the matching number of $G$, where $2 \leq m \leq\lfloor n / 2\rfloor$. If $m=2$, then by Lemma 3.10, $\chi(G) \geq \chi\left(B_{n}(n-1,3)\right)$ with equality if and only if $G=B_{n}(n-1,3)$. If $m=3$, then by Theorem $3.2, \chi(G) \geq \chi\left(B_{n, 3}\right)$ with equality if and only if $G=B_{n, 3}$. If $m \geq 4$, then by Theorem 3.2 and Lemma 3.3, $\chi(G) \geq$ $\chi\left(B_{n, m}\right)>\chi\left(B_{n, m-1}\right)>\cdots>\chi\left(B_{n, 3}\right)$. Let

$$
f(x)=\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}
$$

for $x \geq 6$. Then

$$
f^{\prime \prime}(x)=\frac{3}{4} x^{-5 / 2}-\frac{3}{4}(x+1)^{-5 / 2}>0
$$

implying that $f(x+1)-f(x)$ is increasing for $x \geq 6$. Note that

$$
\begin{aligned}
& \chi\left(B_{n, 3}\right)-\chi\left(B_{n}(n-1,3)\right) \\
& =\left(\frac{4}{\sqrt{n+1}}+\frac{n-5}{\sqrt{n}}+1\right)-\left(\frac{1}{\sqrt{n+2}}+\frac{n-4}{\sqrt{n}}+\frac{2}{\sqrt{n+1}}+\frac{2}{\sqrt{5}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =f(n+1)-f(n)+1-\frac{2}{\sqrt{5}} \\
& \geq f(7)-f(6)+1-\frac{2}{\sqrt{5}}>0
\end{aligned}
$$

Thus $B_{n}(n-1,3)$ is the unique graph with the minimum sum-connectivity index.
Suppose that $G \neq B_{n}(n-1,3)$. If $m=2$, then by Lemma 3.10, $\chi(G) \geq \chi\left(B_{n}(n-\right.$ $2,4)$ ) with equality if and only if $G=B_{n}(n-2,4)$. By the arguments as above, the second minimum sum-connectivity index of graphs in $\mathbb{B}(n)$ is precisely achieved by the minimum one of $\chi\left(B_{n, 3}\right)$ and $\chi\left(B_{n}(n-2,4)\right)$. If $n=6,7$, then $\chi\left(B_{n, 3}\right)>$ $\chi\left(B_{n}(n-2,4)\right)$. Suppose that $n \geq 8$. Let

$$
g(x)=\frac{1}{\sqrt{x+1}}-\frac{3}{\sqrt{x}}-\frac{x-5}{\sqrt{x-1}}
$$

for $x \geq 8$. Then

$$
g^{\prime \prime}(x)=\frac{3}{4}(x+1)^{-5 / 2}+\left[\left(\frac{1}{4} x+\frac{11}{4}\right)(x-1)^{-5 / 2}-\frac{9}{4} x^{-5 / 2}\right]>0
$$

implying that $g(x)-g(x+1)$ is decreasing for $x \geq 8$. Note that

$$
\begin{aligned}
& \chi\left(B_{n, 3}\right)-\chi\left(B_{n}(n-2,4)\right) \\
& =\left(\frac{4}{\sqrt{n+1}}+\frac{n-5}{\sqrt{n}}+1\right)-\left(\frac{1}{\sqrt{n+2}}+\frac{2}{\sqrt{n}}+\frac{n-5}{\sqrt{n-1}}+\frac{2}{\sqrt{6}}+\frac{1}{\sqrt{5}}\right) \\
& =-\frac{1}{\sqrt{n+2}}+\frac{4}{\sqrt{n+1}}+\frac{n-7}{\sqrt{n}}-\frac{n-5}{\sqrt{n-1}}+1-\frac{2}{\sqrt{6}}-\frac{1}{\sqrt{5}} \\
& =g(n)-g(n+1)+1-\frac{2}{\sqrt{6}}-\frac{1}{\sqrt{5}} \\
& \leq g(8)-g(9)+1-\frac{2}{\sqrt{6}}-\frac{1}{\sqrt{5}}<0
\end{aligned}
$$

and then $\chi\left(B_{n, 3}\right)<\chi\left(B_{n}(n-2,4)\right)$. Thus $B_{n}(n-2,4)$ for $n=6,7$ and $B_{n, 3}$ for $n \geq 8$ are the unique graphs with the second minimum sum-connectivity index among graphs in $\mathbb{B}(n)$.

## 5. Maximum sum-connectivity index of bicyclic graphs

In this section, we determine the maximum and the second maximum sum-connectivity indices of bicyclic graphs with $n \geq 5$ vertices. Let $P_{n}$ be the path on $n$ vertices.
Lemma 5.1. [14] For a connected graph $Q$ with at least two vertices and a vertex $u \in V(Q)$, let $G_{1}$ be the graph obtained from $Q$ by attaching two paths $P_{a}$ and $P_{b}$ to $u, G_{2}$ the graph obtained from $Q$ by attaching a path $P_{a+b}$ to $u$, where $a \geq b \geq 1$. Then $\chi\left(G_{1}\right)<\chi\left(G_{2}\right)$.
Lemma 5.2. Suppose that $M$ is a connected graph with $u \in V(M)$ and $2 \leq d_{M}(u) \leq$ 4. Let $H$ be the graph obtained from $M$ by attaching a path $P_{a}$ to $u$. Denote by $u_{1}$ and $u_{2}$ the two neighbors of $u$ in $M$, and $u^{\prime}$ the pendent vertex of the path attached to $u$ in $H$. Let $H^{\prime}=H-u u_{2}+u^{\prime} u_{2}$.
(i) If $d_{M}(u)=2$ and the maximum degree of $M$ is at most five, then $\chi\left(H^{\prime}\right)>$ $\chi(H)$.
(ii) If $d_{M}(u)=3$, and there are at least two neighbors of $u$ in $M$ with degree two and $d_{M}\left(u_{2}\right)=2$, then $\chi\left(H^{\prime}\right)>\chi(H)$.
(iii) If $d_{M}(u)=4$ and all the neighbors of $u$ in $M$ are of degree two, then $\chi\left(H^{\prime}\right)>$ $\chi(H)$.
Proof. (i) If $a=1$, then

$$
\begin{aligned}
& \chi\left(H^{\prime}\right)-\chi(H) \\
& =\left(\frac{1}{\sqrt{d_{M}\left(u_{1}\right)+2}}+\frac{1}{\sqrt{d_{M}\left(u_{2}\right)+2}}\right)-\left(\frac{1}{\sqrt{d_{M}\left(u_{1}\right)+3}}+\frac{1}{\sqrt{d_{M}\left(u_{2}\right)+3}}\right) \\
& >0
\end{aligned}
$$

If $a \geq 2$, then

$$
\begin{aligned}
& \chi\left(H^{\prime}\right)-\chi(H) \\
& =\left(\frac{1}{\sqrt{d_{M}\left(u_{1}\right)+2}}-\frac{1}{\sqrt{d_{M}\left(u_{1}\right)+3}}\right)+\left(\frac{1}{\sqrt{d_{M}\left(u_{2}\right)+2}}-\frac{1}{\sqrt{d_{M}\left(u_{2}\right)+3}}\right) \\
& \quad+1-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}} \\
& \geq\left(\frac{1}{\sqrt{5+2}}-\frac{1}{\sqrt{5+3}}\right)+\left(\frac{1}{\sqrt{5+2}}-\frac{1}{\sqrt{5+3}}\right)+1-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}>0
\end{aligned}
$$

(ii) There are two neighbors of $u$ with degree two, let $d_{1}$ be the degree of the third neighbor of $u$ in $M$. If $a=1$, then since $\frac{1}{2}+\frac{1}{\sqrt{5}}-\frac{2}{\sqrt{6}}>0$, we have

$$
\begin{aligned}
& \chi\left(H^{\prime}\right)-\chi(H) \\
& =\left(\frac{1}{\sqrt{d_{1}+3}}+\frac{1}{2}+\frac{2}{\sqrt{5}}\right)-\left(\frac{1}{\sqrt{d_{1}+4}}+\frac{2}{\sqrt{6}}+\frac{1}{\sqrt{5}}\right) \\
& =\left(\frac{1}{\sqrt{d_{1}+3}}-\frac{1}{\sqrt{d_{1}+4}}\right)+\frac{1}{2}+\frac{1}{\sqrt{5}}-\frac{2}{\sqrt{6}}>0
\end{aligned}
$$

If $a \geq 2$, then since

$$
1+\frac{2}{\sqrt{5}}-\frac{3}{\sqrt{6}}-\frac{1}{\sqrt{3}}>0
$$

we have

$$
\begin{aligned}
& \chi\left(H^{\prime}\right)-\chi(H) \\
& =\left(\frac{1}{\sqrt{d_{1}+3}}+1+\frac{2}{\sqrt{5}}\right)-\left(\frac{1}{\sqrt{d_{1}+4}}+\frac{3}{\sqrt{6}}+\frac{1}{\sqrt{3}}\right) \\
& =\left(\frac{1}{\sqrt{d_{1}+3}}-\frac{1}{\sqrt{d_{1}+4}}\right)+1+\frac{2}{\sqrt{5}}-\frac{3}{\sqrt{6}}-\frac{1}{\sqrt{3}}>0
\end{aligned}
$$

(iii) If $a=1$, then

$$
\chi\left(H^{\prime}\right)-\chi(H)=\left(\frac{1}{2}+\frac{4}{\sqrt{6}}\right)-\left(\frac{4}{\sqrt{7}}+\frac{1}{\sqrt{6}}\right)>0
$$

If $a \geq 2$, then

$$
\chi\left(H^{\prime}\right)-\chi(H)=\left(1+\frac{4}{\sqrt{6}}\right)-\left(\frac{5}{\sqrt{7}}+\frac{1}{\sqrt{3}}\right)>0 .
$$

The proof is now completed.
Let $\mathbb{B}_{1}(n)$ be the set of connected graphs on $n \geq 6$ vertices with exactly two vertex-disjoint cycles. Let $\mathbb{B}_{2}(n)$ be the set of connected graphs on $n \geq 5$ vertices with exactly two cycles of a common vertex. Let $\mathbb{B}_{3}(n)$ be the set of connected graphs on $n \geq 4$ vertices with exactly two cycles with at least one edge in common. Obviously, $\mathbb{B}(n)=\mathbb{B}_{1}(n) \cup \mathbb{B}_{2}(n) \cup \mathbb{B}_{3}(n)$. For $u, v \in V(G)$, let $d_{G}(u, v)$ be the distance between $u$ and $v$ in $G$.
Lemma 5.3. Among the graphs in $\mathbb{B}_{1}(n)$ with $n \geq 7$, the graphs in $\mathbf{B}_{1}^{(1)}(n)$ and the graphs in $\mathbf{B}_{1}^{(2)}(n)$ are respectively the unique graphs with the maximum and the second maximum sum-connectivity indices, which are equal to

$$
\frac{n-4}{2}+\frac{1}{\sqrt{6}}+\frac{4}{\sqrt{5}}
$$

and

$$
\frac{n-5}{2}+\frac{6}{\sqrt{5}}
$$

respectively.
Proof. Suppose that $G$ is a graph in $\mathbb{B}_{1}(n) \backslash\left\{\mathbf{B}_{1}^{(1)}(n)\right\}$ with the maximum sumconnectivity index, and $C^{(1)}$ and $C^{(2)}$ are its two cycles. Let $x_{1} \in V\left(C^{(1)}\right)$ and $y_{1} \in$ $V\left(C^{(2)}\right)$ be the two vertices such that $d_{G}\left(x_{1}, y_{1}\right)=\min \left\{d_{G}(x, y): x \in V\left(C^{(1)}\right), y \in\right.$ $\left.V\left(C^{(2)}\right)\right\}$. Let $Q$ be the path joining $x_{1}$ and $y_{1}$. By Lemma 5.1, the vertices outside $C^{(1)}, C^{(2)}$ and $Q$ are of degree one or two, the vertices on $C^{(1)}, C^{(2)}$ and $Q$ different from $x_{1}$ and $y_{1}$ are of degree two or three, and $d_{G}\left(x_{1}\right), d_{G}\left(y_{1}\right)=3$ or 4 .

Suppose that $d_{G}\left(x_{1}, y_{1}\right) \geq 2$. If there is some vertex, say $x$, on $C^{(1)}, C^{(2)}$ or $Q$ different from $x_{1}$ and $y_{1}$ with degree three, then making use of Lemma 5.2(i) to $H=G$ by setting $u=x$, we may get a graph in $\mathbb{B}_{1}(n) \backslash\left\{\mathbf{B}_{1}^{(1)}(n)\right\}$ with larger sumconnectivity index, a contradiction. Thus the vertices on $C^{(1)}, C^{(2)}$ and $Q$ different from $x_{1}$ and $y_{1}$ are of degree two. If $d_{G}\left(x_{1}\right)=4$, then making use of Lemma 5.2 (ii) to $H=G$ by setting $u=x_{1}$, we may get a graph in $\mathbb{B}_{1}(n) \backslash\left\{\mathbf{B}_{1}^{(1)}(n)\right\}$ with larger sum-connectivity index, a contradiction. Thus $d_{G}\left(x_{1}\right)=3$. Similarly, we have $d_{G}\left(y_{1}\right)=3$. It follows that $G \in \mathbf{B}_{1}^{(2)}(n)$.

Suppose that $d_{G}\left(x_{1}, y_{1}\right)=1$. Suppose that one of $x_{1}$ and $y_{1}$, say $x_{1}$, is of degree four. Then by Lemma 5.2(i), the vertices on $C^{(1)}$ and $C^{(2)}$ different from $x_{1}$ and $y_{1}$ are of degree two. If $d_{G}\left(y_{1}\right)=4$, then making use of Lemma 5.2 (ii) to $H=G$ by setting $u=y_{1}$, we may get a graph in $\mathbb{B}_{1}(n) \backslash\left\{\mathbf{B}_{1}^{(1)}(n)\right\}$ with larger sum-connectivity index, a contradiction. Thus $d_{G}\left(y_{1}\right)=3$. Denote by $x_{2}$ the pendent vertex of the path attached to $x_{1}$. Consider $G_{1}=G-x_{1} y_{1}+x_{2} y_{1} \in \mathbf{B}_{1}^{(2)}(n)$. If $d_{G}\left(x_{1}, x_{2}\right)=1$, then

$$
\chi\left(G_{1}\right)-\chi(G)=\frac{4}{\sqrt{5}}-\left(\frac{1}{\sqrt{7}}+\frac{2}{\sqrt{6}}+\frac{1}{\sqrt{5}}\right)>0 .
$$

If $d_{G}\left(x_{1}, x_{2}\right) \geq 2$, then

$$
\chi\left(G_{1}\right)-\chi(G)=\left(\frac{1}{2}+\frac{4}{\sqrt{5}}\right)-\left(\frac{1}{\sqrt{7}}+\frac{3}{\sqrt{6}}+\frac{1}{\sqrt{3}}\right)>0
$$

In either case, $\chi\left(G_{1}\right)>\chi(G)$ with $G_{1} \in \mathbf{B}_{1}^{(2)}(n)$, a contradiction. Thus $d_{G}\left(x_{1}\right)=$ $d_{G}\left(y_{1}\right)=3$. Note that $G \notin \mathbf{B}_{1}^{(1)}(n)$ and by Lemma $5.2(\mathrm{i})$, there is exactly one vertex, say $x_{3} \in V\left(C^{(1)}\right)$, on $C^{(1)}$ and $C^{(2)}$ different from $x_{1}$ and $y_{1}$ with degree three. Denote by $x_{4}$ the pendent vertex of the path attached to $x_{3}$. Consider $G_{2}=G-x_{1} y_{1}+x_{4} y_{1} \in \mathbf{B}_{1}^{(2)}(n)$. Let $d_{1}$ be the degree of the neighbor of $x_{4}$, one neighbor of $x_{1}$ on $C^{(1)}$ is of degree two, and we denote by $d_{2}$ the degree of the other neighbor of $x_{1}$ on $C^{(1)}$, where $d_{1}, d_{2}=2$ or 3 . We have

$$
\begin{aligned}
& \chi\left(G_{2}\right)-\chi(G) \\
& =\left(\frac{1}{\sqrt{d_{1}+2}}-\frac{1}{\sqrt{d_{1}+1}}\right)+\left(\frac{1}{\sqrt{d_{2}+2}}-\frac{1}{\sqrt{d_{2}+3}}\right)+\frac{1}{2}-\frac{1}{\sqrt{6}} \\
& \geq\left(\frac{1}{\sqrt{2+2}}-\frac{1}{\sqrt{2+1}}\right)+\left(\frac{1}{\sqrt{3+2}}-\frac{1}{\sqrt{3+3}}\right)+\frac{1}{2}-\frac{1}{\sqrt{6}}>0
\end{aligned}
$$

and thus, $\chi\left(G_{2}\right)>\chi(G)$ with $G_{2} \in \mathbf{B}_{1}^{(2)}(n)$, which is also a contradiction.
Now we have shown that the graphs in $\mathbf{B}_{1}^{(2)}(n)$ are the unique graphs in $\mathbb{B}_{1}(n) \backslash$ $\left\{\mathbf{B}_{1}^{(1)}(n)\right\}$ with the maximum sum-connectivity index. Note that for $H_{1} \in \mathbf{B}_{1}^{(1)}(n)$ and $H_{2} \in \mathbf{B}_{1}^{(2)}(n)$,

$$
\chi\left(H_{1}\right)=\frac{n-4}{2}+\frac{1}{\sqrt{6}}+\frac{4}{\sqrt{5}}>\chi\left(H_{2}\right)=\frac{n-5}{2}+\frac{6}{\sqrt{5}}
$$

The result follows.
Lemma 5.4. Among the graphs in $\mathbb{B}_{3}(n)$ with $n \geq 5$, the graphs in $\mathbf{B}_{3}^{(1)}(n)$ and the graphs in $\mathbf{B}_{3}^{(2)}(n)$ are respectively the unique graphs with the maximum and the second maximum sum-connectivity indices, which are equal to

$$
\frac{n-4}{2}+\frac{1}{\sqrt{6}}+\frac{4}{\sqrt{5}}
$$

and

$$
\frac{n-5}{2}+\frac{6}{\sqrt{5}}
$$

respectively.
Proof. Suppose that $G$ is a graph in $\mathbb{B}_{3}(n) \backslash\left\{\mathbf{B}_{3}^{(1)}(n)\right\}$ with the maximum sumconnectivity index. Then $G$ has exactly three cycles, let $C^{(1)}$ and $C^{(2)}$ be its two cycles such that the remaining one is of the maximum length. Let $A$ be the set of the common vertices of $C^{(1)}$ and $C^{(2)}$. Let $v_{1}$ and $v_{2}$ be the two vertices in $A$ such that $d_{G}\left(v_{1}, v_{2}\right)=\max \left\{d_{G}(x, y): x, y \in A\right\}$. By Lemma 5.1, the vertices outside $C^{(1)}$ and $C^{(2)}$ are of degree one or two, the vertices on $C^{(1)}$ and $C^{(2)}$ different from $v_{1}$ and $v_{2}$ are of degree two or three, and $d_{G}\left(v_{1}\right), d_{G}\left(v_{2}\right)=3$ or 4 . Denote by $v_{1}^{\prime}\left(v_{2}^{\prime}\right.$, respectively) the neighbor of $v_{1}$ on $C^{(1)}\left(v_{2}\right.$ on $C^{(2)}$, respectively) different from the vertices in $A$.

If $d_{G}\left(v_{1}, v_{2}\right) \geq 2$, then by Lemma $5.2(\mathrm{i})(\mathrm{ii})$, we have $G \in \mathbf{B}_{3}^{(2)}(n)$.
Suppose that $d_{G}\left(v_{1}, v_{2}\right)=1$. Suppose that the lengths of $C^{(1)}$ and $C^{(2)}$ are at least four. Consider $G_{1}=G-\left\{v_{1} v_{1}^{\prime}, v_{2} v_{2}^{\prime}\right\}+\left\{v_{1}^{\prime} v_{2}, v_{1} v_{2}^{\prime}\right\} \in \mathbb{B}_{1}(n) \backslash\left\{\mathbf{B}_{1}^{(1)}(n), \mathbf{B}_{1}^{(2)}(n)\right\}$. Note that

$$
\begin{aligned}
\chi\left(G_{1}\right)-\chi(G)= & \left(\frac{1}{\sqrt{d_{G}\left(v_{1}^{\prime}\right)+d_{G}\left(v_{2}\right)}}+\frac{1}{\sqrt{d_{G}\left(v_{1}\right)+d_{G}\left(v_{2}^{\prime}\right)}}\right) \\
& -\left(\frac{1}{\sqrt{d_{G}\left(v_{1}\right)+d_{G}\left(v_{1}^{\prime}\right)}}+\frac{1}{\sqrt{d_{G}\left(v_{2}\right)+d_{G}\left(v_{2}^{\prime}\right)}}\right) .
\end{aligned}
$$

If $d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)$, then $\chi\left(G_{1}\right)=\chi(G)$. If $d_{G}\left(v_{1}\right) \neq d_{G}\left(v_{2}\right)$, then by Lemma 5.2 (i), we have $d_{G}\left(v_{1}^{\prime}\right)=d_{G}\left(v_{2}^{\prime}\right)=2$, and thus $\chi\left(G_{1}\right)=\chi(G)$. In either case, we have $\chi\left(G_{1}\right)=\chi(G)$. By Lemma 5.3, we have $\chi(G)=\chi\left(G_{1}\right)<\chi(H)=(n-5) / 2+6 / \sqrt{5}$ for $H \in \mathbf{B}_{1}^{(2)}(n)$.

Suppose that at least one of $C^{(1)}$ and $C^{(2)}$, say $C^{(1)}$, is of length three. Since $G \notin \mathbf{B}_{3}^{(1)}(n)$, there are some vertices outside $C^{(1)}$ and $C^{(2)}$. By Lemma 5.2(i)(ii), the subgraph induced by the vertices outside $C^{(1)}$ and $C^{(2)}$ is a path, say $P_{k}$, which is attached to $x \in V\left(C^{(1)}\right) \cup V\left(C^{(2)}\right)$. Suppose that $x \neq v_{1}^{\prime}$. Denote by $v_{3}$ the neighbor of $x$ outside $C^{(1)}$ and $C^{(2)}$. Consider $G_{2}=G-x v_{3}+v_{1}^{\prime} v_{3} \in \mathbb{B}_{3}(n) \backslash\left\{\mathbf{B}_{3}^{(1)}(n)\right\}$. If $x=v_{1}$ or $v_{2}$, then

$$
\chi\left(G_{2}\right)-\chi(G)=\left(\frac{1}{\sqrt{d_{G}\left(v_{3}\right)+3}}-\frac{1}{\sqrt{d_{G}\left(v_{3}\right)+4}}\right)+\left(\frac{1}{\sqrt{6}}-\frac{1}{\sqrt{7}}\right)>0
$$

and thus $\chi\left(G_{2}\right)>\chi(G)$, a contradiction. Hence $x \in V\left(C^{(2)}\right) \backslash\left\{v_{1}, v_{2}\right\}$, and the length of $C^{(2)}$ is at least four. Note that one neighbor of $x$ on $C^{(2)}$ is of degree two. Denote by $d_{1}$ the degree of the other neighbor of $x$ on $C^{(2)}$, where $d_{1}=2$ or 3 . Then

$$
\begin{aligned}
\chi\left(G_{2}\right)-\chi(G) & =\left(\frac{1}{\sqrt{d_{1}+2}}-\frac{1}{\sqrt{d_{1}+3}}\right)+\frac{1}{2}+\frac{2}{\sqrt{6}}-\frac{3}{\sqrt{5}} \\
& \geq\left(\frac{1}{\sqrt{3+2}}-\frac{1}{\sqrt{3+3}}\right)+\frac{1}{2}+\frac{2}{\sqrt{6}}-\frac{3}{\sqrt{5}}>0
\end{aligned}
$$

and thus $\chi\left(G_{2}\right)>\chi(G)$, which is also a contradiction. Thus, $x=v_{1}^{\prime}$. If $k=1$, then

$$
\chi(G)=\frac{n-5}{2}+\frac{3}{\sqrt{6}}+\frac{2}{\sqrt{5}}+\frac{1}{2},
$$

and if $k \geq 2$, then

$$
\chi(G)=\frac{n-6}{2}+\frac{3}{\sqrt{6}}+\frac{3}{\sqrt{5}}+\frac{1}{\sqrt{3}} .
$$

In either case, we have

$$
\chi(G)<\frac{n-5}{2}+\frac{6}{\sqrt{5}} .
$$

Now we have shown that the graphs in $\mathbf{B}_{3}^{(2)}(n)$ are the unique graphs in $\mathbb{B}_{3}(n) \backslash$ $\left\{\mathbf{B}_{3}^{(1)}(n)\right\}$ with the maximum sum-connectivity index. Note that for $H_{1} \in \mathbf{B}_{3}^{(1)}(n)$
and $H_{2} \in \mathbf{B}_{3}^{(2)}(n)$,

$$
\chi\left(H_{1}\right)=\frac{n-4}{2}+\frac{1}{\sqrt{6}}+\frac{4}{\sqrt{5}}>\chi\left(H_{2}\right)=\frac{n-5}{2}+\frac{6}{\sqrt{5}} .
$$

The result follows.
Theorem 5.1. Among the graphs in $\mathbb{B}(n)$ with $n \geq 5$, the graph in $\mathbf{B}_{3}^{(1)}(5)$ and the graph in $\mathbf{B}_{3}^{(2)}(5)$ for $n=5$ are respectively the unique graphs with the maximum and the second maximum sum-connectivity indices, the graphs in $\mathbf{B}_{1}^{(1)}(6) \cup \mathbf{B}_{3}^{(1)}(6)$ and the graph in $\mathbf{B}_{3}^{(2)}(6)$ for $n=6$ are respectively the unique graphs with the maximum and the second maximum sum-connectivity indices, the graphs in $\mathbf{B}_{1}^{(1)}(n) \cup \mathbf{B}_{3}^{(1)}(n)$ and the graphs in $\mathbf{B}_{1}^{(2)}(n) \cup \mathbf{B}_{3}^{(2)}(n)$ for $n \geq 7$ are respectively the unique graphs with the maximum and the second maximum sum-connectivity indices, where

$$
\chi(G)=\frac{n-4}{2}+\frac{1}{\sqrt{6}}+\frac{4}{\sqrt{5}}
$$

for $G \in \mathbf{B}_{1}^{(1)}(n) \cup \mathbf{B}_{3}^{(1)}(n)$ and

$$
\chi(H)=\frac{n-5}{2}+\frac{6}{\sqrt{5}}
$$

for $H \in \mathbf{B}_{1}^{(2)}(n) \cup \mathbf{B}_{3}^{(2)}(n)$.
Proof. Suppose that $G$ is a graph in $\mathbb{B}_{2}(n)$ with the maximum sum-connectivity index, and $C^{(1)}$ and $C^{(2)}$ are its two cycles. Let $u$ be the unique common vertex of $C^{(1)}$ and $C^{(2)}$. By Lemma 5.1, the vertices outside $C^{(1)}$ and $C^{(2)}$ are of degree one or two, the vertices on $C^{(1)}$ and $C^{(2)}$ different from $u$ are of degree two or three, and $d_{G}(u)=4$ or 5 . Moreover, by Lemma 5.2(i), the vertices on $C^{(1)}$ and $C^{(2)}$ different from $u$ are of degree two. If $d_{G}(u)=5$, then making use of Lemma 5.2(iii) to $H=G$, we may get a graph in $\mathbb{B}_{2}(n)$ with larger sum-connectivity index, a contradiction. Thus $d_{G}(u)=4$, i.e., $G \in \mathbf{B}_{2}(n)$.

Note that for $H_{1} \in \mathbf{B}_{1}^{(1)}(n), H_{1}^{\prime} \in \mathbf{B}_{1}^{(2)}(n), H_{2} \in \mathbf{B}_{2}(n), H_{3} \in \mathbf{B}_{3}^{(1)}(n)$ and $H_{3}^{\prime} \in \mathbf{B}_{3}^{(2)}(n)$,

$$
\begin{aligned}
\chi\left(H_{1}\right) & =\chi\left(H_{3}\right)=\frac{n-4}{2}+\frac{1}{\sqrt{6}}+\frac{4}{\sqrt{5}} \\
>\chi\left(H_{1}^{\prime}\right) & =\chi\left(H_{3}^{\prime}\right)=\frac{n-5}{2}+\frac{6}{\sqrt{5}} \\
>\chi\left(H_{2}\right) & =\frac{n-3}{2}+\frac{4}{\sqrt{6}} .
\end{aligned}
$$

Then the result follows from Lemmas 5.3 and 5.4.

Acknowledgement. This work was supported by the Guangdong Provincial Natural Science Foundation of China (Grant No. S2011010005539).

## References

[1] B. Bollobás and P. Erdős, Graphs of extremal weights, Ars Combin. 50 (1998), 225-233.
[2] G. Caporossi, I. Gutman, P. Hansen and L. Pavlović, Graphs with maximum connectivity index, Comput. Biol. Chem. 27 (2003), no. 1, 85-90.
[3] J. Devillers and A.T. Balaban (Editors), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach, Amsterdam, 1999.
[4] Z. Du, B. Zhou and N. Trinajstić, Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number, J. Math. Chem. 47 (2010), no. 2, 842-855.
[5] I. Gutman and B. Furtula (Editors), Recent Results in the Theory of Randic Index, Math. Chem. Monogr. 6, Univ. Kragujevac, Kragujevac, 2008.
[6] L. B. Kier and L. H. Hall, Molecular Connectivity in Structure-Activity Analysis, Research Studies Press/Wiley, Letchworth/New York, 1986.
[7] X. Li and I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors, Math. Chem. Monogr. 1, Univ. Kragujevac, Kragujevac, 2006.
[8] B. Lučić, N. Trinajstić and B. Zhou, Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons, Chem. Phys. Lett. 475 (2009), no. 1-3, 146-148.
[9] B. Lučić, S. Nikolić, N. Trinajstić, B. Zhou and S. Ivaniš Turk, Sum-connectivity index, in Novel Molecular Structure Descriptors - Theory and Applications I, 101-136, Math. Chem. Monogr. 8, Univ. Kragujevac, Kragujevac, 2010.
[10] L. Pogliani, From molecular connectivity indices to semiempirical connectivity terms: Recent trends in graph theoretical descriptors, Chem. Rev. 100 (2000), no. 10, 3827-3858.
[11] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975), no. 12, 6609-6615.
[12] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
[13] J. Wang, Y. Zhu and G. Liu, On the Randić index of bicyclic graphs, in Recent Results in the Theory of Randić Index, 119-132, Math. Chem. Monogr. 6, Univ. Kragujevac, Kragujevac, 2008.
[14] B. Zhou and N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009), no. 4, 1252-1270.
[15] Y. Zhu, G. Liu and J. Wang, On the Randić index of bicyclic conjugated molecules, in Recent Results in the Theory of Randić Index, 133-144, Math. Chem. Monogr. 6, Univ. Kragujevac, Kragujevac, 2008.


[^0]:    Communicated by Xueliang Li.
    Received: December 7, 2009; Revised: February 18, 2010.

