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1. Introduction

Let E be a real Hausdorff topological vector space, X a nonempty subset of E, and
ϕ : X ×X → R a bifunction such that ϕ(x, x) ≥ 0 for all x ∈ X. Then the scalar
equilibrium problem consists in finding x̄ ∈ X such that

ϕ(x̄, y) ≥ 0, ∀y ∈ X.
It provides a unifying framework for many important problems, such as, optimiza-
tion problems, variational inequality problems, complementary problems, minimax
inequality problems and fixed point problems, and has been widely applied to study
the problems arising in economics, mechanics and engineering science (see Blum and
Oettli [6]).

Let Z be a real Hausdorff topological vector space, C ⊆ Z a closed convex pointed
cone. Let f : X×X → Z be a mapping. It is well known that the vector equilibrium
problem includes three basic types. The first type is the weak vector equilibrium
problem (for short, WVEP), which consists in finding x̄ ∈ X such that

(1.1) (WVEP) f(x̄, y) 6∈ −int C, ∀ y ∈ X,
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where int C denotes the topological interior of C. The second type is the Stampac-
chia vector equilibrium problem (for short, VEP), which consists in finding x̄ ∈ X
such that

(1.2) (VEP) f(x̄, y) 6∈ −C\{0}, ∀ y ∈ X.
And the third type is the strong vector equilibrium problem (for short, SVEP),
which consists in finding x̄ ∈ X such that

(1.3) (SVEP) f(x̄, y) ∈ C, ∀ y ∈ X.
Each of the above three types of vector equilibrium problems constitutes a valid

extension of the scalar equilibrium problem. If int C 6= ∅ and x̄ satisfies (1.1), then
we call x̄ a weak efficient solution for the vector equilibrium problem, and denote
by VW (f,X) the set of all weak efficient solutions. If x̄ satisfies (1.2), then we call
x̄ an efficient solution for the vector equilibrium problem, and denote by V (f,X)
the set of all efficient solutions. If x̄ satisfies (1.3), then we call x̄ a strong efficient
solution for the vector equilibrium problem, and denote by VS(f,X) the set of all
strong efficient solutions.

Up to now, many authors have studied the vector equilibrium problems (see,
for example [2–6, 8–10, 12–23, 26–30, 32–34]), focusing mainly on the study of the
existence of weak efficient solution. However, if int C = ∅, then the weak vector
equilibrium problem can not be studied. It is well known that, in many cases, the
ordering cone has an empty interior. For example, in the classical Banach spaces
`p and Lp(Ω), where 1 < p < ∞, the standard ordering cone has an empty interior
(see [24]). In this case, we can study the existence of the efficient solution and
the strong efficient solution, and the properties of these solution sets. Giannessi et
al. [16] studied the properties of the efficient solution set for the vector equilibrium
problem.

When int C = ∅, in order to study the vector equilibrium problem, Gong [17,18]
introduced the concepts of proper efficient solutions, such as Henig efficient solution
and super efficient solution. In addition, Gong [17,18] gave the scalarization results
for the proper efficient solutions and studied the existence and the properties of the
sets of proper efficient solutions.

Recently, Fu [13], Fu and Wang [14], Fu et al. [15], Lin et al. [27] and Wang
et al. [34] studied the efficient solution for the vector equilibrium problem. Ansari
et al. [2], Fu [12] and Tan [33] studied the strong efficient solution for the vector
equilibrium problem. It is worth mentioning that many existence results of the
efficient solution and the strong efficient solution for the vector equilibrium problem
are obtained under the assumption that the dual C∗ of the ordering cone C has
a weak∗ compact base. As we know, for a normed space, the dual cone C∗ has a
weak∗ compact base if and only if int C 6= ∅ (see [25]). However, in many cases,
the ordering cone has an empty interior. Thus, there is a need for the study of the
existence of solutions and the properties of the solution sets for this case.

On the other hand, it is well known that a strong efficient solution for vector
equilibrium problem is an ideal solution, which is better than other solutions such as
efficient solution, weak efficient solution, Henig efficient solution and supper efficient
solution (see, for example, [19]). Thus, it is very important to study the existence of
strong efficient solution and the properties of the strong efficient solution set without
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assuming that the dual of the ordering cone has a weak∗ compact base. In this case,
the result, as our best knowledge, is very few.

Very recently, without assuming that the dual of the ordering cone has a weak∗

compact base, Gong [19] established an existence theorem of strong efficient solu-
tion for a strong vector equilibrium problem by using the separation theorem for
convex set and discussed the closeness of the strong efficient solution set; Gong [20]
derived an existence theorem of strong efficient solution for a symmetric strong vec-
tor quasiequilibrium problem by using Kakutani-Fan-Glicksberg fixed point theorem;
Hou, Gong and Yang [21] derived an existence theorem of strong efficient solution for
a generalized strong vector equilibrium problem by using Kakutani-Fan-Glicksberg
fixed point theorem and discussed the stability of strong efficient solutions; Long,
Huang and Teo [30] extended the main result of [21] from single-valued mapping to
set-valued mapping, and showed the closeness of the strong efficient solution set. It
should be mentioned that most of the existence results of strong efficient solution
are obtained on compact sets in locally convex spaces.

Motivated and inspired by the research works mentioned above, in this paper, we
further consider the strong efficient solution for the vector equilibrium problem. Let
F : X × X → 2Z be a set-valued mapping. We consider the following set-valued
version of strong vector equilibrium problem (for short, MSVEP): find x̄ ∈ X such
that

(1.4) (MSVEP) F (x̄, y) ⊆ C, ∀ y ∈ X.

We denote by VMS (F,X) the set of all strong efficient solutions for (MSVEP). The
main purpose of this paper is to discuss the existence of strong efficient solutions and
study the properties of the strong efficient solution sets for (SVEP) and (MSVEP)
without assuming that the dual cone C∗ of the ordering cone C has a weak∗ compact
base. On noncompact sets of general real Hausdorff topological vector spaces (not
necessarily locally convex), we obtain some existence theorems of strong efficient so-
lutions for (SVEP) and (MSVEP) by using the famous Brouwer fixed point theorem.
Moreover, we study the closeness and the convexity of the strong efficient solution
sets for (SVEP) and (MSVEP).

2. Preliminaries

In this section, we shall recall some definitions and lemmas used in the sequel.

Definition 2.1. [1] Let X and Y be two topological spaces. A set-valued mapping
T : X → 2Y is said to be

(i) upper semicontinuous (for short, u.s.c.) at x ∈ X if, for each open set V
in Y with T (x) ⊆ V , there exists an open neighborhood U(x) of x such that
T (x′) ⊆ V for all x′ ∈ U(x);

(ii) lower semicontinuous (for short, l.s.c.) at x ∈ X if, for each open set V in
Y with T (x)∩V 6= ∅, there exists an open neighborhood U(x) of x such that
T (x′) ∩ V 6= ∅ for all x′ ∈ U(x);

(iii) u.s.c. (resp. l.s.c.) on X if it is u.s.c. (resp. l.s.c.) at every point x ∈ X;
(iv) continuous on X if it is both u.s.c. and l.s.c. on X.
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Lemma 2.1. [1] Let X and Y be two topological spaces, F : X → 2Y a set-valued
mapping. F is l.s.c. at x ∈ X if and only if for any y ∈ F (x) and any net {xα} ⊆ X
with xα → x, there exists a net {yα} such that yα ∈ F (xα) for all α and yα → y.

Definition 2.2. [31] Let E and Z be two real Hausdorff topological vector spaces,
X ⊆ E a nonempty subset and C ⊆ Z a closed convex pointed cone. Let F : X → 2Z

be a set-valued mapping. F is said to be
(i) upper [resp. lower] C-continuous at x ∈ X if, for any neighborhood V of the

origin in Z, there exists a neighborhood U of x such that, for all x′ ∈ U ∩X,
F (x′) ⊆ F (x) + V + C [resp. F (x) ⊆ F (x′) + V − C]; F is said to be upper
[resp. lower ] C-continuous on X if F is upper [resp. lower] C-continuous
at every point x ∈ X;

(ii) C-continuous on X if F is both upper C-continuous and lower C-continuous
on X.

Lemma 2.2. Let E and Z be two real Hausdorff topological vector spaces, X ⊆ E
a nonempty subset and C ⊆ Z a closed convex pointed cone. Let F : X → 2Z be a
set-valued mapping.

(i) If F is u.s.c., then F is upper C-continuous;
(ii) If F is single-valued, then F is upper C-continuous⇔ F is lower C-continuous
⇔ F is C-continuous.

Proof. (a) the assertion (i) holds obviously since 0 ∈ C;
(b) Suppose that F is single-valued and upper C-continuous at x0 ∈ X, then for
each neighborhood V of the origin in Z, there exists a neighborhood U of x0 such
that

F (x) ∈ F (x0) + V + C, ∀x ∈ U ∩X.
Thus, for each x ∈ U ∩X, there exists some c ∈ C such that

F (x)− F (x0)− c ∈ V.
Since Z is a real Hausdorff topological vector space, there exists a balanced neigh-
borhood V0 ⊆ V of the origin in Z such that F (x)−F (x0)− c ∈ V0. Notice that V0

is balanced, i.e., V0 = −V0. It follows that

F (x0) ∈ F (x)− c− V0 = F (x)− c+ V0

⊆ F (x) + V0 − C
⊆ F (x) + V − C.

By the arbitrary of x, we know that F is lower C-continuous at x0, and so F is
C-continuous at x0.

Similarly, we can show that if F is single-valued and lower C-continuous at x0 ∈
X, then F is upper C-continuous at x0 ∈ X, and thus F is C-continuous at x0.

Definition 2.3. Let E and Z be two real topological vector spaces, X ⊆ E a
nonempty convex subset and C ⊆ Z a closed convex pointed cone. Let F : X → 2Z

be a set-valued mapping. F is said be
(i) C-convex if, for any x, y ∈ X and t ∈ [0, 1], one has

F (tx+ (1− t)y) ⊆ tF (x) + (1− t)F (y)− C;
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F is said to be C-concave if −F is C-convex;
(ii) affine if, for any x, y ∈ X (X is a vector subspace of E) and t ∈ R, one has

F (tx+ (1− t)y) = tF (x) + (1− t)F (y).

Definition 2.4. Let E and Z be two real topological vector spaces, X ⊆ E a
nonempty convex subset and C ⊆ Z a closed convex pointed cone. Let F : X×X →
2Z be a set-valued mapping. F is said be

(i) C-diagonally convex if, for any finite subset {x1, x2, · · · , xn} ⊆ X and any
ti ≥ 0, i = 1, 2, · · · , n with

∑n
i=1 ti = 1, x =

∑n
i=1 tixi, one has

F (x, x) ⊆
n∑
i=1

tiF (x, xi)− C;

(ii) properly C-diagonally quasiconvex if, for any finite subset {x1, x2, · · · , xn} ⊆
X and any ti ≥ 0, i = 1, 2, · · · , n with

∑n
i=1 ti = 1, x =

∑n
i=1 tixi, there

exists some i0 ∈ {1, 2, · · · , n} such that

F (x, xi0) ⊆ F (x, x) + C.

Remark 2.1. The above concepts of C-diagonally convexity and properly C-diagonally
quasiconvex generalize the concepts of convexity and properly quasiconvexity of
[11,12], respectively.

The following example shows that there is no implication between C-diagonally
convexity and properly C-diagonally quasiconvexity.

Example 2.1. Let E = Z = R, X = [0, 1] and C = R+ = [0,+∞). Let

f(x, y) = [min{x, y} −max{x, y}, 1], g(x, y) = [0,min{x, y}], ∀x, y ∈ X.

Then f, g : X × X → 2R. For any finite subset {x1, x2, · · · , xn} ⊆ X and any
ti ≥ 0, i = 1, 2, · · · , n with

∑n
i=1 ti = 1, x =

∑n
i=1 tixi, there exists some i0 ∈

{1, 2, · · · , n} such that xi0 ≤ x. Notice that 0 ∈ C. Thus, we have

g(x, xi0) = [0, xi0 ] ⊆ [0, x] = g(x, x) ⊆ g(x, x) + C;

f(x, xi) ⊇ [0, 1], ∀ i = 1, 2, · · · , n.

It follows that

f(x, x) = [0, 1]

= [0, t1 + t2 + · · ·+ tn]

= [0, t1] + [0, t2] + · · ·+ [0, tn]

= t1[0, 1] + t2[0, 1] + · · ·+ tn[0, 1]

=
n∑
i=1

ti[0, 1] ⊆
n∑
i=1

tif(x, xi)

⊆
n∑
i=1

tif(x, xi)− C.

Hence, f is C-diagonally convex and g is properly C-diagonally quasiconvex.
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On the other hand, we choose

x1 = 0, x2 = 1, t1 = t2 =
1
2
, x0 = t1x1 + t2x2 =

1
2
.

Then

f(x0, x0) = f

(
1
2
,

1
2

)
= [0, 1],

f(x0, x1) = f

(
1
2
, 0
)

=
[
−1

2
, 1
]
,

f(x0, x2) = f

(
1
2
, 1
)

=
[
−1

2
, 1
]

and

g(x0, x0) = g

(
1
2
,

1
2

)
=
[
0,

1
2

]
,

g(x0, x1) = g

(
1
2
, 0
)

= {0},

g(x0, x2) = g

(
1
2
, 1
)

=
[
0,

1
2

]
.

It follows that
f(x0, x0) + C = [0, 1] + [0,+∞) = [0,+∞)

and
2∑
i=1

tig(x0, xi)− C =
1
2
{0}+

1
2

[
0,

1
2

]
− [0,+∞) =

[
0,

1
4

]
+ (−∞, 0] =

(
−∞, 1

4

]
.

Hence,
f(x0, xi) 6⊆ f(x0, x0) + C, ∀ i = 1, 2

and

g(x0, x0) =
[
0,

1
2

]
6⊆
(
−∞, 1

4

]
=

2∑
i=1

tig(x0, xi)− C.

Therefore, f is not properly C-diagonally quasiconvex and g is not C-diagonally
convex.

Lemma 2.3. [7, Brouwer Fixed Point Theorem] Let X be a nonempty, compact and
convex subset of a finite dimensional space E and f : X → X be a mapping. If f is
continuous, then there exists x̄ ∈ X such that f(x̄) = x̄.

3. Main results

In this section, we shall apply the famous Brouwer fixed point theorem to establish
some existence results of strong efficient solutions and discuss the closeness and the
convexity of the strong efficient solution sets for strong vector equilibrium problems.

Theorem 3.1. Let E and Z be two real Hausdorff topological vector spaces, X ⊆ E
a nonempty closed convex subset and C ⊆ Z a closed convex pointed cone. Let
F : X ×X → 2Z be a set-valued mapping. Suppose that
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(i) for any x ∈ X, F (x, x) ⊆ C;
(ii) for any x ∈ X, the set {y ∈ X : F (x, y) 6⊆ C} is empty or convex;
(iii) for any y ∈ X, the set {x ∈ X : F (x, y) ⊆ C} is closed;
(iv) there exists a nonempty compact convex subset D ⊆ X such that, for each

x ∈ X\D, there exists some y0 ∈ D such that F (x, y0) 6⊆ C.
Then VMS (F,X) 6= ∅. Moreover, VMS (F,X) is closed. Further, if the following
condition also holds:

(v) for any y ∈ X, the set {x ∈ X : F (x, y) ⊆ C} is empty or convex,
then VMS (F,X) is convex.

Proof. Define a set-valued mapping G : X → 2D by

G(y) = {x ∈ D : F (x, y) ⊆ C}, ∀ y ∈ X.

Then, to prove that VMS (F,X) 6= ∅ is equivalent to prove that

(3.1)
⋂
y∈X

G(y) 6= ∅.

Notice that
G(y) = D ∩ {x ∈ X : F (x, y) ⊆ C}.

By assumption (iii), it is easy to see that for every y ∈ X, G(y) is closed in D.
Noting that D is compact, thus, in order to show (3.1), we need only to show that
the family of sets {G(y) : y ∈ X} has the finite intersection property.

For any finite subset {y1, y2, · · · , yn} ⊆ X, let B = co(D∪{y1, y2, · · · , yn}). Then
B is a compact and convex subset of X. Now, we consider the following set-valued
mapping H : B → 2B defined by

H(y) = {x ∈ B : F (x, y) ⊆ C}, ∀ y ∈ B.

Firstly, we want to show that ∩y∈BH(y) 6= ∅. Suppose that it is not the case,
then, for each x ∈ B, there exists some y ∈ B such that x 6∈ H(y), i.e.,

(3.2) F (x, y) 6⊆ C.

For every y ∈ B, define the set Ny as follows:

(3.3) Ny = {x ∈ B : F (x, y) 6⊆ C}.

By assumption (iii), the set Ny is open in B and hence from (3.2), it follows that
the family of sets {Ny : y ∈ B} is an open cover of B. Since B is compact, there
exists a finite subset {u1, u2, · · · , um} ⊆ B such that B = ∪mi=1Nui

. It follows
that there exists a continuous partition of unity {β1, β2, · · · , βm} subordinate to the
open cover {Nu1 , Nu2 , · · · , Num

} such that, for all x ∈ B, βi(x) ≥ 0, i = 1, 2, · · · ,m,∑m
i=1 βi(x) = 1, and βi(x) > 0 whenever x ∈ Nui

, βi(x) = 0 whenever x 6∈ Nui
.

Define a mapping h : B → Z as follows:

(3.4) h(x) =
m∑
i=1

βi(x)ui, ∀x ∈ B.

Since βi is continuous for each i, it follows from (3.4) that h is continuous. Let
S = co{u1, u2, · · · , um}. Then S ⊆ B is a simplex of a finite dimensional space and
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h maps S into S. By Lemma 2.3, there exists some x∗ ∈ S such that h(x∗) = x∗.
Let I0 = {i : βi(x∗) > 0}. Clearly, I0 6= ∅. Moreover,

(3.5) x∗ = h(x∗) =
∑
i∈I0

βi(x∗)ui ∈ co{ui : i ∈ I0}.

On the other hand, for every i ∈ I0, βi(x∗) > 0. So x∗ ∈ Nui
, i.e.,

(3.6) F (x∗, ui) 6⊆ C, ∀ i ∈ I0.

It follows that

(3.7) ui ∈ {y ∈ X : F (x∗, y) 6⊆ C}, ∀ i ∈ I0.

By (3.5),(3.7) and the assumption (ii), we have x∗ ∈ {y ∈ X : F (x∗, y) 6⊆ C}, i.e.,

(3.8) F (x∗, x∗) 6⊆ C.

which contradicts the assumption (i). Hence ∩y∈BH(y) 6= ∅.
Let x0 ∈ ∩y∈BH(y), then we have

(3.9) F (x0, y) ⊆ C, ∀ y ∈ B.

We assert that x0 ∈ D. Suppose to the contrary that x0 6∈ D, then we have
x0 ∈ B\D ⊆ X\D. It follows from the assumption (iv) that there exists some
y0 ∈ D such that

(3.10) F (x0, y0) 6⊆ C.

Since D ⊆ B, we can see that (3.10) contradicts (3.9). So x0 ∈ D. Notice that
{y1, y2, · · · , yn} ⊆ B. It follows from (3.9) that x0 ∈ ∩ni=1G(yi), which implies
that the family of sets {G(y) : y ∈ X} has the finite intersection property. Hence,
∩y∈XG(y) 6= ∅.

Now we shall show that VMS (F,X) is closed. Notice that

(3.11) VMS (F,X) =
⋂
y∈X
{x ∈ X : F (x, y) ⊆ C}.

Then, by the assumption (iii), it is easy to see that VMS (F,X) is closed.
Further, if condition (v) is also satisfied, i.e., for any y ∈ X, the set {x ∈ X :

F (x, y) ⊆ C} is empty or convex, it is sufficient to show that VMS (F,X) is convex.
Indeed, since VMS (F,X) = ∩y∈X{x ∈ X : F (x, y) ⊆ C} 6= ∅, it follows that for any
y ∈ X, the set {x ∈ X : F (x, y) ⊆ C} 6= ∅ and so is convex. Thus, by (3.11), it is
easy to see that VMS (F,X) is convex. This completes the proof.

Remark 3.1. Theorem 3.1 is quite different from Theorem 3 of Ansari et al. [2] in
the following aspects:

(a) In Theorem 3.1, the existence of strong efficient solution for (MSVEP) is
obtained on a nonempty closed convex subset of a real Hausdorff topological
vector space, while in Theorem 3 of Ansari et al. [2], it was obtained on a
nonempty compact convex subset of a locally convex Hausdorff topological
vector space.
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(b) Theorem 3.1 shows both the existence of strong efficient solution and the
closeness and the convexity of the strong efficient solution sets, while The-
orem 3 of Ansari et al. [2] only showed the existence of strong efficient
solution.

(c) The proof method is different. In fact, Theorem 3.1 is proved by using the
famous Brouwer fixed point theorem, while Theorem 3 of Ansari et al. [2]
was proved by using the Kakutani-Fan-Glicksberg fixed point theorem.

Example 3.1. Let E = Z = R,X = C = R+ = [0,+∞), and F : X ×X → 2Z be
defined as follows:

F (x, y) = [y − x,+∞), ∀x, y ∈ X.
If we take D = [0, 1] and y0 = 1, then it is easy to check that all the conditions
(i)–(v) of Theorem 3.1 are satisfied and so Theorem 3.1 implies that VMS (F,X) is
nonempty, closed and convex. Indeed, we can see that VMS (F,X) = {0}.

Corollary 3.1. Let E,Z and C be as in Theorem 3.1. Let X ⊆ E be a nonempty
compact convex subset and F : X ×X → 2Z a set-valued mapping. Suppose that

(i) for any x ∈ X, F (x, x) ⊆ C;
(ii) for any x ∈ X, the set {y ∈ X : F (x, y) 6⊆ C} is empty or convex;
(iii) for any y ∈ X, the set {x ∈ X : F (x, y) ⊆ C} is closed;

Then, VMS (F,X) 6= ∅. Moreover, VMS (F,X) is closed. Further, if the following
condition also holds:

(iv) for any y ∈ X, the set {x ∈ X : F (x, y) ⊆ C} is empty or convex,
then VMS (F,X) is convex.

Proof. Take D = X. Then, by the assumptions, it is easy to see that all the
conditions of Theorem 3.1 are satisfied and so Theorem 3.1 yields the conclusion.
This completes the proof.

Corollary 3.2. Let E,Z,X and C be as in Theorem 3.1. Let f : X ×X → Z be a
given mapping. Suppose that

(i) for any x ∈ X, f(x, x) ∈ C;
(ii) for any x ∈ X, the set {y ∈ X : f(x, y) 6∈ C} is empty or convex;
(iii) for any y ∈ X, the set {x ∈ X : f(x, y) ∈ C} is closed;
(iv) there exists a nonempty compact convex subset D ⊆ X such that, for each

x ∈ X\D, there exists some y0 ∈ D such that f(x, y0) 6∈ C.
Then, VS(f,X) 6= ∅. Moreover, VS(f,X) is closed. Further, if the following condi-
tion is satisfied:

(v) for any y ∈ X, the set {x ∈ X : f(x, y) ∈ C} is empty or convex,
then VS(f,X) is convex.

From Theorem 3.1, we can also obtain the following result.

Theorem 3.2. Let E,Z,X,C and F be as in Theorem 3.1. Assume that the con-
ditions (i), (ii), (iv) of Theorem 3.1 and one of the following conditions hold:

(iii)′ for any y ∈ X, F (x, y) is l.s.c. in x;
(iii)′′ for any y ∈ X, F (x, y) is lower (−C)-continuous in x.
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Then the conclusion of Theorem 3.1 holds.

Proof. We need only to show that for each y ∈ X, the set

Q(y) = {x ∈ X : F (x, y) ⊆ C}
is closed in X.

Indeed, let {xα} ⊆ Q(y) be an arbitrary net such that xα → x0. We need to show
that x0 ∈ Q(y). Since {xα} ⊆ X and X is closed, we have x0 ∈ X. In addition, for
each α,

(3.12) F (xα, y) ⊆ C.
(I) If the assumption (iii)′ holds, then it follows from lemma 2.1 that for each

z0 ∈ F (x0, y), there exists a net {zα} such that zα ∈ F (xα, y) for all α and zα → z0.
Further, by (3.12), we have zα ∈ C for all α. By the closeness of C, it follows that
z0 ∈ C. Thus, by the arbitrary of z0, we have F (x0, y) ⊆ C. Hence x0 ∈ Q(y), and
so Q(y) is closed.

(II) If the assumption (iii)′′ holds, then it is sufficient to show that

(3.13) F (x0, y) ⊆ C.
Indeed, since F (x, y) is lower (−C)-continuous in x, it follows that for each neigh-
borhood V of the origin in Z, there exists some α0 such that

(3.14) F (x0, y) ⊆ F (xα, y) + V + C, ∀α ≥ α0.

Noting that C is a convex cone, for any α ≥ α0, by (3.14) and (3.12), we have

(3.15) F (x0, y) ⊆ F (xα, y) + V + C ⊆ C + V + C ⊆ C + V.

By the arbitrary of V , we can show that F (x0, y) ⊆ C. In fact, suppose that it is not
the case, then there exists some a0 ∈ F (x0, y) such that a0 6∈ C. Since C is closed,
there exists a neighborhood V0 of the origin in Z such that (a0 +V0)∩C = ∅. Since
Z is a real Hausdorff topological vector space, there exists a balanced neighborhood
V1 of the origin in Z such that V1 ⊆ V0. Then, we have (a0 + V1) ∩ C = ∅. Notice
that V1 is balanced, i.e., V1 = −V1. So (a0 − V1) ∩ C = ∅. It follows that

0 6∈ C − (a0 − V1) = −a0 + V1 + C,

i.e.,
a0 6∈ V1 + C,

which contradicts (3.15). Consequently F (x0, y) ⊆ C. Thus x0 ∈ Q(y), and so Q(y)
is closed. This completes the proof.

Theorem 3.3. Let E,Z,X,C and F be as in Theorem 3.1. Assume that the con-
ditions (i), (iii), (iv) of Theorem 3.1 and the following condition hold:

(ii)′ F is properly C-diagonally quasiconvex.
Then, VMS (F,X) 6= ∅. Moreover, VMS (F,X) is closed. Further, if one of the follow-
ing conditions also holds:

(v)′ for any y ∈ X, F (x, y) is C-concave in x;
(v)′′ for any y ∈ X, F (x, y) is affine in x,

then VMS (F,X) is convex.
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Proof. For the first part of the conclusion, we can proceed the proof exactly as that
of Theorem 3.1 except for using the assumptions (ii)′ and (i) to get a contradiction
with (3.6) and so is omitted.

For the second part of the conclusion, we need only to show that for each y ∈ X,
the set

Q(y) = {x ∈ X : F (x, y) ⊆ C}
is empty or convex in X.

Indeed, suppose that Q(y) 6= ∅ and x1, x2 ∈ Q(y), we need to show that for each
t ∈ [0, 1], xt = tx1 + (1− t)x2 ∈ Q(y). Noting that x1, x2 ∈ X and X is convex, we
have xt ∈ X. In addition,

(3.16) F (xi, y) ⊆ C, i = 1, 2.

(I) If the assumption (v)′ holds, then we have

F (xt, y) ⊆ tF (x1, y) + (1− t)F (x2, y) + C ⊆ C + C + C ⊆ C.(3.17)

(II) If the assumption (v)′′ holds, then we have

F (xt, y) = tF (x1, y) + (1− t)F (x2, y) ⊆ C + C ⊆ C.(3.18)

From (3.17) and (3.18), we know that, for each t ∈ [0, 1], xt ∈ Q(y), and so Q(y) is
convex. This completes the proof.

By Lemma 2.2, Theorems 3.2 and 3.3, we can obtain the following result.

Corollary 3.3. Let E,Z,X,C and f be as in Corollary 3.2. Assume that the
conditions (i), (iv) of Corollary 3.2 and one of the following conditions hold:

(ii) for any x ∈ X, the set {y ∈ X : f(x, y) 6∈ C} is empty or convex;
(ii)′ f is properly C-diagonally quasiconvex;

and one of the following conditions holds:
(iii)′ for any y ∈ X, f(x, y) is continuous in x;
(iii)′′ for any y ∈ X, f(x, y) is upper (−C)-continuous in x;
(iii)′′′ for any y ∈ X, f(x, y) is lower (−C)-continuous in x;
(iii)′′′′ for any y ∈ X, f(x, y) is (−C)-continuous in x.

Then, VS(f,X) 6= ∅. Moreover, VS(f,X) is closed. Further, if one of the following
conditions also holds:

(v)′ for any y ∈ X, f(x, y) is C-concave in x;
(v)′′ for any y ∈ X, f(x, y) is affine in x,

then VS(f,X) is convex.

Theorem 3.4. Let Z and C be as in Theorem 3.1. Let E be a real reflexive Banach
space, and X ⊆ E be a nonempty closed convex subset. Let F : X ×X → 2Z be a
set-valued mapping. Suppose that

(i) for any x ∈ X, F (x, x) ⊆ C;
(ii) for any x ∈ X, the set {y ∈ X : F (x, y) 6⊆ C} is empty or convex;
(iii) for any y ∈ X, the set {x ∈ X : F (x, y) ⊆ C} is weakly closed;
(iv) there exists a nonempty bounded closed and convex subset D ⊆ X such that,

for each x ∈ X\D, there exists some y0 ∈ D such that F (x, y0) 6⊆ C.



130 S. H. Wang, Q. Y. Li and J. Y. Fu

Then, VMS (F,X) 6= ∅. Moreover, VMS (F,X) is weakly closed, and so is closed.
Further, if the following condition also holds:

(v) for any y ∈ X, the set {x ∈ X : F (x, y) ⊆ C} is empty or convex,
then VMS (F,X) is convex.

Proof. Since E is a real reflexive Banach space, X ⊆ E is a nonempty closed convex
subset and D ⊆ X is a nonempty bounded closed convex subset, so X is closed and
D is compact with respect to the weak topology of E. Thus, by endowed with E with
weak topology, it is easy to see that all the conditions of Theorem 3.1 are satisfied
with respect to the weak topology of E and so Theorem 3.1 yields the conclusion.
This completes the proof.

Remark 3.2. By the same argument of Theorem 3.3, we can show that (a) the con-
dition (ii) of Theorem 3.4 can be replaced by (ii)′ of Theorem 3.3; (b) the condition
(v) of Theorem 3.4 can be replaced by (v)′ or (v)′′ of Theorem 3.3.

Example 3.2. Let E = Z = R,X = C = R+ = [0,+∞), and F : X ×X → 2Z be
defined as follows:

F (x, y) = [y − x+ 1,+∞), ∀x, y ∈ X.
If we take D = [0, 1] and y0 = 0, then it is easy to check that all the conditions
(i)–(v) of Theorem 3.4 are satisfied and so Theorem 3.4 implies that VMS (F,X) is
nonempty, weakly closed and convex. Indeed, we can see that VMS (F,X) = [0, 1].

Corollary 3.4. Let E,Z,X,C and F be as in Theorem 3.4. Suppose that
(i) for any x ∈ X, F (x, x) ⊆ C;
(ii) F is properly C-diagonally quasiconvex or for any x ∈ X, the set {y ∈ X :

F (x, y) 6⊆ C} is empty or convex;
iii) for any y ∈ X, F (x, y) is l.s.c. or lower (−C)-continuous in x;

(iv) for any y ∈ X, F (x, y) is C-concave or affine in x;
(v) there exists a nonempty bounded closed and convex subset D ⊆ X such that,

for each x ∈ X\D, there exists some y0 ∈ D such that F (x, y0) 6⊆ C.
Then, VMS (F,X) 6= ∅. Moreover, VMS (F,X) is weakly closed and convex, and so is
closed.

Proof. We need only to show that the condition (iii) of Theorem 3.4 holds, i.e., for
each y ∈ X, the set

Q(y) = {x ∈ X : F (x, y) ⊆ C}
is weakly closed. Indeed, by the assumption (iii), it follows from the proof of The-
orem 3.2 that for each y ∈ X, Q(y) is closed in X. In addition, by the assumption
(iv), it follows from the proof of Theorem 3.3 that for each y ∈ X, Q(y) is empty
or convex. Thus, for each y ∈ X, Q(y) is weakly closed. This completes the proof.
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