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1. Introduction and concepts

Most of the labellings mentioned in [9] and [11] focus on undirected graphs since
undirected graphs have been studied much more extensively than directed graphs [1].
However, Bloom and Hsu [3, 4, 5] investigate graceful labelling (also, numberings)
problem of digraphs in early 1980’s. In [7], the author studies magic labellings on
digraphs.

Graceful digraphs are related in a variety of ways to other areas of mathematics.
In [4], Bloom and Hsu characterized the graceful labellings of certain classes of di-
graphs by the existence of particular algebraic structures, including cyclic difference
sets and sequenceable groups, and so on. They provided some digraph models of
cyclic groups, and cyclic neofields that are used to generate families of graceful la-
bellings for the models. Furthermore, Bloom and Hsu showed some properties and
examples of this new class of graph labellings for several families of graceful digraphs
including certain orientations of cycles, paths, and the unions of cycles and paths,
as well as certain complete digraphs, wheels, windmills, and umbrellas.
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The shorthand symbol [m,n] stands for a set {m,m + 1, . . . , n}, where m and n
are non-negative integers with m < n. The cardinality of a finite set X is denoted
by |X|. Only non-negative integers are used here. The underlying graph UG(D) of
a digraph D is obtained from D by removing the direction of each arc of D. Unless
otherwise mentioned, we consider only that UG(D) is connected and has no loops,
multiple edges, and then we say the digraph D to be simple-connected. A ditree is
a digraph whose underlying graph is a tree.

The vertex and arc sets of a simple-connected digraph D are denoted as V (D)
and A(D) = {−→uv : u, v ∈ V (D)}, respectively. An injection f : V (D) → [0, |A(D)|]
of D is proper if no two vertices of D are assigned the same integer, also, f is
called a labelling of D. For an arc −→uv (or denoted by (u, v)) the first vertex u
is its tail and the second vertex v is its head. The out-neighbourhood and in-
neighbourhood of a vertex u are defined as N+

D (u) = {v ∈ V (D)\{u} : −→uv ∈ A(D)}
and N−

D (u) = {w ∈ V (D) \ {u} : −→wu ∈ A(D)}, respectively. The numbers |N+
D (u)|

and |N−
D (u)|, denoted by d+

D(u) and d−D(u) (or d+(u) and d−(u) for short), are called
the out-degree and in-degree of the vertex u, respectively.

In [4] Bloom and Hsu defined: A digraph D is labelled by a labelling θ : V (D) →
[0, |A(D)|]. The vertex values, in turn, induce a value θ(−→uv) on each arc −→uv, where
θ(−→uv) = θ(v)− θ(u) (mod |A(D)|+ 1). If the arc values are all distinct and nonzero,
then the labelling θ is graceful. A digraph is graceful if it has a graceful labelling.

The dual labelling f ∗ of a labelling f of a digraph D is defined as f ∗(x) =
|A(D)| − f(x) for all x ∈ V (D).

For the convenience of stating proofs, we will define some terminologies through
(1) to (4).

(1) Let f be a labelling of a digraph D from V to [0, |A(D)|] such that for each
arc −→uv ∈ A(D), f(−→uv) = f(u) − f(v) if f(u) > f(v), otherwise f(−→uv) =
|A(D)| + 1 + (f(u) − f(v)). We call f a digraceful labelling of D if the
arc label set {f(−→uv) : −→uv ∈ A(D)} = [1, |A(D)|]. Therefore, D is called a
digraceful digraph.

It is not hard to understand that a digraceful labelling f of a digraph
D is equivalent to a certain graceful labelling θ of D defined in [4] since
f(u) = θ(u) for u ∈ V (D) and f(−→uv) = |A(D)| + 1 − θ(−→uv) for −→uv ∈ A(D),
and moreover f can be regarded as the arc-dual labelling of θ.

(2) Let f be a digraceful labelling of a digraph D. An arc −→uv is called a forward-
arc if its label f(−→uv) = f(u)− f(v), otherwise, a backward-arc. The number
of forward-arcs and the number of backward-arcs are denoted by FaD(f)
and BaD(f), respectively. We call number maxf{FaD(f)} spanning over all
digraceful labellings f of D the optimal digraceful number of D, denoted by
Odn(D). Furthermore, if FaD(f) = Odn(D) = |A(D)|, then f is a graceful
labelling of the underlying graph UG(D).

Clearly, an arc −→uv, an out-degree d+(u), an arc label f(−→uv) = f(u)− f(v)
and a forward-arc are in the same “direction”, from the left to the right.

(3) The converse H of a digraph D is the digraph obtained from D by conversing
all arcs of D (by reversing the arc −→uv, it means that we replace the arc −→uv
by the arc −→vu). Notice that V (H) = V (D) and |A(H)| = |A(D)|. The
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conversely digraceful labelling h ∗ of a digraceful labelling f of D is defined
by h ∗(x) = |A(D)| − f(x) for all x ∈ V (H) = V (D).

Figure 1. (a) A digraceful orientation of C4; (b) A digraceful orientation
of C6; (c) A digraceful orientation of K4 with a digraceful labelling f , and
Fa(f) = Ba(f) = 3; (d) A digraceful orientation of K4 with the dually
digraceful labelling f ∗ of the digraceful labelling f defined in (c); (e) The
conversely digraceful labelling h ∗ of the converse of an orientation of K4

shown in (c).

(4) An undirected graph G has a digraceful orientation if there exists an orien-
tation of G which admits a digraceful labelling. All orientations of the star
K1,5 are digraceful, see Figure 2.

Each vertex of degree one in an undirected tree is called a leaf. A cater-
pillar is an undirected tree T such that the resulting graph obtained by
deleting all leaves of T is just a path. A lobster H is an undirected tree such
that the graph obtained by deleting all leaves from H is just a caterpillar.
An in-zero-out ditree is a ditree if, for its every vertex u, one of out-degree
d+(u) and in-degree d−(u) is always equal to zero. A rooted ditree T at a
fixed vertex u satisfies that in-degree d−(u) = 0, out-degree d+(u) ≥ 1, and
in-degrees d−(x) = 1 for all x ∈ V (T )\{u}. A vertex u of a ditree T is called
an in-leaf if d+

T (u) = 0 and d−T (u) = 1, and an out-leaf as if d−T (u) = 0 and
d+

T (u) = 1.

Figure 2. All digraceful orientations of K1,5.

Undefined terminologies follow [1, 2], and undefined labellings can be found in
[9].
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The first section is to fix some terminologies and notations, and to present a simple
introduction on digraceful digraphs. In Section 2, some properties on digraceful
digraphs will be given. We will aim to demonstrate the existence of digraceful
labellings for some undirected trees with short diameters. Some ditrees, although
their underlying trees are graceful, are verified for denying any digraceful labelling.
We will look for digraceful labellings for particular ditrees. In the last section,
Section 3, we will propose problems about the digraceful problem on digraphs.

2. Main results

2.1. Some properties on digraceful labellings

In this subsection we will show several properties of digraceful labellings on simple-
connected digraphs.

Lemma 2.1. Let H be the converse of a simple-connected digraph D having a la-
belling f . Let f ∗ and h ∗ be the dual labelling and converse labelling of f , respectively.
If f is digraceful, so are f ∗ and h ∗. Furthermore, f is also a digraceful labelling of
H.

Observation 1. Let D be a simple-connected digraph with m arcs and a digraceful
labelling f , and let H be the converse of D. Let f ∗ and h ∗ be the dual labelling
and converse labelling of f , respectively. Then

(i) FaD(f) + BaD(f) = m.
(ii) FaD(f) + FaD(f ∗) = BaD(f) + BaD(f ∗).
(iii) FaD(f) + BaD(f) = FaH(h ∗) + BaH(h ∗).
(iv) (m + 1)(m− 2BaD(f)) = 2

∑
u∈V (D)(d

+
D(u)− d−D(u))f(u).

Lemma 2.2. Let f be a digraceful labelling of a simple-connected digraph D with
m arcs.

(i) For odd m, a digraph H1 obtained by conversing a certain arc of D admits
the digraceful labelling f .

(ii) There are two arcs −→uv and −→xy with f(−→uv) + f(−→xy) = m + 1 such that f is
also a digraceful labelling of the digraph H2 obtained by conversing both −→uv
and −→xy of D.

(iii) If both −→uv and −→xy are forward arcs (or backward arcs) in D, then f(u) +
f(y) 6= f(x) + f(v).

(iv) If f(u) = 0 and BaD(f) = 0, then there is a new digraph H3 obtained by
adding new vertices wi to D and joining wi with u by an arc −−→wiu for i ∈ [1, k]
is digraceful.

(v) The digraceful labelling f is a graceful labelling of the underlying graph
UG(D) if and only if there are no forward-arc −→uv and backward-arc −→xy such
that f(u) + f(x) = f(v) + f(y).

Proof. (i) Since m+1 is even, there exists an arc −→uv that holds f(−→uv) = f(u)−f(v) =
m + 1 + (f(v)− f(u)). Hence, it is easy to obtain the digraph H1 generated from D
by conversing arc −→uv which admits the digraceful labelling f .
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(ii) We take an arc −→uv from the simple-connected digraph D of size m with a di-
graceful labelling f such that f(u)− f(v) 6= m + 1 + (f(v)− f(u)).

Case 1. f(−→uv) = f(u) − f(v), that is, f(u) > f(v). We converse the arc −→uv of
D, and then obtain a digraph D ′. Therefore, there is an arc −→xy of D ′ such that
f(−→vu) = m + 1 + (f(v) − f(u)) = f(−→xy) = f(x) − f(y), since f(−→uv) 6= f(−→xy) in D.
Next, we have a new digraph H obtained by conversing the arc −→xy of D ′. Notice
that f(−→yx) = m + 1 + (f(y) − f(x)) = f(u) − f(v) = f(−→uv), we know that any
two arcs of H are assigned distinct labels under the labelling f . As a result, H is
digraceful.

Case 2. f(−→uv) = m+1+(f(u)−f(v)), that is, f(u) < f(v). Let D ′′ be the digraph
generated from D by conversing the arc −→uv of D. Therefore, there exists an arc −→wz
in D ′′ such that f(−→vu) = f(v) − f(u) = f(w) − f(z) = f(−→wz) since f(−→uv) 6= f(−→wz)
in D. We have a digraph H2 obtained by conversing the arc −→wz of D ′′. It is easy to
see that

f(−→zw) = m + 1 + (f(z)− f(w)) = m + 1− f(−→wz)

= m + 1− f(−→vu) = m + 1− (f(v)− f(u)) = f(−→uv).

Thereby, H2 is digraceful.
(iii) This assertion is obvious.
(iv) Let H3 be a digraph obtained by adding new vertices wi to D and joining wi

with u by arcs −−→wiu (i ∈ [1, k]), where f(u) = 0. It is straightforward to defined
a digraceful labelling g for H3. Let g(x) = f(x) for x ∈ V (D) ⊂ V (H3), and
g(wi) = m + i for i ∈ [1, k]. Obviously, g is digraceful since BaD(f) = 0.
(v) The necessary condition of the assertion (v) is evident, so we only present
the proof of the sufficient condition. Notice that there are no forward-arc −→uv and
backward-arc −→xy such that f(u)+ f(x) = f(v)+ f(y) by the assertion (iii). Suppose
that there are two edges x1y1 and x2y2 of the underlying graph UG(D) such that
|f(x1)− f(y1)| = |f(x2)− f(y2)| for the digraceful labelling f of D. Clearly, there is
no f(−−→x1y1) = f(−−→x2y2) as if both −−→x1y1 and −−→x2y2 are forward-arcs (or backward-arcs).
We assume that −−→x1y1 is a backward-arc and −−→x2y2 is a forward-arc. Therefore, from
f(y1)− f(x1) = f(x2)− f(y2) and f(−→x1y1) = m + 1 + (f(x1)− f(y1)), we have

m + 1 + (f(x1)− f(y1)) = m + 1− (f(y1)− f(x1)) = m + 1− (f(x2)− f(y2)),

immediately, f(x1) + f(x2) = f(y1) + f(y2), a contradiction.

2.2. Results on particular orientations of trees

Verifying the digracefulness of each orientation of a tree T seems to be difficult,
since such a verification is harder than finding only one graceful labelling for T .
Usually, one provide a digraceful labelling for an orientation of T . In fact, providing
a graceful labelling for a given tree was widely used in attacking the Graceful Tree
Conjecture [9, 8]: Every tree is graceful.

If the underlying tree T of an in-zero-out ditree is a caterpillar, we denote this
ditree as D(T ; ca).
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Theorem 2.1. Let D(T ; ca) be an in-zero-out ditree whose underlying tree T is a
caterpillar. Then D(T ; ca) is digraceful.

Proof. Let D(T ; ca) be an in-zero-out ditree whose underlying tree T is a caterpillar.
Deleting all leaves of the caterpillar T , the remainder is a path P = u1u2 · · ·un. We,
without loss of generalization, assume that d+(u1) = 0, so d−(u2) = 0, and then
d+(u3) = 0 by the definition of an in-zero-out ditree. Thereby, we have d+(u2i−1) =
0 and d−(u2i) = 0 in D(T ; ca), 1 ≤ i ≤ bn+1

2 c. A digraceful D(T ; ca) can be
obtained by the way described in the following.

First, we consider a directed star H1 with vertex set V (H1) = {u1, u2, u1,j : j ∈
[1,m1]} and arc set A(H1) = {−−→u2u1,

−−−→u1,ju1 : j ∈ [1, m1]}. Clearly, H1 is an ori-
entation of the star K1,m1 . Consequently, we define the labelling f1 of H1 in the
way: f1(u1) = m1 + 1, f1(u1,j) = j for j ∈ [1,m1], and f1(u2) = 0. Hence, H1 is
digraceful by the definition of f1.

Second, we construct a directed caterpillar H2 such that V (H2) = V (H1) ∪
{u3, u2,j : j ∈ [1, m2]} and arc set A(H2) = A(H1) ∪ {−−→u2u3,

−−−→u2u2,j : j ∈ [1,m2]}.
Since d+(u1) = 0 and d−(u2) = 0 in H2, so H2 is an in-zero-out ditree. We
have the labelling f2of H2 defined by f2(x) = f1(x) if x ∈ V (H1) ⊂ V (H2), and
f2(u2,j) = m1+1+j for j ∈ [1,m2], and f2(u3) = m1+m2+2. Notice that each mem-
ber of A(H2) is a backward arc under the labelling f2, and |A(H2)| = m1 + m2 + 2.
The following arc labels

f2(−−−→u1,ju1) = |A(H2)|+ 1 + (f2(u1,j)− f2(u1)) = m2 + 1− j, j ∈ [1,m1],

provide numbers m2+3,m2+4, . . . , |A(H2)|−1, |A(H2)|. Next, f2(−−→u2u1) = |A(H2)|+
1 + (0− (m1 + 1)) = m2 + 2. Furthermore, the following arc labels

f2(−−−→u2u2,j) = |A(H2)|+ 1 + (f2(u2)− f2(u2,j)) = m2 + 2− j, j ∈ [1,m2]

yield numbers 2, 3, . . . ,m2,m2 + 1. Notice that f2(−−→u2u3) = |A(H2)|+ 1 + (f2(u2)−
f2(u3)) = 1. Thereby, H2 is digraceful.

Third, we construct a directed caterpillar H3 with vertex set V (H3) = V (H2) ∪
{u4, u3,j : j ∈ [1,m3]} and arc set A(H3) = A(H2) ∪ {−−→u4u3,

−−−→u3,ju3 : j ∈ [1,m3]}.
Clearly, d+(u1) = 0, d−(u2) = 0 and d+(u3) = 0 in H3, it means that H3 is
an in-zero-out ditree. Next, we define a labelling f3 to H3 in the way: f3(x) =
|A(H2)| − f2(x) if x ∈ V (H2) ⊂ V (H3), and f3(u3,j) = |A(H2)| + j for j ∈ [1,m3],
and f3(u4) = |A(H3)| =

∑3
i=1(1 + mi). Notice that every member of A(H3) is a

forward arc under f3. We have {f3(−→xy) : xy ∈ A(H2) ⊂ A(H3)} = [1, |A(H2)|] and
{f3(−−→u4u3), f3(−−−→u3,ju3) : j ∈ [1,m3]} = [|A(H2)| + 1, |A(H3)|]. It follows that H3 is
digraceful.

In general, we construct a directed caterpillar H2i (i ≥ 2) with vertex set V (H2i) =
V (H2i−1) ∪ {u2i+1, u2i,j : j ∈ [1,m2i]} and arc set A(H2i) = A(H2i−1) ∪ {−−−−−→u2iu2i+1,−−−−→u2iu2i,j : j ∈ [1, m2i]}, and define a digraceful labelling f2i in the way: f2i(x) =
|A(H2i−1)|− f2i−1(x) if x ∈ V (H2i−1) ⊂ V (H2i), and f2i(u2i,j) = |A(H2i−1)|+ j for
j ∈ [1,m2i], and f2i(u2i+1) = |A(H2i)| =

∑2i
i=1(1 + mi). It is very similar to Second

step above to verify that f2i is a digraceful labelling of H2i. Notice that each H2i is
an in-zero-out ditree.

Again, we make a directed caterpillar H2i+1 (i ≥ 2) with vertex set V (H2i+1) =
V (H2i)∪{u2i+2, u2i+1,j : j ∈ [1,m2i+1]} and arc set A(H2i+1) = A(H2i)∪{−−−−−−−→u2i+2u2i+1,
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−−−−−−−−→u2i+1,ju2i+1 : j ∈ [1,m2i+1]}, and then define a digraceful labelling f2i+1 by setting
f2i+1(x) = |A(H2i)| − f2i(x) if x ∈ V (H2i) ⊂ V (H2i+1), and f2i+1(u2i+1,j) =
|A(H2i)|+ j for j ∈ [1,m2i+1], and f2i+1(u2i+2) = |A(H2i+1)| =

∑2i+1
i=1 (1 + mi). To

verify f2i+1 is a digraceful labelling of H2i+1, it is as the same as that in Third step
above. Notice that each H2i+1 is an in-zero-out ditree.

Summarizing all of the above arguments together, we claim that the in-zero-out
ditree D(T ; ca) is digraceful.

Combining Lemma 2.2 with Theorem 2.1 together, we can obtain a number of
digraceful ditrees whose underlying trees are caterpillars. Furthermore, by the proof
of Theorem 2.1, we have

Corollary 2.1. Let D be a ditree with a digraceful labelling f such that BaD(f) = 0.
There is a digraceful ditree H obtained by identifying a vertex of D with a vertex of
an in-zero-out ditree D(T ; ca).

2.3. Results on many orientations of a tree with short diameter

Theorem 2.2. Let
−→
K1,m be an orientation of a star K1,m on (m+1) vertices. Then−→

K1,m is digraceful if m is odd, and one of out-degree and in-degree of the center w

of
−→
K1,m must be even when m is even.

Proof. Let
−→
K1,m be an orientation of a star

−→
K1,m with the center w. If d+(w) = 0,

that is, any arc of
−→
K1,m is as the form −→yw, clearly,

−→
K1,m admits a digraceful labelling.

Analogously,
−→
K1,m admits a digraceful labelling as if d−(w) = 0. Next, we consider

that
−→
K1,m contains s (≥ 1) arcs as form −→wx and t (≥ 1) arcs as form −→yw. Let

the vertex set and arc set of
−→
K1,m be V (

−→
K1,m) = {w, ui, vj : i ∈ [1, s], j ∈ [1, t]}

and A(
−→
K1,m) = Vs ∪ Vt where Vs = {−−→wui : i ∈ [1, s]} and Vt = {−−→vjw : j ∈ [1, t]},

respectively.

Let 2k = m + 1. We define a labelling h of
−→
K1,m as: h(w) = k, and each pair of

(i, 2k− i) (i ∈ [1, k−1]) is assigned to a pair of vertices of Vs or Vt such that there no
x ∈ Vs and y ∈ Vt hold h(x) = i and h(y) = 2k − i. If |Vs| is odd, the number zero
is assigned to a vertex of |Vs|. Clearly, there are no h(−→xw) = h(−→wy), h(−→uw) = h(−→vw)
and h(−→wx) = h(−→wy) (mod m + 1). Hence,

−→
K1,m is digraceful.

For even m, we need to prove the following claim first.

Claim 1. Then
−→
K1,m is digraceful if and only if the following property holds:

There is an integer c ∈ [0, m] such that [0,m] \ {c} = Vs ∪ Vt with |Vs| = s, |Vt| = t,
m = s + t ≥ 1, and furthermore no a ∈ Vs and b ∈ Vt hold a + b = 2c + δ(m + 1),
where δ = −1 or 0 or 1.
The proof of Claim 1. We only present the proof of the necessity since the sufficient
property is just a digraceful labelling of

−→
K1,m. Let f be a digraceful labelling of−→

K1,m. We have
(1) f(w)− f(ui) 6= m + 1 + (f(vj)− f(w)), so 2f(w)− (m + 1) 6= f(ui) + f(vj).
(2) f(w)− f(ui) 6= f(vj)− f(w), that is 2f(w) 6= f(ui) + f(vj).
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(3) m + 1 + (f(w) − f(ui)) 6= f(vj) − f(w), immediately, 2f(w) + (m + 1) 6=
f(ui) + f(vj).

Let c = f(w), Vs = {f(ui) : i ∈ [1, s]} and Vt = {f(vj) : j ∈ [1, t]}. Therefore,
[0,m]\{c} = Vs∪Vt, and there are no a ∈ Vs and b ∈ Vt satisfy a+b = 2c+δ(m+1),
where δ = −1 or 0 or 1. The proof of the Claim 1 is completed.

Next, we verify the following claim.

Claim 2. Let 2k = s + t, where both integers s, t are odd. Then for any integer
c ∈ [0, 2k] we have that [0, 2k] \ {c} = Vs ∪ Vt with |Vs| = s and |Vt| = t such that
there is at least a pair of a ∈ Vs and b ∈ Vt that hold a + b = 2c + δ(2k + 1), where
δ = −1 or 0 or 1.
The proof of Claim 2. For c = 0, then we have k pairs of (i, 2k + 1 − i) (i ∈ [1, k])
that hold a + b = δ(2k + 1), where δ = 1. For [0, 2k] \ {c} = Vs ∪ Vt, there is at least
one pair of (i, 2k + 1 − i) such that i ∈ Vs and 2k + 1 − i ∈ Vt, since both |Vs|, |Vt|
are odd.

For c ≥ 1, we have c pairs of (i−1, 2c− i+1) from 0, 1, 2, . . . , c−1, c+1, . . . , 2c−
2, 2c−1, 2c such that (i−1)+(2c−i+1) = 2c+δ(2k+1) for δ = 0; and we have k−c
pairs of (2c + i, 2k − i + 1) generated from 2c + 1, 2c + 2, 2c + 3, . . . , 2k − 1, 2k such
that (2c+ i)+(2k− i+1) = 2c+δ(2k+1) for δ = 1. Since both |Vs|, |Vt| are odd, we
could not put two numbers of a certain pair (i− 1, 2c− i + 1) (or (2c + j, 2k− j + 1)
for j ∈ [1, 2k]) in Vs (or Vt) for i ∈ [1, 2c+1]. The proof of the Claim 2 is finished.

Combining Claim 1 and Claim 2 together, this theorem is covered.
A ditree H with diameter three is called a directed bistar. For the sake of conve-

nience, we have the following description about a class of directed bistars T (s, t):

Dibistar (I): The vertex set and arc set of a directed bistar T (s, t) are defined as
V (T (s, t)) = {ui, u, v, vj : i ∈ [1, s − 1], j ∈ [1, t]} and A(T (s, t)) = {−→uui,

−→uv,−→vvj :
i ∈ [1, s − 1], j ∈ [1, t]}, respectively, where u is the root of T (s, t). Clearly, the
in-degrees d−T (s,t)(u) = 0 and d−T (s,t)(v) = 1, and the out-degrees d+

T (s,t)(u) = s and
d+

T (s,t)(v) = t. Let m = |V (T (s, t))| = s + t + 1.

Lemma 2.3. Let f be a digraceful labelling of a directed bistar T (s, t) defined by
Dibistar (I), where s− 1, t ≥ 1. Then

(i) For δ = 0, 1, we have f(u)+f(vj) 6= δm+2f(v), f(u)+f(vj) 6= δm+f(v)+
f(ui) and δm + f(u) + f(vj) 6= f(v) + f(ui).

(ii) There are no the following cases: (a) f(u) > f(v) > f(x) (or f(v) < f(u) <
f(x)) for x ∈ V (T (s, t)) \ {u, v}; and (b) f(u) = m− 1 and f(v) = 0.

(iii) Each of two integers s− 1 and t must be even.

Proof. It is not hard to verify that T (2, 1), T (2, 2) and T (3, 1) are not digraceful,
and T (3, 2) is digraceful. Hence, we consider directed bistars T (s, t) for s, t ≥ 3 in
the following.

Clearly, d−T (s,t)(u) = 0, d+
T (s,t)(u) = s ≥ 3, d−T (s,t)(v) = 1 and d−T (s,t)(v) = t ≥ 3

in the directed bistar T (s, t). We, without loss of generalization, may assume that
f(u) = a > b = f(v) (otherwise, f ∗(u) > f ∗(v) where f ∗ is the dual labelling of
f), f(ui) < f(ui+1) for i ∈ [1, s− 2] and f(vj) < f(vj+1) for j ∈ [1, t− 1].
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(i) There are the following possible cases.
(1) The case f(−→uv) 6= f(−→vvj) may include a− b 6= b− f(vj) and a− b 6= m + (b−

f(vj)) that yield a + f(vj) 6= δm + 2b for δ = 0, 1.
(2) The case f(−→uvi) 6= f(−→vvj) may contain a− f(ui) 6= b− f(vj) and a− f(ui) 6=

m + (b− f(vj)), thus, a + f(vj) 6= δm + b + f(ui) for δ = 0, 1.
Again, f(−→uvi) 6= f(−→vvj) may lead to cases m + (a − f(ui)) 6= b − f(vj) and

m + (a − f(ui)) 6= m + (b − f(vj)), immediately, δm + a + f(vj) 6= b + f(ui) for
δ = 0, 1.
(ii) We have the following two cases in discussion.

Case A. If a > f(us−1) and b > f(vt), thus, a = m−1. And it follows the arc label
m− 1 that f(u1) = 0. Again, the arc label m− 2 leads f(u2) = 1, go on in this way,
we have that the arc labels m− k yield f(uk) = k − 1 for k ∈ [1, s− 1]. Therefore,
b = m − 2 by the above deduction on the arc labels of −→uui with i ∈ [1, s − 1]. But
f(−→uv) = 1 = f(−→vvt), where f(vt) = m− 3, a contradiction.

If b < a < f(v1), it follows m + (b − f(vt)) = m + (a − (f(vt) + a − b)) that
no vertex uj satisfies f(uj) = f(vt) + a − b. Hence, there is a vertex vk that holds
f(vk) = f(vt) + a − b, and furthermore f(vt) > f(vk) = f(vt) + a − b, which is
impossible since a > b.

Case B. If a = m− 1 and b = 0, we have

f(−→vv1) = m + (f(v)− f(v1)) = m + (0− f(v1)) = (m− 1)− (f(v1)− 1),

it means that no vertex ui is assigned as f(ui) = f(v1)−1. Therefore, there exists a
vertex vj that holds f(vj) = f(v1)− 1, and furthermore f(v1) < f(vj) = f(v1)− 1,
an absurd result.
(iii) For a > f(ui), we have f(−→uui) = a − f(ui) = b − (f(ui) + b − a), so no vertex
vj is labelled as f(vj) = f(ui) + b − a, in turn, there is a vertex u ′i such that
f(u ′i) = f(ui) + b− a + δm for δ = 0 or 1. If a < f(ui), we have f(−→uui) = m + (a−
f(ui)) = m + (b− (f(ui) + b− a)), similarly, there exists f(u ′i) = f(ui) + b− a + δm
for δ = 0 or 1. Notice that f(u ′i) 6= f(u ′k) as if f(ui) 6= f(uk). Therefore, it must
be that s− 1 is even by the upper deduction.

Analogously, each number f(vj) is corresponding to a number f(v ′j) such that
f(v ′j) = f(v ′j) + a− b + δm for δ = 0 or 1, and furthermore for f(vj) 6= f(vk) there
is f(v ′j) 6= f(v ′k). Thereby, we can claim that t is even.

Lemma 2.4. Every directed bistar T (2l + 1, 2k − 2l) defined by Dibistar (I) is di-
graceful for intergers k > l ≥ 0.

Proof. For l = 0, the directed bistar T (1, 2k) is a directed star
−→
K1,2k+1 on (2k + 2)

vertices, so it admits a digraceful labelling h described in Theorem 2.2. We rewrite
the vertex set and arc set of T (1, 2k) as V (T (1, 2k)) = {u, v, xi, yi : i ∈ [1, k]} and
A(T (1, 2k)) = {−→uv,−→vxi,

−→vyi : i ∈ [1, k]}, respectively. Then we have h(u) = k + 1,
h(v) = 0, h(xi) = i and h(yi) = k + 1 + i for each i ∈ [1, k].

For i ∈ [1, k], the arc labels h(−→vxi) = (2k+2)−(0−i) = 2k+2−i distribute the set
[k+2, 2k+1]; and the arc labels h(−→vyi) = (2k+2)−(0−(k+1+i)) = k+1−i distribute
the set [1, k]. Notice that h(−→uv) = k + 1. Furthermore, each h(xi) is corresponding
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to h(yi), since h(yi) = h(xi) + h(u) − h(v) (see the proof of the assertion (iii) in
Lemma 2.3).

For l = 1, the directed bistar T (3, 2k − 2) can be obtained by deleting two arcs−→vxi,
−→vyi from T (1, 2k) and then adding two arcs −→uxi,

−→uyi to the remainder T (1, 2k)−
{−→vxi,

−→vyi}. And we retain the labelling h for T (3, 2k − 2). It is easy to see that
h(−→uxi) = k + 1− i and h(−→uyi) = (2k + 2) + ((k + 1)− (k + 1 + i)) = 2k + 2− i. So,
h still is a digraceful labelling of T (3, 2k − 2).

Notice that i is arbitrarily selected in the upper discussion, thus, we can delete
l pairs of arcs −→vxi and −→vyi and then add l pairs of arcs −→uxi and −→uyi such that the
resulting ditree is T (2l + 1, 2k− 2l) with the digraceful labelling h defined above.

Combining Lemma 2.3 with Lemma 2.4, we have

Theorem 2.3. Let T (s, t) be a directed bistar defined by Dibistar (I) with s, t ≥ 1.
Then T (s, t) is digraceful if and only if both integers s− 1 and t are even.

We define another class of directed bistars in the following:

Dibistar (II): The vertex set V (H(s, t; m,n)) of a directed bistar H = H(s, t; m,n)
contains vertices ui, xk, u, v, vj and yl, and the arc set A(H(s, t;m, n)) contains arcs−→uui,

←−−uxk,−→uv,−→vvj ,
←−vyl for i ∈ [1, s − 1], k ∈ [1,m], j ∈ [1, t] and l ∈ [1, n]. Clearly,

the in-degrees d−H(u) = m and d−H(v) = n + 1, and the out-degrees d+
H(u) = s and

d+
H(v) = t. So |V (H)| = s + m + t + n + 1.

Lemma 2.5. If both integers s − 1 + n and t + n are even in a directed bistar
H(s, t; n, n) defined by Dibistar (II) with s−1, t, n ≥ 1, then H(s, t; n, n) is digraceful.

Proof. In the proof of Lemma 2.4, the directed bistar T (1, 2k) has a digraceful
labelling h, and each pair of arcs −→vxi and −→vyi with h(xi) = i and h(yi) = k + 1 + i
for each i ∈ [1, k] is said to be arc-label matchable. And each pair of arcs −→vxi,

−→vyi is
corresponding to a pair of arcs −−−−−→vxk+1−i and −−−−−→vyk+1−i. Furthermore, it is not hard to
see

(2.1)
h(xk+1−i) = k + 1− i = h(−→vyi), h(yk+1−i) = 2k + 2− i = h(−→vxi);
h(−−−−−→vxk+1−i) = k + 1 + i = h(yi), h(−−−−−→vyk+1−i) = i = h(xi).

Therefore, each pair of arcs −−−−−→vxk+1−i and −−−−−→vyk+1−i is called the dually arc-label match-
able pair of the pair of arcs −→vxi and −→vyi.

Notice that H(s+n, t+n; 0, 0) = T (s+n, t+n) defined by Dibistar (I). Suppose
that each of s−1+n and t+n is of even. We apply the directed bistar T (1, 2k) with
a digraceful labelling h defined in the proof of Lemma 2.4, where 2k = s−1+ t+2n.
We delete arcs −→vxj ,

−→vyj for 1 ≤ j ≤ 1
2 (n + s − 1) from T (1, 2k), and then add arcs−−→uxj ,

−→uyj to the remainder, so that we obtain H(s + n, t + n; 0, 0) with the digraceful
labelling h. By the equation (2.1), the dually arc-label matchable pair for each pair
of arcs −−→uxj and −→uyj is the pair of arcs −−−−−→vxk+1−j and −−−−−→vyk+1−j , j ∈ [1, n]. We, now,
converse arcs −−→uxj and −−−−−→vyk+1−j so that the resulting ditree is H(s+n−1, t+n−1; 1, 1)
that admits the digraceful labelling h. Next, we converse arcs −→uyj and −−−−−→vxk+1−j such
that the resulting ditree is H(s + n − 2, t + n − 2; 2, 2) that still admits the above
labelling h as a digraceful labelling. Go on in this way, we obtain H(s, t;n, n) with
the digraceful labelling h.
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Figure 3. (a) A directed bistar T (1, 10) in which each pair of arcs (v, i)
and (v, 6+i) is an arc-label matchable pair, and each pair of arcs (v, 12−i)
and (v, 6 − i) is the dually arc-label matchable pair of the pair of arcs
(v, i) and (v, 6 + i); (b) A directed bistar T (3, 8); (c) A directed bistar
T (5, 6); (d) A directed bistar H(4, 5; 1, 1) generated from T (5, 6).

Lemma 2.6. Given even integers t and s− 1, then H(s, t; 4r, 0) defined by Dibistar
(II) is digraceful, where s− 1, t, r ≥ 1.

Proof. We consider H(s + 4r, t; 0, 0) = T (s + 4r, t) defined by Dibistar (I) (the
same way for H(s, t + 4r; 0, 0)). We employ the directed bistar T (1, 2k) that has a
digraceful labelling h defined in the proof of Lemma 2.4, where 2k = s−1+t+4r. We
delete two pairs of −→vx1,

−→vy1 and −−→vxk,−→vyk and arcs −→vxj ,
−→vyj for 2 ≤ j ≤ 1

2 (s− 1) from
T (1, 2k), and then add arcs −−→ux1,

−→uy1, −−→uxk,−→uyk, and arcs −−→uxj ,
−→uyj for 2 ≤ j ≤ 1

2 (s−1)
to the remainder, so that we obtain H(s + 4r, t; 0, 0) with the digraceful labelling
h. Thereby, we have H(s, t; 4r, 0) by conversing four arcs −−→ux1,

−→uy1, −−→uxk and −→uyk.
Now, it is to verify that the digraceful labelling h still is available for H(s, t; 4r, 0)
in the following. Observe that h(−−→x1u) = 2k + 2 + (1 − (k + 1)) = k + 2 = h(y1),
h(−→y1u) = (k+2)−(k+1) = 1 = h(x1), h(−−→xku) = 2k+2+(k−(k+1)) = 2k+1 = h(yk)
and h(−→yku) = (2k + 1)− (k + 1) = k = h(xk), we are done.

Lemma 2.7. Let each of s − 1 and t be even, and let s − 1 + t = 2k. If k is odd,
we then have two digraceful directed bistars H(s, t− 1; 1, 0) and H(s + 1, t− 1; 0, 1)
defined by Dibistar (II).

Proof. Let 2` = k + 1. Notice that two arcs −→vx`,
−→vy` in the directed bistar T (1, 2k)

(2k = s − 1 + t) with a digraceful labelling h defined in the proof of Lemma 2.4 is
not only an arc-label matchable pair but also the dually arc-label matchable pair
about itself, since

h(−→vx`) = 2k + 2 + (0− `) = 2k + 2− ` = 3` = k + 1 + ` = h(y`), and

h(−→vy`) = 2k + 2 + (0− (k + 1 + `)) = k + 1− ` = ` = h(x`).

Delete the arc −→vx` from T (1, 2k), and follows to add an arc −→x`u to the remainder,
thus, we obtain H(s, t − 1; 1, 0) with the labelling h defined above. Notice that
h(−→x`u) = 2k + 2 + (` − (k + 1)) = k + 1 + ` = h(−→vx`), it shows that h, also, is a
digraceful labelling of H(s, t−1; 1, 0). Analogously, we, first, delete the arc −→vy` from
T (1, 2k). Next, we add an arc −→uy` and converse the arc −→vx` in the remainder in
order to obtain H(s + 1, t− 1; 0, 1) with the digraceful labelling h.
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Figure 4. (a) A directed bistar T (5, 6); (b) A directed bistar H(1, 6; 4, 0)
generated from T (5, 6); (c) A directed bistar H(5, 5; 1, 0); (d) A directed
bistar H(3, 5; 3, 0).

By Lemma 2.5, 2.6 and 2.7 we have

Theorem 2.4. If each of s−1+n and t+n is even in a directed bistar H(s, t;n+4r, n)
defined by Dibistar (II), where integers s− 1, t ≥ 1 and n, r ≥ 0, then we have

(1) H(s, t; n + 4r, n) is digraceful.
(2) Both H(s, t− 1; n+4r +1, n) and H(s+1, t− 1; n+4r, n+1) are digraceful

as if s− 1 + t + 2n + 4r = 2k for odd k.

2.4. An application of digraceful ditrees

We replace each edge uv of a complete graph K2m+1 by two arcs −→uv and −→vu, the
resulting graph is called the biorientation of K2m+1, denoted by

←→
K 2m+1. Recall

the famous Ringel-Kotzig Decomposition Conjecture [10]: A complete graph K2m+1

can be decomposed into 2m + 1 subgraphs that are all isomorphic with a given tree
of m edges.

Theorem 2.5. Let
←→
K 2m+1 be the biorientation of a complete graph K2m+1. If

a ditree T with size m is digraceful, then
←→
K 2m+1 can be decomposed into 2m + 1

arc-disjoint copies of T and 2m + 1 arc-disjoint copies of converse of T .

Proof. Let V (T ) = {u1, u2, . . . , um+1} and let f be a digraceful labelling of a ditree
T such that f(ui) = i − 1 for i ∈ [1,m + 1]. We label each vertex vj of

←→
K 2m+1

with the color j, write this labelling by g, so g(vj) = j − 1 for j ∈ [1, 2m + 1]. We
take first copy H1 of the ditree T such that g(vi) = f(ui) for i ∈ [1,m + 1] (notice
that this is available since

←→
K 2m+1 is biorientated). And the second copy H2 of T

satisfies g(vi+1) = f(ui) + 1 for i ∈ [1,m + 1]. Go on in this way, we have the kth
copy Hk of T satisfies g(vi+k−1) = f(ui) + k − 1 (mod 2m) for i ∈ [1,m + 1] and
k ∈ [1, 2m + 1]. For each copy Hk, we define the label of an arc −→uv of Hk as the
following:

g(−→uv) = g(u)− g(v) if 1 ≤ g(u)− g(v) ≤ m;
g(−→uv) = (g(u)− g(v))−m if g(u)− g(v) > m;
g(−→uv) = m + 1 + (g(u)− g(v)) if −m ≤ g(u)− g(v) < 0; and
g(−→uv) = 2m + 1 + (g(u)− g(v)) if g(u)− g(v) < −m.
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Notice that 2|A(T )| = 2m =
∑

u∈V (T )(d
+
T (u)+d−T (u)), so we have

∑2m+1
k=1 (d+

Hk
(w)+

d−Hk
(w)) = 2m for each vertex w ∈ V (

←→
K 2m+1). Clearly, the labelling g shows that

two copies Hk and Hs share no arc in common for k, s ∈ [1, 2m + 1].
Let H∗

k be the converse of Hk for k ∈ [1, 2m + 1]. Therefore, the biorientation←→
K 2m+1 can be decomposed into arc-disjoint ditrees Hk and H∗

s for k, s ∈ [1, 2m +
1].

Figure 5. A digraceful ditree H1 and its copies for illustrating the labels
of arcs in the proof of Theorem 2.5.

3. Further works

In [9] a graceful labelling f of an undirected tree T is ordered if either f(x) < f(u)
(or f(x) > f(u)) for all x ∈ N(u) and u ∈ V (T ), where N(x) is the neighbor set of
a vertex x in a graph.

Conjecture 3.1. [6] Each tree is ordered graceful.

We orientate a tree T with an ordered graceful labelling f in the way: If f(x) <
f(u) for all x ∈ N(u), then we replace by an arc −→ux each edge ux. For f(x) > f(u)
as if x ∈ N(u), we replace by an arc −→xu each edge ux. The resulting digraph is just
an in-zero-out ditree. Thereby, we propose

Conjecture 3.2. Each in-zero-out ditree with diameter not less than five is digrace-
ful.

For diameter D(T ) = 2 or 3, Theorem 2.1 answers Conjecture 3.2.
We discover that a digraceful ditree may have an arc −→uv such that the ditree

obtained by conversing the arc −→uv is not digraceful. Thereby, the following problems
may be interesting.

Problem 1. Characterize a digraceful ditree T such that the ditree obtained by
conversing a certain arc of T is not digraceful.
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Problem 2. Let D be a simple-connected digraph. Is the number of in-leaf vertices
equal to that of out-leaf vertices if

∑
u∈V (D)(d

+
D(u) − d−D(u))f(u) = 0 for a certain

digraceful labelling f of D?
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