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Abstract. Let G be a group and let Autc(G) be the group of central auto-
morphisms of G. We say that a subgroup H of a group G is c-characteristic if

α(H) = H for all α ∈ Autc(G). We say that a group G is c-characteristically

simple group if it has no non-trivial c-characteristic subgroup. If every subgroup
of G is c-characteristic then G is called co-Dedekindian group. In this paper we

characterize c-characteristically simple groups. Also if G is a direct product of
two groups A and B we study the relationship between the co-Dedekindianness

of G and the co-Dedekindianness of A and B. We prove that if G is a co-

Dedekindian finite non-abelian group, then G is Dedekindian if and only if G
is isomorphic to Q8 where Q8 is the quaternion group of order 8.
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1. Introduction and results

Let G be a group, and let G′ and Z(G) denote the commutator subgroup and the
centre ofG respectively. An automorphism α ofG is called central if x−1α(x) ∈ Z(G)
for all x ∈ G. The set of all central automorphisms of G, denoted by Autc(G), is a
normal subgroup of the full automorphism group of G. A subgroup H of G is called
characteristic if H is invariant under all automorphisms of G. A group G is called
characteristically simple group if it has no non-trivial characteristic subgroup. The
structure of the finite characteristically simple groups are well known. They are a
direct product of finitely many isomorphic copies of a simple group (see [5, Theorem
8.10]). The definition of characteristically simple groups suggests the consideration
of a new class of groups, called c-characteristically simple groups which are defined
as following.

We say that a subgroup H of a group G is c-characteristic if α(H) = H for each
α ∈ Autc(G). We say that a group G is c-characteristically simple group if it has
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no non-trivial c-characteristic subgroup. In Section 2, we give some results on the
c-characteristic subgroups and characterize the c-characteristically simple groups.

If every subgroup of G is c-characteristic then G is called co-Dedekindian group.
In 1994 Deaconescu and Silberberg in [2] studied the finite co-Dedekindian groups.
They gave a Dedekind-like structure theorem for the non-nilpotent co-Dedekindian
groups with trivial Frattini subgroup and by reducing the finite nilpotent co-Dedekindian
groups to the case of p-groups they obtained the following theorem.

Theorem 1.1. Let G be a co-Dedekindian finite non-abelian p-group. If Z2(G) is
non-abelian, then G ' Q8. If Z2(G) is cyclic, then G ' Q2n (n ≥ 4) where Q2n is
the generalized quaternion group of order 2n.

In 2002, Jamali and Mousavi in [3] gave some necessary conditions for certain
finite p-groups with non-cyclic abelian second centre to be co-Dedekindian. Section
3 contains some properties of co-Dedekindian groups and if G is a direct product
of two groups A and B we study the relationship between the co-Dedekindianness
of G and the co-Dedekindianness of A and B. Also we give a characterization for
certain p-groups which are co-Dedekindian groups. At the end of this section, we
prove that if G is a co-Dedekindian finite non-abelian group, then G is Dedekindian
if and only if G is isomorphic to Q8.

2. C-characteristically simple groups

Definition 2.1. We say that a subgroup H of a group G is c-characteristic if α(H) =
H for each α ∈ Autc(G). We note that if Z(G) = 1 or G′ = G then Autc(G) = 1
and hence every subgroup of G is c-characteristic subgroup.

Remark 2.1. It is clear that every characteristic subgroup of a group G is c-
characteristic, but a c-characteristic subgroup of a group G is not necessary charac-
teristic. For example, let n be an integer greater than equal 5, andAn be the alternat-
ing group of degree n. Since Z(An) = 1, every subgroup of An is c-characteristic but
the only characteristic subgroups of An are 1 and An. Also let G ' D8 = 〈x, y|x4 =
y2 = 1, y−1xy = x−1〉. Then we have Aut(D8) = {1, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7} where
ϕ1 : x 7−→ x and y 7−→ x2y, ϕ2 : x 7−→ x3 and y 7−→ y, ϕ3 : x 7−→ x3 and y 7−→ x2y,
ϕ4 : x 7−→ x3 and y 7−→ xy, ϕ5 : x 7−→ x and y 7−→ xy, ϕ6 : x 7−→ x and y 7−→ x3y
and ϕ7 : x 7−→ x3 and y 7−→ x3y. Hence Autc(G) = {1, ϕ1, ϕ2, ϕ3}. Now it is
easy to check that H = {1, x2, y, x2y} and K = {1, x2, xy, x3y} are c-characteristic
subgroups of D8 but are not characteristic subgroups.

In the following we give some information about c-characteristic subgroups of a
group.

Proposition 2.1. Let G be a group. Then

(1) If H is a c-characteristic subgroup of G, then Z2(G) ≤ NG(H).
(2) If H is a c-characteristic subgroup of K and K is normal in Z2(G), then H

is normal in Z2(G).
(3) If H is a c-characteristic subgroup of K and K is a c-characteristic subgroup

of G, then H is a c-characteristic subgroup of G.
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Proof. (1) Let x ∈ Z2(G). Then the inner automorphism θx induced by x defines a
central automorphism of G. Since H is c-characteristic subgroup of G, Hx = H.
(2) Let x ∈ Z2(G) and θx be the inner automorphism induced by x. Then the
restriction θx on K is an automorphism of K since, K is normal in G. Since
k−1θx(k) = k−1x−1kx = [k, x] ∈ [K,Z2(G)] ≤ K ∩ Z(G) ≤ Z(K) for all k ∈ K,
θx is a central automorphism of K and so Hx = H since, H is a c-characteristic
subgroup of K.
(3) Let α ∈ Autc(G). Then the restriction α on K defines a central automorphism
of K since, K is a c-characteristic subgroup of G and k−1α(k) ≤ K ∩Z(G) ≤ Z(K)
for all k ∈ K. Therefore Hα = H since, H is a c-characteristic subgroup of K.

Proposition 2.2. Let G be a group. Suppose that G × G has a c-characteristic
subgroup K, and write G1 = G× 1 and G2 = 1×G. Then

(1) K∩G1 and K∩G2 are c-characteristic subgroups of G1 and G2 respectively.
(2) If π1 and π2 are the natural projections on G×G. Then π1(K) and π2(K)

are c-characteristic subgroups of G.

Proof. (1) Let K be a c-characteristic subgroup of G × G and let θ1 ∈ Autc(G1).
Then θ : G × G −→ G × G defined by θ(g1, g2) = (1, g2)θ1(g1, 1) defines a central
automorphism of G × G. Let (g, 1) ∈ K ∩ G1. Then θ(g, 1) = (1, 1)θ1(g, 1) =
θ1(g, 1) ∈ K ∩G1 since, K is a c-characteristic subgroup of G×G. Similarly K ∩G2

is a c-characteristic subgroup of G2.
(2) Let α ∈ Autc(G). Then β : G×G −→ G×G defined by β(g1, g2) = (α(g1), g2)
defines a central automorphism of G × G. Since K is c-characteristic, for each
(g1, g2) ∈ K we have α(g1) = π1(α(g1), g2) = π1(β(g1, g2)) ∈ π1(K) whence
α(π1(g1, g2)) = α(g1) ∈ π1(K). Similarly π2(K) is a c-characteristic subgroup of
G.

Proposition 2.3. Let G be a finite non-abelian p-group. Then every non-trivial
abelian direct factor of G is not c-characteristic.
Proof. Suppose that A is a non-trivial abelian direct factor of G. Then there exists
a non-abelian subgroup B of G such that G = A×B. Choose an element z of order
p in Z(B). Write A as a direct product C ×D, where C is a cyclic p-group. Let the
map α be defined by α(b) = b for all b in B, α(c) = zc where c is a generator of C
and α(d) = d for all d in D. Then the map α extends to a central automorphism of
G. But A is not invariant under α For, otherwise zc ∈ 〈c〉 and so z ∈ 〈c〉 ≤ A ∩ B
which is a contradiction.

Definition 2.2. We say that a non-trivial group G is c-characteristically simple
group if it has no non-trivial c-characteristic subgroup.

In the following we give relationship between c-characteristically simple groups
and characteristically simple groups, and characterize finite c-characteristically sim-
ple groups.

Proposition 2.4. Let G be a non-trivial group. Then G is a c-characteristically
simple group if and only if G is abelian and characteristically simple group.

Proof. Let G be a c-characteristically simple group and H is a characteristic sub-
group of G. Then by Remark 2.1 H is c-characteristic and so H = 1 or H = G.
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Now we show that G is abelian. Since Z(G) is a characteristic subgroup of G and
G is characteristically simple group, we have Z(G) = 1 or Z(G) = G. If Z(G) = 1
then Autc(G) = 1 and so every subgroup of G is c-characteristic. Since G is c-
characteristically simple group, G has no non-trivial subgroup and hence is cyclic of
prime order which is a contradiction. Therefore Z(G) = G which shows that G is
abelian. Conversely let G be abelian and characteristically simple group. Also let
K be a c-characteristic subgroup of G. Since G is abelian, Autc(G) = Aut(G). This
shows K is a characteristic subgroup of G and so K = 1 or K = G.

Remark 2.2. Simple groups are certainly characteristically simple, but are not
c-characteristically simple. For example An for n ≥ 5 is simple but is not c-
characteristically simple. Also a c-characteristically simple group is not necessary
simple. For example Zp × Zp is c-characteristically simple but is not simple.

As a consequent of Proposition 2.4, we have

Corollary 2.1. Let G be a finite group. Then G is a c-characteristically simple
group if and only if G is an elementary abelian p-group for some prime p.

Proof. Let G be a c-characteristically simple finite group. Then by Proposition 2.4,
G is abelian and characteristically simple. Since G is a finite group, by [5, 7.41], G
is elementary abelian p-group.

Suppose conversely that G is elementary abelian p-group. Since G is characteris-
tically simple, by Proposition 2.4, G is c-characteristically simple group.

Remark 2.3. A group G is said to be completely reducible if either G = 1 or G is
the direct product of a finite number of simple groups. By Corollary 2.1 every finite
c-characteristically simple group is completely reducible. Without the condition that
G is finite, the result is false. For instance by Proposition 2.4 the additive group of
the rational numbers is an example of a c-characteristically simple group which is
not completely reducible.

Corollary 2.2. If G is a c-characteristically simple group, then G × G is a c-
characteristically simple group.

Proof. By Proposition 2.4 G is abelian and characteristically simple. Also by [5,
page 144, 362] G×G is characteristically simple. Now Proposition 2.4 implies that
G×G is a c-characteristically simple group, since G is abelian.

3. Some properties of co-Dedekindian groups

In this section we shall obtain further information about co-Dedekindian groups.
First we give some results that will be used in the sequel. We recall that a direct
decomposition of a group G into direct product of finitely many non-trivial inde-
composable subgroups is said to be a Remak decomposition. Let G be a group.
For α ∈ Autc(G), let Fα = {x ∈ G | α(x) = x}, Kα = 〈x−1α(x) | x ∈ G〉,
F = ∩α∈Autc(G)Fα and K = 〈Kα | α ∈ Autc(G)〉. It is clear that G′ ≤ F and
K ≤ Z(G), so in particular F , K, Fα, Kα are normal subgroups in G. We now
collect some information of [2] about the subgroups Fα and Kα. Let G be a finite
co-Dedekindian group and α ∈ Autc(G), H ≤ G. Then
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(1) H ∩ Fα = 1⇒ H ≤ Kα.
(2) H ∩Kα = 1⇒ H ≤ Fα.
(3) G = HFα ⇒ Kα ≤ H.
(4) G = HKα ⇒ Fα ≤ H.

Theorem 3.1. Let G be a co-Dedekindian group. Then

(1) Every direct summand of G is co-Dedekindian.
(2) If G = A×B = A× C are two decomposition for G, then B = C.
(3) If G is a finite group, then G has a unique Remak decomposition (up to the

orders of the direct factors).
(4) Let G be a finite group and let N be a minimal normal subgroup of G. Then

N ≤ Z(G) or N ≤ F .
(5) Let G be a finite group such that Autc(G) 6= 1. If M is a maximal subgroup

of G, then G
′ ≤M or M ∩ Z(G) 6= 1.

Proof. (1) Let G = A × B, γ ∈ Autc(A) and L ≤ A. Then there exists a central
automorphism θ : ab 7−→ γ(a)b of G for each a ∈ A and b ∈ B. Since G is co-
Dedekindian, L = θ(L) = γ(L).
(2) There is an isomorphism θ : B 7−→ C such that for each b ∈ B, b−1θ(b) ∈ A and
hence b−1θ(b) ∈ Z(G). Now the map γ : ab 7−→ aθ(b) defines a central automorphism
which maps B onto C. Since G is co-Dedekindian, C = γ(B) = B.
(3) Let G = H1 × · · · × Hr = K1 × · · · × Ks be two Remak decompositions of G.
Then by [4, 3.3.8] we have r = s and there is a central automorphism α of G such
that, after suitable relabelling of the K ′js if necessary, Hi

α = Ki whence Hi = Ki

since G is co-Dedekindian.
(4) If there exists α ∈ Autc(G) such that N∩Fα = 1 then N ≤ Kα and so N ≤ Z(G).

Now let for each α ∈ Autc(G), N ∩Fα 6= 1. Since N is minimal normal, for each
α ∈ Autc(G) we have N ∩ Fα = N and so N ≤ F .
(5) Let α be a non-trivial central automorphism of G. If MFα = G, then Kα ≤M .
On the other hand Kα ≤ Z(G) and so 1 6= Kα ≤ M ∩ Z(G). If MFα = M then
G
′ ≤ Fα ≤M .

We recall [2] that a co-Dedekindian group is said to be trivial co-Dedekindian
group if Autc(G) = 1. In the following we show that the restriction Autc(G) 6= 1 on
the group G in Theorem 3.1(5) is necessary. First we need the following lemma.

Lemma 3.1. If G is a perfect group, then G/Z(G) is a trivial co-Dedekindian group.

Proof. We show that Z(G/Z(G)) = Z2(G)/Z(G) = 1. Let x ∈ Z2(G). Then the
map θx defined by θx(g) = [x, g] for all g ∈ G defines an homomorphism of G since,
[G,Z2(G)] ≤ Z(G). Since G/ker(θx) ' Im(θx) ≤ Z(G), we have G′ ≤ ker (θx).
Since G is perfect, for all g ∈ G we have [x, g] = 1 whence x ∈ Z(G). This completes
the proof.

Remark 3.1. If G is a perfect group, then by Lemma 3.1 the factor group Ḡ =
G/Z(G) is a trivial co-Dedekindian group. But for every maximal subgroup M̄ of Ḡ
neither conditions Ḡ′ ≤ M̄ nor M̄∩Z(Ḡ) 6= 1. Therefore the restriction Autc(G) 6= 1
on the group G in Theorem 3.1(5) is necessary.
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Remark 3.2. By Theorem 3.1(1) if the direct product of two groups A and B
is co-Dedekindian, then A and B are co-Dedekindian. But the converse is not in
general true. For example let A = Z2 and B = Q8. Then the groups A and B
are co-Dedekindian but their direct product G = Z2 × Q8 is not. Suppose, for
a contradiction, that G is co-Dedekindian. Since Z2(G) = G is non-abelian, by
Theorem 1.1 we have G ' Q8 which is a contradiction. However as we will see
below, under certain conditions on co-Dedekindian groups A and B, A × B is co-
Dedekindian. First we need the following theorem.

Theorem 3.2. [7] The Remak decomposition of a finite group is uniquely determined
if and only if the order of the factor commutator group of each of its factors is
relatively prime to the order of the centre of each of its other factors.

Theorem 3.3. Let G be the direct product of two groups A and B. Then
(1) If G is a co-Dedekindian group, then A and B are co-Dedekindian, Hom(A,

Z(B)) = 1 and Hom(B,Z(A)) = 1.
(2) If A and B are finite co-Dedekindian indecomposable group with (|A|, |B|) =

1, then G is co-Dedekindian.

Proof. (1) By Theorem 3.1, A and B are co-Dedekindian. Let θ ∈ Hom(A,Z(B)).
We define the mapping γ : G −→ G by

γ(ab) = aθ(a)b for all a ∈ A, b ∈ B.

Then the mapping γ is a homomorphism. Clearly γ is one to one. Let a ∈ A, b ∈ B
then γ(aθ(a−1)b) = aθ(a)θ(a−1)b = ab. So γ is onto. γ is a central automorphism
because, (ab)−1γ(ab) = b−1a−1aθ(a)b = b−1θ(a)b = θ(a)b−1b = θ(a) ∈ Z(B) ≤
Z(G). Since G is co-Dedekindian, for each a ∈ A we have γ(a) = aθ(a) ∈ A and
hence θ(a) = 1 for each a ∈ A. Similarly Hom(B,Z(A)) = 1.
(2) Let α ∈ Autc(G) and L ≤ G. Since (|A|, |B|) = 1, by [5, Corollary 8.20] we have
L = A1 × B1 for some subgroups A1 and A2 of G. If A ' B then G = 1 which is
co-Dedekindian.

So let A 6∼= B. We have G = Aα ×Bα and clearly this decomposition is a Remak
decomposition. Since (|A/A′ |, |Z(B)|) = 1, (|B/B′ |, |Z(A)|) = 1, by Theorem 3.2
the finite group G has only one Remak decomposition and hence Aα = A and Bα =
B. This means that the automorphism α induces an automorphism α1 ∈ Autc(A)
and an automorphism α2 ∈ Autc(B). Since the groups A and B are co-Dedekindian,
A1

α = A1
α1 = A1 and B1

α = B1
α2 = B1 whence Lα = L.

We recall that a group G is called purely non-abelian if it has no non-trivial
abelian direct factor.

Corollary 3.1. Let G be a co-Dedekindian finite non-abelian p-group, then G is
purely non-abelian.

Proof. Suppose, for a contradiction, that G = A×B where A is a non-trivial abelian
group. Then by Theorem 3.3, Hom(A,Z(B)) = 1 which is a contradiction.

Corollary 3.2. Let G be a co-Dedekindian finite non-abelian p-group. Then Autc(G)
is a p-group.
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Proof. By Corollary 3.1, G is purely non-abelian and hence by [1, Theorem 1]
Autc(G) is a p-group.

In the following we characterize certain p-groups which are co-Dedekindian groups.

Theorem 3.4. Let G be a finite non-abelian p-group having a cyclic maximal sub-
group. Then G is co-Dedekindian if and only if G ' Q2n for some n ≥ 3.

Proof. If G has a cyclic maximal subgroup then by [4, 5.3.4] if p is odd then G '
Mpn = 〈x, y|xpn−1

= yp = 1, y−1xy = x1+pn−2〉 (n ≥ 3).
Since cl(G) = 2 and G is co-Dedekindian, by Theorem 1.1 we have G ' Q8 which

is a contradiction. Therefore p = 2 and G is isomorphic to one of the following
groups:

(1) G ' D2n = 〈x, y|x2n−1
= y2 = 1, y−1xy = x−1〉

(2) G ' S2n = 〈x, y|x2n−1
= y2 = 1, y−1xy = x−1+2n−2〉

(3) G ' Q2n = 〈x, y|x2n−1
= 1, x2n−2

= y2, y−1xy = x−1〉 where n ≥ 3.

(1) If G ' D2n , then the map θ : x 7−→ x and y 7−→ x2n−2
y extends to a central

automorphism on G. Since G is co-Dedekindian, θ(y) ∈ 〈y〉 whence y ∈ Z(G) which
is a contradiction.
(2) If G ' S2n , then the map α : x 7−→ x and y 7−→ x2n−2

y extends to a central
automorphism on G. Since G is co-Dedekindian, α(y) ∈ 〈y〉 whence y ∈ Z(G) which
is a contradiction.

So G ' Q2n for some n ≥ 3.

Theorem 3.5. Let G be a finite non-abelian p-group such that Z(G) = Gp ' Zp.
Then G is co-Dedekindian if and only if Ω1(G) ≤ Φ(G).

Proof. Let x ∈ G \ Φ(G). We show that |x| > p. Let z be a generator of Z(G).
Since x /∈ Φ(G), there exists a maximal subgroup M such that x /∈ M . The map
φ : G 7−→ G by α(xim) = ximzi where 0 ≤ i < p defines a central automorphism of
G. Since G is co-Dedekindian, α(x) ∈ 〈x〉 whence Z(G) ⊂ 〈x〉 for every x ∈ G\Φ(G)
and hence |x| > p for every x ∈ G \ Φ(G). Conversely let Ω1(G) ⊆ Φ(G) and
1 6= α ∈ Autc(G). Then 1 6= Kα ≤ Z(G) and so Kα = Z(G). Since |G| = |Kα||Fα|,
Fα is a maximal subgroup of G. This implies that α(x) = x for every x ∈ Φ(G). Let
x ∈ G \ Φ(G), then |x| > p. Since Z(G) = Gp ' Zp, xp ∈ Z(G) and so xp

2
= 1. As

|x| > p so we have |x| = p2 whence Z(G) = 〈xp〉. Now x−1α(x) ∈ Z(G) = 〈xp〉 ⊂ 〈x〉
and so G is co-Dedekindian.

Proposition 3.1. Let G be a finite p-group and N EG such that N ⊆ φ(G). Then
N is co-Dedekindian if and only if N is cyclic.

Proof. Let N be co-Dedekindian. Then Z(N) is cyclic by [3, Proposition 2.2]. Since
N ⊆ φ(G) and Z(N) is cyclic, N is cyclic by [6, 4.21].

Corollary 3.3. Let G be a finite p-group, then φ(G), G
′
, Gp are co-Dedekindian

groups if and only if φ(G), G
′
, Gp are cyclic.

Recall that a group G is called Dedekindian if every subgroup of G is invariant
under all inner automorphisms of G. The structure of the finite Dedekindian groups
is well-known . They are either abelian or the direct product Q8×F ×E, where Q8
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is the quaternion group of order 8, F is an abelian group of odd order and E is an
elementary abelian 2-group ( See [4, 5.3.7] ). In the following we state relationship
between Dedekindian groups and co-Dedekindian groups.

Proposition 3.2. Let G be a co-Dedekindian group. Then
(1) If N is a subgroup of G such that [G,N ] ≤ Z(G), then N is a Dedekindian

group.
(2) Z2(G) is Dedekindian.
(3) If G is a nilpotent group of class at most 2, then G is a Dedekindian group.

Proof. (1) Each element of N induces by conjugation a central automorphism of
G. Now let H ≤ N . Since G is co-Dedekindian, it follows that H E N , so N is
Dedekindian.
(2) Since [G,Z2(G)] ≤ Z(G), by (1) Z2(G) is Dedekindian.
(3) If G is abelian, then it is clear that G is Dedekindian. If cl(G) = 2 then by (2)
G is Dedekindian.

Theorem 3.6. Let G be a non-abelian finite group such that G is co-Dedekindian.
Then G is Dedekindian if and only if G ' Q8.

Proof. We first prove that if G is a finite nilpotent co-Dedekindian group, then Z(G)
is cyclic. Let G = P1×· · ·×Pn where Pi is the Sylow pi-subgroup of G. By Theorem
3.1 each Pi is co-Dedekindian. Suppose that P1, . . . , Pk are abelian and Pk+1, . . . , Pn
are non-abelian. Since P1, . . . , Pk are co-Dedekindian, Autc(P1), . . . ,Autc(Pk) are
abelian and hence P1, . . . , Pk are cyclic. On the other hand for each k + 1 ≤ i ≤ n,
Z(Pi) is cyclic group by [3, Proposition 2.2]. Therefore Z(G) is cyclic.

Let G be a Dedekindian group. Then by [4, 5.3.7] we have G ' Q8 × F × E
where Q8 is the quaternion group of order 8, F is abelian of odd order and E is an
elementary abelian 2-group. By Theorem 3.1(1), F and E are co-Dedekindian. Now
since F and E are abelian, F and E are cyclic and hence G ' Q8×Z2m where m is
an odd number. Since G is a finite nilpotent co-Dedekindian group, Z(G) is cyclic
and so G ' Q8.
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